Package ‘CBEA’

January 17, 2024

Title Competitive Balances for Taxonomic Enrichment Analysis in R
Version 1.2.0
Date 2022-03-03

Description This package implements CBEA, a method to perform set-based analysis for microbiome relative abundance data. This approach constructs a competitive balance between taxa within the set and remainder taxa per sample. More details can be found in the Nguyen et al. 2021+ manuscript. Additionally, this package adds support functions to help users perform taxa-set enrichment analyses using existing gene set analysis methods. In the future we hope to also provide curated knowledge driven taxa sets.

License MIT + file LICENSE

URL https://github.com/qpmnguyen/CBEA,
 https://qpmnguyen.github.io/CBEA/

BugReports https://github.com/qpmnguyen/CBEA//issues

Depends R (>= 4.2.0)
Imports BiocParallel, BiocSet, dplyr, lmom, fitdistrplus, magrittr, methods, mixtools, Rcpp (>= 1.0.7), stats, SummarizedExperiment, tibble, TreeSummarizedExperiment, tidyr, glue, generics, rlang, goftest

Suggests phyloseq, BiocStyle, covr, knitr, RefManageR, rmarkdown, sessioninfo, testthat (>= 3.0.0), tidyverse, roxygen2, mia, purrr

LinkingTo Rcpp

VignetteBuilder knitr

biocViews Software, Microbiome, Metagenomics, GeneSetEnrichment, DataImport

Config/testthat/edition 3

Encoding UTF-8

LazyData false
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
git_url https://git.bioconductor.org/packages/CBEA
git_branch RELEASE_3_18
git_last_commit 486c9d0
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-17
Author Quang Nguyen [aut, cre] (<https://orcid.org/0000-0002-2072-3279>)
Maintainer Quang Nguyen <quangpmnguyen@gmail.com>

R topics documented:

.cbea .. 3
cbea ... 4
check_args ... 7
check_distr_arg ... 7
combine_distr .. 8
dist .. 8
estimate_distr ... 9
fit_scores ... 10
get_adj_mnorm ... 11
get_diagnostics ... 11
get_mean .. 12
get_raw_score ... 12
get_sd .. 13
glance.CBEAout ... 13
gmean .. 14
gmeanRow ... 15
hmp_gingival ... 15
merge_lists .. 16
new_CBEAout .. 17
pmnorm ..------- 17
print.CBEAout .. 18
reexports .. 18
scale_scores ... 19
tidy.CBEAout ... 19
var_setup .. 20

Index 21
Description

See main function cbea documentation for more details.

Usage

```r
.cbea( 
  ab_tab, 
  set_list, 
  output, 
  distr, 
  adj = FALSE, 
  n_perm = 100, 
  parametric = TRUE, 
  thresh = 0.05, 
  init = NULL, 
  control = NULL, 
  parallel_backend = NULL, 
  ... 
)
```

Arguments

- **ab_tab** (Matrix). Named n by p matrix. This is the OTU/ASV/Strain table where taxa are columns.
- **set_list** (List). List of length m. This is a list of set membership by column names.
- **output** See documentation cbea
- **distr** See documentation cbea
- **adj** See documentation cbea
- **n_perm** See documentation cbea
- **parametric** See documentation cbea
- **thresh** See documentation cbea
- **init** See documentation cbea
- **control** See documentation cbea
- **parallel_backend** See documentation cbea
- **...** See documentation cbea

Value

A data.frame of size n by m. n is the total number of samples and m is the total number of sets with elements represented in the data.
cbea

Enrichment analysis using competitive compositional balances (CBEA)

Description

cbea is used compute enrichment scores per sample for pre-defined sets using the CBEA (Competitive Balances for Enrichment Analysis).

Usage

cbea(
 obj,
 set,
 output,
 distr = NULL,
 adj = FALSE,
 n_perm = 100,
 parametric = TRUE,
 thresh = 0.05,
 init = NULL,
 control = NULL,
 parallel_backend = NULL,
 ...
)

S4 method for signature 'TreeSummarizedExperiment'
cbea(
 obj,
 set,
 output,
 distr = NULL,
 abund_values,
 adj = FALSE,
 n_perm = 100,
 parametric = TRUE,
 thresh = 0.05,
 init = NULL,
 control = NULL,
 parallel_backend = NULL,
 ...
)

S4 method for signature 'data.frame'
cbea(
 obj,
 set,
taxa_are_rows = FALSE,
id_col = NULL,
output,
distr = NULL,
adj = FALSE,
n_perm = 100,
parametric = TRUE,
thresh = 0.05,
init = NULL,
control = NULL,
parallel_backend = NULL,
...
)

S4 method for signature 'matrix'
cbea(
 obj,
 set,
 taxa_are_rows = FALSE,
 output,
 distr = NULL,
 adj = FALSE,
 n_perm = 100,
 parametric = TRUE,
 thresh = 0.05,
 init = NULL,
 control = NULL,
 parallel_backend = NULL,
 ...
)

Arguments

obj The element of class TreeSummarizedExperiment, data.frame, or matrix. phyloseq is not supported due to conflicting dependencies and TreeSummarizedExperiment is much more compact.

set BiocSet. Sets to be tested for enrichment in the BiocSet format. Taxa names must be in the same format as elements in the set.

output (String). The form of the output of the model. Has to be either zscore, cdf, raw, pval, or sig

distr (String). The choice of distribution for the null. Can be either mnorm (2 component mixture normal), norm (Normal distribution), or NULL if parametric is TRUE.

adj (Logical). Whether correlation adjustment procedure is utilized. Defaults to FALSE.

n_perm (Numeric). Add bootstrap resamples to both the permuted and unpermuted data set. This might help with stabilizing the distribution fitting procedure, especially if the sample size is low. Defaults to 1.
parametric (Logical). Indicate whether a parametric distribution will be fitted to estimate
z-scores, CDF values, and p-values. Defaults to TRUE.

thresh (Numeric). Threshold for significant p-values if sig is the output. Defaults to 0.05.

init (Named List). Initialization parameters for estimating the null distribution. Default is NULL.

control (Named List). Additional arguments to be passed to fitdistr and normmixEM. Defaults to NULL.

parallel_backend
See documentation cbea

... Additional arguments not used at the moment.

abund_values (Character). Character value for selecting the assay to be the input to cbea.

taxa_are_rows (Logical). Indicate whether the data frame or matrix has taxa as rows.

id_col (Character Vector). Vector of character to indicate metadata columns to keep (for example, sample_id).

Details

This function supports different formats of the OTU table, however for best results please use
TreeSummarizedExperiment. phyloseq is supported, however CBEA will not explicitly import
phyloseq package and will require users to install them separately. If use data.frame or matrix,
users should specify whether taxa are rows using the taxa_are_rows option. Additionally, for
data.frame, users can specify metadata columns to be kept via the id_col argument.

The output argument specifies what type of values will be returned in the final matrix. The options
pval or sig returns either unadjusted p-values or dummy variables indicating whether a set
is significantly enriched in that sample (based on unadjusted p-values thresholded at thresh). The option raw returns raw scores computed for each set without any distribution fitting or inference procedure. Users can use this option to examine the distribution of CBEA scores under the null.

Value

R An n by m matrix of enrichment scores at the sample level.

Examples

data(hmp_gingival)
seq <- hmp_gingival$data
set <- hmp_gingival$set
n_perm = 10 to reduce runtime
mod <- cbea(obj = seq, set = set, output = "zscore",
 abund_values = "16SrRNA",
 distr = "norm", parametric = TRUE,
 adj = TRUE, thresh = 0.05, n_perm = 10)
check_args Checking arguments of the function

Description
This function extracts the parent environment (when called under the cbea function) and then check all the arguments.

Usage
check_args()

Value
None

check_distr_arg This function checks for validity of arguments based on the parameters and the distribution of interest

Description
This function checks for validity of arguments based on the parameters and the distribution of interest.

Usage
check_distr_arg(param, distr, .note = NULL)

Arguments
- param (List). Named list of parameter values
- distr (String). String name of the distribution being evaluated
- .note (String). Any additional annotation to be put in front of error messages

Value
Returns 0 if there are no errors
combine_distr

Combining two distributions

Description
Pass along handling of combining distributions to avoid clogging up the main function

Usage
`combine_distr(perm, unperm, distr, ...)`

Arguments
- `perm` (List). A list of parameters for permuted distribution
- `unperm` (List). A list of parameters for the unpermuted distribution
- `distr` (String). Distribution of choice

Value
A list of the combined distribution form based on the initial distribution of choice

dlst

Definitions for location-scale t distribution

Description
Internal functions for defining the t-distribution in terms of location-scale.

Usage
`dlst(x, df = 1, mu = 0, sigma = 1, log = FALSE)`
`plst(q, df = 1, mu = 0, sigma = 1, log = FALSE)`

Arguments
- `x`, `q` The data vector
- `df` Degrees of freedom
- `mu` The location parameter
- `sigma` The scale parameter
- `log` Indicate whether probabilities are return as log
Value

Numeric values representing the density and cumulative probability values of the location-scale t distribution

Functions

- `dlst`: Probability Density Function
- `plst`: Cumulative distribution function

Examples

```r
val <- rnorm(10)
dlst(val, df = 1, mu = 0, sigma = 1)
val <- rnorm(10)
plst(q = val, df = 1, mu = 0, sigma = 1)
```

estimate_distr
Estimate distribution parameters from data

Description

This function takes a numeric vector input and attempts to find the most optimal solution for the parameters of the distribution of choice. Right now only `norm` and `mnorm` distributions are supported.

Usage

```r
estimate_distr(data, distr, init = NULL, args_list = NULL)
```

Arguments

- `data`
 (Numeric Vector). A vector of numbers that can be inputted to estimate the parameters of the distributional forms.
- `distr`
 (String). The distribution to be fitted. Right now only `norm` or `mnorm` is supported
- `init`
 (List). Initialization parameters for each distribution. For mixtures, each named element in the list should be a vector with length equal to the number of components
- `args_list`
 (List). Named list of additional arguments passed onto `fitdist` and `normalmixEM`
- `...`
 Other parameters passed to `fitdistrplus` or `normalmixEM`

Details

The package `fitdistrplus` is used to estimate parameters of the normal distribution while the package `normalmixEM` is used to estimate parameters of the mixture normal distribution. So far we suggest only estimating two components for the mixture normal distribution. For default options, we use mostly defaults from the packages themselves. The only difference was the mixture normal distribution where the convergence parameters were loosened and requiring more iterations to converge.
Value
A named list with all the parameter names and values

fit_scores
Function to compute CBEA scores for each set

Description
Function to compute CBEA scores for each set

Usage
```
fit_scores(
  index_vec,
  ab_tab,
  adj,
  distr,
  output,
  n_perm,
  parametric,
  thresh,
  init,
  control
)
```

Arguments
- **index_vec** (Character Vector). A character vector indicating the elements of the set of interest
- **ab_tab** (Matrix). Named n by p matrix. This is the OTU/ASV/Strain table where taxa are columns.
- **adj** (Logical). See documentation cbea
- **distr** (Character). See documentation cbea
- **output** (Character). See documentation cbea
- **n_perm** (Numeric). The total number of permutations.
- **parametric** (Logical). See documentation cbea
- **thresh** (Numeric). See documentation cbea
- **init** (List). See documentation cbea
- **control** (List). See documentation cbea

Value
This function returns a list containing output scores and other diagnostics (as sublists)
get_adj_mnorm

Function to perform the adjustment for the mixture normal distribution

Description

Function to perform the adjustment for the mixture normal distribution

Usage

```r
get_adj_mnorm(perm, unperm, verbose = FALSE, fix_comp = "none")
```

Arguments

- **perm**: (List). Parameter values of the distribution of scores
- **unperm**: (List). Parameter values of the distribution of scores computed on unpermuted data
- **fix_comp**: (Character). Which component to keep

Value

A List of parameters for the adjusted mixture normal.

get_diagnostics

Get diagnostic values using parent environment.

Description

This function is used internally inside fit_scores to grab the relevant objects from the previous parent environment (i.e. the environment from fit_scores) and compute relevant information. The role of this function is break diagnostic component into a different function for maintenance.

Usage

```r
get_diagnostics(env = caller_env())
```

Value

This function returns a list of two components: diagnostic represent goodness-of-fit statistics for the distribution fitting itself while lmoment contains the l-moment comparisons between the computed raw scores, permuted scores, and other fitted distributions.
get_mean

Get the overall mean of a two component mixture distribution

Description

Get the overall mean of a two component mixture distribution

Usage

```r
get_mean(mu, lambda)
```

Arguments

- `mu` *(Vector)*: A two value vector of mean values.
- `lambda` *(Vector)*: A two value vector of component mixing coefficients

Value

A numeric value representing the overall mean

get_raw_score

Get CBEA scores for a given matrix and a vector of column indices

Description

Get CBEA scores for a given matrix and a vector of column indices

Usage

```r
get_raw_score(X, idx)
```

Arguments

- `X` *(Matrix)*: OTU table of matrix format where taxa are columns and samples are rows
- `idx` *(Integer vector)*: Vector of integers indicating the column ids of taxa in a set

Value

A matrix of size n by 1 where n is the total number of samples
get_sd

Get the overall standard deviation of a two component mixture distribution

Description

Get the overall standard deviation of a two component mixture distribution

Usage

```r
get_sd(sigma, mu, mean, lambda)
```

Arguments

- **sigma** *(Vector)*. A two value vector of component-wise variances
- **mu** *(Vector)*. A two value vector of mean values.
- **mean** *(Numeric Value)*. The overall mean.
- **lambda** *(Vector)*. A two value vector of component mixing coefficients

Value

A numeric value representing the overall standard deviation

glance.CBEAout

Glance at CBEAout object

Description

This function cleans up all diagnostics of the cbea method (from the CBEAout object) into a nice `tibble::tibble`

Usage

```r
## S3 method for class 'CBEAout'

## S3 method for class 'CBEAout'
```
Arguments

- **x**: An object of type `CBEAout`
- **statistic**: What type of diagnostic to return. Users can choose to return `fit_diagnostic` which returns goodness of fit statistics for the different fitted distributions (e.g. log likelihoods) while `fit_comparison` returns comparisons across different distributions and raw values (and data) across the 4 l-moments.
- ...: Unused, kept for consistency with generics

Value

A `tibble::tibble()` summarizing diagnostic fits per set (as row)

Examples

```r
# load the data
data(hmp_gingival)
mod <- cbea(hmp_gingival$data, hmp_gingival$set, abund_values = "16SrRNA", output = "sig", distr = "norm", adj = FALSE, n_perm = 5, parametric = TRUE)

# glance

# glance(mod, "fit_diagnostic")
```

gmean

Geometric mean of a vector

Compute geometric mean of a vector using \(\exp(\text{mean}(\log(.x))) \) format

Usage

`gmean(vec)`

Arguments

- **vec**: A vector of values with length \(n \)

Value

A numeric value of the geometric mean of the vector `vec`

Examples

```r
ex <- abs(rnorm(10))
gmean(ex)
```
\textit{gmeanRow} \hspace{2cm} \textit{Geometric mean of rows of a matrix}

\textbf{Description}
This function computes the geometric mean by row of a numeric matrix.

\textbf{Usage}
\begin{verbatim}
gmeanRow(X)
\end{verbatim}

\textbf{Arguments}
\begin{itemize}
 \item \textbf{X} \hspace{1cm} A numeric matrix with \(n \) rows and \(p \) columns
\end{itemize}

\textbf{Value}
A numeric vector of the geometric mean of the matrix \(X \) with length \(n \)

\textbf{Examples}
\begin{verbatim}
ex <- matrix(rnorm(100), nrow = 10, ncol = 10)
ex <- abs(ex)
gmeanRow(ex)
\end{verbatim}

\hmp_gingival \hspace{2cm} \textit{Gingival data set from the Human Microbiome Project}

\textbf{Description}
Gingival data set from the Human Microbiome Project.

\textbf{Usage}
\begin{verbatim}
data(hmp_gingival)
\end{verbatim}

\textbf{Format}
A list with two elements
\begin{itemize}
 \item \textbf{data} \hspace{1cm} The microbiome relative abundance data with relevant metadata obtained from the Human Microbiome Project via the \texttt{HMP16SData} package (snapshot: 11-15-2021). The data set is hosted the container of type \texttt{phyloseq}. Using the \texttt{mia} package users can convert it to the \texttt{TreeSummarizedExperiment} type.
 \item \textbf{set} \hspace{1cm} Sets of microbes based on their metabolism annotation at the Genera level. Annotations obtained via Calagaro et al.'s repository on Zenodo (\url{https://doi.org/10.5281/zenodo.3942108})
\end{itemize}
References

Data can be downloaded directly from \url{https://hmpdacc.org/hmp/}

R interface of the data from \url{https://doi.org/doi:10.18129/B9.bioc.HMP16SData}

merge_lists

This function handles the ability to merge supplied and defaults

Description

This function handles the ability to merge supplied and defaults

Usage

`merge_lists(defaults, supplied)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>defaults</td>
<td>(List). Default options</td>
</tr>
<tr>
<td>supplied</td>
<td>(List). Supplied options</td>
</tr>
</tbody>
</table>

Value

A merged list
new_CBEAout

Creating an output object of type CBEAout

Description

This function takes a list of lists from each object and turns it into a CBEAout type object.

Usage

new_CBEAout(out, call)

Arguments

out A list containing scores for each set

call A list containing all important arguments for printing

Value

A new CBEAout object (which is a cleaner list of lists)

pmnorm

The Two Component Mixture Normal Distribution

Description

The Two Component Mixture Normal Distribution

Usage

pmnorm(q, mu, sigma, lambda, log = FALSE, verbose = FALSE)
dmnorm(x, mu, sigma, lambda, log = FALSE, verbose = FALSE)

Arguments

q, x (Vector). Values to calculate distributional values of.

mu (Vector). A two value vector of mean values.

sigma (Vector). A two value vector of component-wise variances

lambda (Vector). A two value vector of component mixing coefficients

log (Boolean). Whether returning probabilities are in log format

verbose (Boolean). Whether to return component values.

Value

A numeric value representing the probability density value of a two-component mixture distribution
Functions

- `pmnorm`: Cumulative Distribution Function
- `dmnorm`: Probability Density Function

Examples

```r
library(mixtools)
lambda <- c(0.7, 0.3)
mu <- c(1, 2)
sigma <- c(1, 1)
v <- rnormmix(100, lambda=lambda, mu=mu, sigma=sigma)
pmnorm(v, lambda=lambda, mu=mu, sigma=sigma)
dmnorm(v, lambda=lambda, mu=mu, sigma=sigma)
```

print.CBEAout

Print dispatch for CBEAout objects

Description

Print dispatch for CBEAout objects

Usage

```r
## S3 method for class 'CBEAout'
print(x, ...)
```

Arguments

- `x`: The CBEAout object
- `...`: Undefined arguments, keeping consistency for generics

Value

Text for printing

Reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

generics `glance, tidy`
scale_scores Scaling scores based on estimated null distribution

Description

Scaling scores based on estimated null distribution

Usage

```
scale_scores(scores, method, param, distr, thresh = 0.05)
```

Arguments

- `scores` (Numeric Vector). Raw CBEA scores generated without permutations
- `method` (String). The final form that the user want to return. Options include cdf, zscore, pval and sig.
- `param` (List). The parameters of the estimated null distribution. Names must match distribution.
- `thresh` (Numeric). The threshold to decide whether a set is significantly enriched. Only available if method is sig

Value

A vector of size n where n is the sample size

tidy.CBEAout Tidy a CBEAout object

Description

This function takes in a CBEA type object and collects all values across all sets and samples that were evaluated.

Usage

```
## S3 method for class 'CBEAout'
tidy(x, ...)
```

Arguments

- `x` A CBEAout object.
- `...` Unused, included for generic consistency only.
Value

A tidy `tibble::tibble()` summarizing scores per sample per set.

Examples

```r
# load the data
data(hmp_gingival)
mod <- cbea(hmp_gingival$data, hmp_gingival$set, abund_values = "16SrRNA",
            output = "sig", distr = "norm", adj = FALSE, n_perm = 5, parametric = TRUE)
tidy(mod)
```

Description

Setting up parameter arrays for vectorized call to d/pnorm functions for multi-component mixture distributions

Usage

`var_setup(mu, sigma, lambda, vlen)`

Arguments

- `mu` See `pmnorm` documentation
- `sigma` See `pmnorm` documentation
- `lambda` See `pmnorm` documentation
- `vlen` (Integer). Length of the x or p vector to be evaluated

Value

A list containing lambda, mu, and sigma
Index

* datasets
 hmp_gingival, 15
* internal
 .cbea, 3
 check_args, 7
 check_distr_arg, 7
 combine_distr, 8
 dlst, 8
 estimate_distr, 9
 fit_scores, 10
 get_adj_mnorm, 11
 get_diagnostics, 11
 get_mean, 12
 get_sd, 13
 merge_lists, 16
 reexports, 18
 scale_scores, 19
 var_setup, 20
.cbea, 3

cbea, 3, 4, 6, 10
 cbea, data.frame-method (cbea), 4
 cbea, matrix-method (cbea), 4
 cbea, TreeSummarizedExperiment-method (cbea), 4
 check_args, 7
 check_distr_arg, 7
 combine_distr, 8
dlst, 8
dmnorm (pmnorm), 17
estimate_distr, 9
fit_scores, 10
fitdistrplus, 9
get_adj_mnorm, 11
get_diagnostics, 11
get_mean, 12
get_raw_score, 12
get_sd, 13
 glance, 18
 glance(reexports), 18
 glance.CBEAout, 13
 gmean, 14
 gmeanRow, 15
 hmp_gingival, 15
 merge_lists, 16
 new_CBEAout, 17
 normalmixEM, 9
 plst(dlst), 8
 pmnorm, 17
 print.CBEAout, 18
 reexports, 18
 scale_scores, 19
 tibble::tibble(), 13, 14, 20
 tidy, 18
 tidy(reexports), 18
 tidy.CBEAout, 19
 TreeSummarizedExperiment, 6
 var_setup, 20

21