Package ‘CellMixS’

May 29, 2024

Type Package
Title Evaluate Cell-specific Mixing
Version 1.20.0
Description CellMixS provides metrics and functions to evaluate batch effects, data integration and batch effect correction in single cell transcriptome data with single cell resolution. Results can be visualized and summarised on different levels, e.g. on cell, celltype or dataset level.
License GPL (>=2)
Imports BiocNeighbors, ggplot2, scater, viridis, cowplot, SummarizedExperiment, SingleCellExperiment, tidyr, magrittr, dplyr, ggridges, stats, purrr, methods, BiocParallel, BiocGenerics
Depends kSamples, R (>= 4.0)
biocViews SingleCell, Transcriptomics, GeneExpression, BatchEffect
BugReports https://github.com/almutlue/CellMixS/issues
URL https://github.com/almutlue/CellMixS
Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr
Suggests BiocStyle, knitr, rmarkdown, testthat, limma, Rtsne
git_url https://git.bioconductor.org/packages/CellMixS
git_branch RELEASE_3_19
git_last_commit 6f961ce
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Almut Lütge [aut, cre]
Maintainer Almut Lütge <almut.luetge@uzh.ch>
Contents

CellMixS-package ... 2
.cmsCell .. 3
.defineSubspace ... 4
.filterKnn .. 5
.filterLocMin ... 5
.ldfKnn .. 6
.smoothCms ... 7
.cms .. 8
.entropy .. 10
evalIntegration ... 11
.isi .. 14
.ldfDiff ... 15
.ldfSce .. 17
.locStructure ... 19
.mixMetric ... 20
.visCluster ... 21
.visGroup ... 22
.visHist .. 23
.visIntegration ... 24
.visMetric ... 25
.visOverview .. 26

Index .. 29

CellMixS-package Toolbox to explore batch effects and data integration in scRNA data.

Description

CellMixS provides metrics and functions to evaluate batch effects, data integration and batch effect correction in single cell transcriptome data with single cell resolution. Results can be visualized and summarised on different levels, e.g. on cell, celltype or dataset level.

Details

In particular, CellMixS includes two main metrics: Cellspecific mixing scores to determine the probability of random mixing in each cell’s neighbourhood. It can be assessed via the cms function. Local Density Factor Differences to evaluate the effect of data integration methods on batch internal structures. It can be assessed via the ldfDiff function.

Author(s)

Almut Lütge <almut.luetge@uzh.ch>
Mark D Robinson <mark.robinson@imls.uzh.ch>
Description

Function to calculate a cellspecific mixing score (cms) of groups/batches.

Usage

`.cmsCell`

cell, group, knn, k_min = NA, batch_min = NULL, cell_min = 4, unbalanced = FALSE, sce

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td>Character. Name of the cell to calculate cms for. Needs to be one of <code>rownames(knn)</code>.</td>
</tr>
<tr>
<td>group</td>
<td>Character. Name of group/batch variable. Needs to be one of <code>names(knn)</code>.</td>
</tr>
<tr>
<td>knn</td>
<td>List with three elements. First "index" with indices of knn cells. Second "distance" with distances to knn cells. Third a slot named by <code>group</code> variable with group level of knn cells.</td>
</tr>
<tr>
<td>k_min</td>
<td>Numeric. Minimum number of knn to include. Default is NA (see Details).</td>
</tr>
<tr>
<td>batch_min</td>
<td>Numeric. Minimum number of cells per batch to include in to the AD test. If set neighbours will be included until batch_min cells from each batch are present.</td>
</tr>
<tr>
<td>cell_min</td>
<td>Numeric. Minimum number of cells from each group to be included into the AD test. Should be > 4 to make 'ad.test' working.</td>
</tr>
<tr>
<td>unbalanced</td>
<td>Boolean. If True neighbourhoods with only one batch present will be set to NA. This way they are not included into any summaries or smoothening.</td>
</tr>
<tr>
<td>sce</td>
<td>A SingleCellExperiment object with the combined data.</td>
</tr>
</tbody>
</table>

Details

The cms function tests the hypothesis, that group-specific distance distributions of knn cells have the same underlying unspecified distribution. It performs Anderson-Darling tests as implemented in the kSamples package. In default the function uses all distances and group label defined in knn. If `k_min` is specified, the first local minimum of the overall distance distribution with at least kmin cells is used. This can be used to adapt to the local structure of the dataset e.g. prevent cells from a distinct different cluster to be included.
.defineSubspace

Value
A p.value as resulting from the ad.test.

See Also
ad.test, cms, smoothCms
Other helper functions: .defineSubspace(), .filterKnn(), .filterLocMin(), .ldfKnn(), .smoothCms()

Description
Helper function for ldfSce and cms to define or recalculate the subspace for analysis.

Usage
.defineSubspace(sce, assay_name, dim_red, n_dim)

Arguments
sce A SingleCellExperiment object with the data to define the subspace.
assay_name Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided. Must be one of names(assays(sce)).
dim_red Character. Name of embeddings to use as subspace.
n_dim Numeric. Number of subspace elements to include to define subspace.

Details
Function to determine the subspace for ldfDiff and cms. Checks whether the defined 'dim_red' is present. Only if no subspace is defined or present it will perform a PCA using runPCA. To calculate PCA counts defined in 'assay_name' are used.

Value
A matrix of cell embeddings with reduced dimensions as columns.

See Also
ldfSce, cms.
Other helper functions: .cmsCell(), .filterKnn(), .filterLocMin(), .ldfKnn(), .smoothCms()
Description

`.filterKnn`

Usage

`.filterKnn(knn_cell, batch_min, group, sce)`

Arguments

- **knn_cell**: Data frame with one column "distance" and one column named by the group variable. Rows correspond to the knn cells and do not need rownames.
- **batch_min**: Numeric. Minimum number of cells per batch to include.
- **group**: Character. Name of group/batch variable. Needs to be one of names(knn).
- **sce**: A `SingleCellExperiment` object with the combined data.

Value

data.frame with two columns (index, distance) for filtered knn cells.

See Also

`.cmsCell`

Other helper functions: `.cmsCell()`, `.defineSubspace()`, `.filterLocMin()`, `.ldfKnn()`, `.smoothCms()`

Description

Function to filter knn by overall distance density distribution.

Usage

`.filterLocMin(knn_cell, k_min)`

Arguments

- **knn_cell**: Data frame with one column "distance" and one column named by the group variable. Rows correspond to the knn cells and do not need rownames.
- **k_min**: Numeric. Minimum number of Knn to include.
Details

Internal function to filter cells used for cms testing to come from a continuous overall density distribution function (similar to cluster definitions). ‘filterLocMin’ is only applied, if k-min is specified as parameter in `.cmsCell` or `cms`.

Value

data.frame with two columns (index, distance) for filtered knn cells.

See Also

`.cmsCell`

Other helper functions: `.cmsCell()`, `.defineSubspace()`, `.filterKnn()` `.ldfKnn()`, `.smoothCms()`

Description

Calculates the Local Density Factor as implemented in the `DDoutlier` package with a predefined knn neighbourhood.

Usage

`.ldfKnn(dataset, knn_object, k = k, h = 1, c = 1)`

Arguments

dataset Matrix with cell embeddings with cells as rows and reduced dimensions as columns. Subspace to determine LDF in.

eknn_object List with k-nearest neighbours (knn) as provided by `get.knn` from the FNN package. First element named "indices" contains indices of knn in dataset. Second element named "distance" contains distances of knn in dataset. Third element named "cell_name" contains rownames of knn in dataset.

k Numeric. Number of knn used. Should correspond to knn_object.

h Numeric. Bandwidth for kernel functions. The greater the bandwidth, the smoother kernels and lesser weight are put on outliers. Default is 1.

c Scaling constant for comparison of LDE to neighboring observations. Default is 1.

Details

LDF function modified from the `DDoutlier` package. Calculates a Local Density Estimate (LDE) and Local Density Factor (LDF) with a gaussian kernel. Modified to use a predefined knn neighbourhood. For `ldfSce` this is essential to determine LDF after data integration on the same set of cells.
.smoothCms

Value
List with two elements "LDE" and "LDF".

See Also
ldfSce

Other helper functions: .cmsCell(), .defineSubspace(), .filterKnn(), .filterLocMin(), .smoothCms()

Description
Performs weighted smoothening of cms scores

Usage
.smoothCms(knn, cms_raw, cell_names, k_min, k)

Arguments

knn List with three elements. First "index" with indices of knn cells. Second "distance" with distances to knn cells. Third a slot named by group variable with group level of knn cells.

cms_raw Matrix with raw cms scores for all cells specified in cell_names and knn. Colnames need to be "cms.

cell_names Character vector with cell names corresponding to the rownames of the list elements in knn and rownames(cms_raw).

k_min Numeric. Minimum number of knn to include. Default is NA (see Details).

k Numeric. Number of k-nearest neighbours (knn) to use.

Details
Internal function to smooth cms scores. In a complete random setting cms scores are uniform distributed. To reduce the resulting random variance and enable visualization of local pattern cms scores can be smoothened assuming that within one region mixing is uniform. Generates smoothened cms scores using weighted means of cms scores within the k-nearest neighbourhood. Reciprocal distances are used as weights.

Value
matrix with two columns ("cms_smooth", "cms").
See Also

.cmsCell, cms

Other helper functions: .cmsCell(), .defineSubspace(), .filterKnn(), .filterLocMin(), .ldfKnn()

Description

Calculates cell-specific mixing scores based on euclidean distances within a subspace of integrated data.

Usage

```r
cms(
  sce,
  k,
  group,
  dim_red = "PCA",
  assay_name = "logcounts",
  res_name = NULL,
  k_min = NA,
  smooth = TRUE,
  n_dim = 20,
  cell_min = 10,
  batch_min = NULL,
  unbalanced = FALSE,
  BPPARAM = SerialParam()
)
```

Arguments

- **sce**: A `SingleCellExperiment` object with the combined data.
- **k**: Numeric. Number of k-nearest neighbours (knn) to use.
- **group**: Character. Name of group/batch variable. Needs to be one of `names(colData(sce))`.
- **dim_red**: Character. Name of embeddings to use as subspace for distance distributions. Default is "PCA".
- **assay_name**: Character. Name of the assay to use for PCA. Only relevant if no existing `dim_red` is provided. Must be one of `names(assays(sce))`. Default is "logcounts".
- **res_name**: Character. Appendix of the result score’s name (e.g. method used to combine batches).
- **k_min**: Numeric. Minimum number of knn to include. Default is NA (see Details).
Smoothed Logical. Indicating if cms results should be smoothened within each neighbourhood using the weighted mean.

`n_dim` Numeric. Number of dimensions to include to define the subspace.

`cell_min` Numeric. Minimum number of cells from each group to be included into the AD test.

`batch_min` Numeric. Minimum number of cells per batch to include in to the AD test. If set neighbours will be included until batch_min cells from each batch are present.

`unbalanced` Boolean. If True neighbourhoods with only one batch present will be set to NA. This way they are not included into any summaries or smoothening.

`BPPARAM` A BiocParallelParam object specifying whether cms scores shall be calculated in parallel.

Details

The `cms` function tests the hypothesis, that group-specific distance distributions of knn cells have the same underlying unspecified distribution. It performs Anderson-Darling tests as implemented in the `kSamples` package. In default the function uses all distances and group label defined in knn. Alternative a density based neighbourhood can be defined by specifying `k_min`. In this case the first local minimum of the overall distance distribution with at least `k_min` cells is used. This can be used to adapt to the local structure of the dataset e.g. prevent cells from a different cluster to be included. Third the neighbourhood can be defined by batch occurrences. `batch_min` specifies the minimal number of cells from each batch that should be included to define the neighbourhood. If 'dim_red' is not defined or default cms will calculate a PCA using runPCA. Results will be appended to `colData(sce)`. Names can be specified using `res_name`. If multiple cores are available cms scores can be calculated in parallel (does not work on Windows). Parallelization can be specified using BPPARAM.

Value

A SingleCellExperiment with cms (and cms_smooth) within colData.

References

See Also

`.cmsCell`, `.smoothCms`

Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][, c(1:50)]

sce_cms <- cms(sce, k = 20, group = "batch", n_dim = 2)
```
entropy

Description

entropy

Usage

```r
entropy(
  sce,  # SingleCellExperiment object, with the integrated data.
  group,  # Character. Name of group/batch variable. Needs to be one of names(colData(sce)).
  k,  # Numeric. Number of k-nearest neighbours (knn) to use.
  dim_red = "PCA",  # Character. Name of embeddings to use as subspace for distance distributions. Default is "PCA".
  assay_name = "logcounts",  # Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided. Must be one of names(assays(sce)). Default is "logcounts".
  n_dim = 10,  # Numeric. Number of dimensions to include to define the subspace.
  res_name = NULL  # Character. Appendix of the result score's name (e.g. method used to combine batches).
)
```

Arguments

- `sce`: SingleCellExperiment object, with the integrated data.
- `group`: Character. Name of group/batch variable. Needs to be one of names(colData(sce)).
- `k`: Numeric. Number of k-nearest neighbours (knn) to use.
- `dim_red`: Character. Name of embeddings to use as subspace for distance distributions. Default is "PCA".
- `assay_name`: Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided. Must be one of names(assays(sce)). Default is "logcounts".
- `n_dim`: Numeric. Number of dimensions to include to define the subspace.
- `res_name`: Character. Appendix of the result score’s name (e.g. method used to combine batches).

Details

The entropy function calculates the Shannon entropy of the group variable within each cell’s k-nearest neighbourhood. For balanced batches a Shannon entropy close to 1 indicates high randomness and mixing. For unbalanced batches entropy should be interpreted with caution, but could work as a relative measure in a comparative setting.

Value

A SingleCellExperiment with the entropy score within colData.
Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][c(1:15, 400:420, 16:30)]
sce <- entropy(sce, "batch", k = 20)
```

Description

Function to evaluate sc data integration providing a framework for different metrics. Metrics to evaluate mixing and preservance of the local/individual structure are provided.

Usage

```r
evalIntegration(
metrics,
sce,
group,
dim_red = "PCA",
assay_name = "logcounts",
n_dim = 10,
res_name = NULL,
k = NULL,
k_min = NA,
smooth = TRUE,
cell_min = 10,
batch_min = NULL,
unbalanced = FALSE,
weight = TRUE,
k_pos = 5,
sce_pre_list = NULL,
dim_combined = dim_red,
assay_pre = "logcounts",
n_combined = 10,
BPPARAM = SerialParam()
)
```

Arguments

- `metrics`: Character vector. Name of the metrics to apply. Must be one to all of `"cms", "ldfDiff", "isi", "mixingMetric", "localStructure", "entropy"`.
- `sce`: SingleCellExperiment object, with the integrated data.
- `group`: Character. Name of group/batch variable. Needs to be one of `\text{names(colData(sce))}`.
evalIntegration is a wrapper function for different metrics to understand results of integrated single cell data sets. In general there are metrics evaluating the *mixing* of datasets, that is, metrics that show whether there still is a bias for different datasets after integration. Furthermore there are metrics to evaluate how well the dataset internal structure has been retained, that is, metrics that show whether there has been (potentially biological) signal removed or noise added by integration.
Value

A `SingleCellExperiment` with the chosen metric’s score within `colData`.

Metrics

Here we provide the following metrics:

- **cms** Cellspecific Mixing Score. Metric that tests the hypothesis that group-specific distance distributions of knn cells have the same underlying unspecified distribution. The score can be interpreted as the data’s probability within an equally mixed neighbourhood according to the batch variable (see `cms`).

- **isi** Inverse Simpson Index. Metric that uses the Inverse Simpson’s Index to calculate the diversification within a specified neighbourhood. The Simpson index describes the probability that two entities are taken at random from the dataset and its inverse represent the effective number of batches in a neighbourhood. The inverse Simpson index has been proposed as a diversity score for batch mixing in single cell RNAseq by Korunsky et al. They provide a distance-based neighbourhood weightening in their Lisi package.

- **mixingMetric** Mixing Metric. Metric using the median position of the kth cell from each batch within its knn as a score. The lower the better mixed is the neighbourhood. We implemented an equivalent version to the one in the Seurat package (See `MixingMetric` and `mixMetric`.)

- **entropy** Shannon entropy. Metric calculating the Shannon entropy of the batch/group variable within each cell’s k-nearest neighbours. For balanced batches the entropy is closer to 1 the higher the variables randomness. For unbalanced batches entropy should only be used as a relative metric in a comparative setting (See `entropy`).

- **ldfDiff** Local density factor differences. Metric that determines cell-specific changes in the Local Density Factor before and after data integration. A metric/difference close to 0 indicates no distortion of the previous structure (see `ldfDiff`).

- **localStructure** Local structure. Metric that compares the intersection of knn from the same batch before and after integration returning the average between all groups. The higher the more neighbours were reproduced after integration. Here we implemented an equivalent version to the one in the Seurat package (See `LocalStruct` and `locStructure`).

References

Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][, c(1:15, 300:320, 16:30)]
sce_batch1 <- sce[, colData(sce)$batch == "1"]
sce_batch2 <- sce[, colData(sce)$batch == "2"]
pre <- list("1" = sce_batch1, "2" = sce_batch2)
```
isi <- evalIntegration(metrics = c("cms", "mixingMetric", "isi", "entropy"), sce, "batch", k = 20)
sce <- evalIntegration("ldfDiff", sce, "batch", k = 20, sce_pre_list = pre)

Description

isi

Usage

isi(
 sce,
 group,
 k,
 dim_red = "PCA",
 assay_name = "logcounts",
 n_dim = 10,
 weight = TRUE,
 res_name = NULL
)

Arguments

sce SingleCellExperiment object, with the integrated data.
group Character. Name of group/batch variable. Needs to be one of names(colData(sce)).
k Numeric. Number of k-nearest neighbours (knn) to use.
dim_red Character. Name of embeddings to use as subspace for distance distributions. Default is "PCA".
assay_name Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided.
n_dim Numeric. Number of dimensions to include to define the subspace.
weight Boolean. If TRUE, batch probabilities to calculate the isi score are weighted by the mean distance of their cells towards the cell of interest. Relevant for metrics: 'isi'.
res_name Character. Appendix of the result score's name (e.g. method used to combine batches).
The isi function calculates the inverse Simpson index of the group variable within each cell’s k-nearest neighbourhood. The Simpson index describes the probability that two entities are taken at random from the dataset and its inverse represent the effective number of batches in a neighbourhood. The inverse Simpson index has been proposed as a diversity score for batch mixing in single cell RNAseq by Korunsky et al. They provide a distance-based neighbourhood weightening in their Lisi package. Here, we provide a simplified way of weightening probabilities, if the weight argument is enabled.

A SingleCellExperiment with the entropy score within colData.


```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][, c(1:15, 400:420, 16:30)]
sce <- isi(sce, "batch", k = 20)
```

Description

Determines cell-specific changes in the Local Density Factor before and after data integration.

```r
ldfDiff(sce_pre_list, sce_combined, group, k = 75, dim_red = "PCA", dim_combined = dim_red, assay_pre = "logcounts", assay_combined = "logcounts", n_dim = 20, res_name = NULL)
```
Arguments

sce_pre_list A list of SingleCellExperiment objects with single datasets before integration. Names should correspond to levels in colData(sce_combined)$group.

sce_combined A SingleCellExperiment object with the combined data.

group Character. Name of group/batch variable that separates elements of sce_pre_list. Needs to be one of names(colData(sce_combined)).

k Numeric. Number of k-nearest neighbours (knn) to use.

dim_red Character. Name of embeddings to use as subspace to calculate LDF before integration. Default is "PCA".

dim_combined Character. Name of embeddings to use as subspace to calculate LDF after integration. Default is dim_red.

assay_pre Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided. Must be one of names(assays(sce_pre)). Default is "logcounts".

assay_combined Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided. Must be one of names(assays(sce_combined)). Default is "logcounts".

n_dim Numeric. Number of PCs to include to define subspaces.

res_name Character. Appendix of the result score's name (e.g. method used to combine batches). Used to specify result name for more than one run on the same input.

Details

The ldfDiff function calculates differences in LDF for each element in sce_pre_list and their corresponding cells in sce_combined using ldfSce. If 'dim_red' is not defined a PCA will be calculated using runPCA. In this case 'assay_pre' need to refer to the data slot that shall define the subspace. Similar refer 'dim-combined' and 'assay_combined' to the integrated subspace or to the resp. "corrected" count data slot. 'k' can be used to define the level of local structure that is tested. The smaller 'k' the more focus is on detailed structures, while a large k will tests overall changes.

Value

A SingleCellExperiment object.

References

See Also

ldfSce, ldfKnn.

Other ldf functions: ldfSce()
Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list["batch20" ][, c(1:50, 300:350)]
sce_batch1 <- sce[, colData(sce)$batch == "1"]
sce_batch2 <- sce[, colData(sce)$batch == "2"]
sce_pre_list <- list("1" = sce_batch1, "2" = sce_batch2)

sce_ldf <- ldfDiff(sce_pre_list, sce, k = 10, group = "batch", 
dim_combined = "MNN", n_dim = 2)
```

Description

Determines cell-specific changes in the Local Density Factor before and after data integration for one specific group.

Usage

```r
ldfSce( 
  sce_name, 
  sce_pre_list, 
  sce_combined, 
  group, 
  k = 75, 
  dim_red = "PCA", 
  dim_combined = dim_red, 
  assay_pre = "logcounts", 
  assay_combined = "logcounts", 
  n_dim = 20 
)
```

Arguments

- **sce_name**: Character. Name of the element in sce_pre_list to calculate LDF differences in.
- **sce_pre_list**: A list of SingleCellExperiment objects with single datasets before integration. Names need to correspond to levels in colData(sce_combined)$group and sce_name!!
- **sce_combined**: A SingleCellExperiment object with combined data.
- **group**: Character. Name of group/batch variable that separates elements of sce_pre_list. Needs to be one of names(colData(sce_combined)).
- **k**: Numeric. Number of k-nearest neighbours (knn) to use.
dim_red Character. Name of embeddings to use as subspace to calculate LDF before integration. Default is "PCA".

dim_combined Character. Name of embeddings to use as subspace to calculate LDF after integration. Default is dim_red.

assay_pre Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided. Must be one of names(assays(sce_pre)). Default is "logcounts".

assay_combined Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided. Must be one of names(assays(sce_combined)). Default is "logcounts".

n_dim Numeric. Number of PCs to include to define subspaces.

Details

The ldfSce function calculates differences in LDF for one specified element in sce_pre_list and their corresponding cells in sce_combined. If 'dim_red' is not defined a PCA will be calculated using runPCA. In this case 'assay_pre' need to refer to the data slot that shall define the subspace. Similar refer 'dim-combined' and 'assay_combined' to the integrated subspace or to the resp. "corrected" count data slot. 'k' can be used to define the level of local structure that is tested. The smaller 'k' the more focus is on detailed structures, while a large k will tests overall changes. K-nearest neighbours (knn) are determined in the subspaces before integration defined by 'dim_red'. The same set of knn are used to determine LDF before and after integration.

Value

A data.frame with difference in LDF as column named "diff_ldf".

References

See Also

ldfDiff, ldfKnn.

Other ldf functions: ldfDiff()

Examples

library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[["batch20"]][c(1:50, 300:350)]
sce_batch1 <- sce[,colData(sce)$batch == "1"]
sce_pre_list <- list("1" = sce_batch1)
ldf_1 <- ldfSce("1", sce_pre_list, sce, k = 10, group = "batch", dim_combined = "MNN", n_dim = 5)
Description

locStructure

Usage

locStructure(
 sce,
 group,
 dim_combined,
 k = 100,
 dim_red = "PCA",
 assay_name = "logcounts",
 n_dim = 10,
 n_combined = 10,
 res_name = NULL
)

Arguments

sce SingleCellExperiment object, with the integrated data.
group Character. Name of group/batch variable. Needs to be one of names(colData(sce)).
dim_combined Character. Name of the reduced dimensional representation of the integrated
data. Needs to be one of reducedDimNames(sce)).
k Numeric. Number of k-nearest neighbours (knn) to use.
dim_red Character. Name of embeddings to calculate neighbourhoods before integration.
 Default is "PCA".
assay_name Character. Name of the assay to use for PCA of the original (not integrated)
data. Should not refer to "corrected" counts.
n_dim Numeric. Number of dimensions to include for the original data.
n_combined Numeric. Number of dimensions to include for the integrated data.
res_name Character. Appendix of the result score’s name (e.g. method used to combine
 batches).

Details

The locStructure function implements the localStructure function from Seurat (See LocalStruct. For each group it calculates the k nearest neighbour within PCA space before integration and compares it to the knn within the reduced dimensional representation after integration. The score represents the proportion of overlapping neighbours. The LocalStruct function is based on the RunPCA function, while here runPCA is used. This can cause small deviance from the LocalStruct function, but overall these functions are equivalent.
Value

A SingleCellExperiment with the mixing metric within colData.

References

Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[["batch20"]][, c(1:50, 300:350)]

sce <- locStructure(sce, "batch", "MNN", k = 20, assay_name = "counts")
```

Description

mixMetric

Usage

```r
mixMetric(
  sce, 
  group, 
  k = 300, 
  dim_red = "PCA", 
  assay_name = "logcounts", 
  n_dim = 10, 
  k_pos = 5, 
  res_name = NULL
)
```

Arguments

- `sce` SingleCellExperiment object, with the integrated data.
- `group` Character. Name of group/batch variable. Needs to be one of names(colData(sce)).
- `k` Numeric. Number of k-nearest neighbours (knn) to use.
- `dim_red` Character. Name of embeddings to use as subspace for distance distributions. Default is "PCA".
- `assay_name` Character. Name of the assay to use for PCA. Only relevant if no existing 'dim_red' is provided.
- `n_dim` Numeric. Number of dimensions to include to define the subspace.
visCluster

<table>
<thead>
<tr>
<th>k_pos</th>
<th>Position of the cell, which rank to use for scoring, defaults to 5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>res_name</td>
<td>Character. Appendix of the result score’s name (e.g. method used to combine batches).</td>
</tr>
</tbody>
</table>

Details

The mixMetric function implements the mixingMetric function from Seurat (See [MixingMetric](#)). It takes the median rank of the `__k_pos__` neighbour from each batch as estimation for the data’s entropy according to the batch variable. The same result can be assessed using the [MixingMetric](#) function and a seurat object from the __Seurat__ package.

Value

A SingleCellExperiment with the mixing metric within colData.

References

Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][[1]][c(1:15, 400:420, 16:30)]
sce <- mixMetric(sce, "batch", k = 20)
```

visCluster

<table>
<thead>
<tr>
<th>visCluster</th>
</tr>
</thead>
</table>

Description

Creates summary plots of metric scores for different groups/cluster.

Usage

```r
visCluster(sce_cms, cluster_var, metric_var = "cms", violin = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>sce_cms</th>
<th>A SingleCellExperiment object with the result scores (e.g. cms) to plot within colData(res_object).</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster_var</td>
<td>Character. Name of the factor level variable to summarize metric scores on.</td>
</tr>
<tr>
<td>metric_var</td>
<td>Character Name of the metric scores to use. Default is "cms".</td>
</tr>
<tr>
<td>violin</td>
<td>A logical. If true violin plots are plotted, while the default (FALSE) will plot ridge plots.</td>
</tr>
</tbody>
</table>
Details

Plots summarized metric scores. This function is intended to visualize and compare metric scores among clusters or other dataset variables specified in 'cluster_var'.

Value

a ggplot object.

See Also

visIntegration

Other visualize functions: visGroup()

Examples

library(SingleCellExperiment)

sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][[1:30,300:320]]
sce_cms <- cms(sce, "batch", k = 20, n_dim = 2)

visCluster(sce_cms, "batch")

Description

Plot group label in a reduced dimensional plot.

Usage

visGroup(sce, group, dim_red = "TSNE")

Arguments

sce A SingleCellExperiment object.
group Character. Name of group/batch variable. Needs to be one of names(colData(sce)).
dim_red Character. Name of embeddings to use as subspace for plotting. Default is "TSNE".

Details

Plots a reduced dimension plot colored by group parameter. The dimension reduction embedding can be specified, but only tsne embeddings will automatically be computed by runTSNE. Embeddings from data integration methods (e.g. mnn.correct) can be used as long as they are specified in reducedDimNames(sce).
Value

a ggplot object.

See Also

`visOverview`, `visMetric`

Other visualize functions: `visCluster()`

Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][, c(1:50, 300:350)]
visGroup(sce, "batch")
```

Description

Plot pvalue histograms of metric score distributions

Usage

```r
visHist(
  res_object,
  metric = "cms",
  prefix = TRUE,
  n_col = 1,
  metric_prefix = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>res_object</td>
<td>SingleCellExperiment object, matrix or data.frame. The SingleCellExperiment object should contain the result scores (e.g. cms) to plot in colData(res_object). Matrix or data frame should have result scores in columns and cells in rows.</td>
</tr>
<tr>
<td>metric</td>
<td>Character vector. Specify names of colData(sce) to be plotted. Applies only if 'res_object' is a SingleCellExperiment object. Default is 'cms'. If prefix is TRUE all columns starting with 'metric' will be plotted.</td>
</tr>
<tr>
<td>prefix</td>
<td>Boolean. Is 'metric' used to specify column’s prefix(true) or complete column names (False).</td>
</tr>
<tr>
<td>n_col</td>
<td>Numeric. Number of columns of the pval histogram.</td>
</tr>
<tr>
<td>metric_prefix</td>
<td>Former parameter to define prefix of the metric to be plotted. Will stop and ask for the new syntax.</td>
</tr>
</tbody>
</table>
visIntegration

Details

Plots metric score distribution similar to a pvalue histogram distribution. Without dataset-specific bias, cms scores should be approx. flat distributed. If `res_object` is a matrix or data.frame, it will create a histogram for each column. If `res_object` is a SingleCellExperiment object, it will create a histogram of all `colData(res_object)` that start with or are specified in `metric`.

Value

a ggplot object.

See Also

Other visualize metric functions: `visMetric()`, `visOverview()`

Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][, c(1:50)]
sce_cms <- cms(sce, "batch", k = 20, n_dim = 2)
visHist(sce_cms)
```

visIntegration

Description

Creates a summary plot of metric scores (for different integration methods).

Usage

```r
visIntegration(
  res_object,  # SingleCellExperiment object, list, matrix or data.frame. The SingleCellExperiment object should contain the result scores (cms) to compare within colData(res_object). List, matrix or data frame should have result scores in list elements resp. columns.
  metric = "cms",  # metric name
  prefix = TRUE,  # if TRUE, names use metric_prefix. Otherwise use metric_name.
  violin = FALSE,  # use violin plots instead of histograms
  metric_name = "metric",  # name of metric
  metric_prefix = NULL
)
```

Arguments

- `res_object` (SingleCellExperiment object, list, matrix or data.frame. The SingleCellExperiment object should contain the result scores (cms) to compare within colData(res_object). List, matrix or data frame should have result scores in list elements resp. columns.)

- `metric` (character, metric name)

- `prefix` (logical, if TRUE, names use metric_prefix. Otherwise use metric_name.)

- `violin` (logical, use violin plots instead of histograms)

- `metric_name` (character, name of metric)

- `metric_prefix` (character, name prefix for metric)

visIntegration

visIntegration

Description

Creates a summary plot of metric scores (for different integration methods).

Usage

```r
visIntegration(
  res_object,  # SingleCellExperiment object, list, matrix or data.frame. The SingleCellExperiment object should contain the result scores (cms) to compare within colData(res_object). List, matrix or data frame should have result scores in list elements resp. columns.
  metric = "cms",  # metric name
  prefix = TRUE,  # if TRUE, names use metric_prefix. Otherwise use metric_name.
  violin = FALSE,  # use violin plots instead of histograms
  metric_name = "metric",  # name of metric
  metric_prefix = NULL
)
```
Description

Plot metric scores in a reduced dimensional plot.

Usage

```r
visMetric(sce_cms, metric_var = "cms", dim_red = "TSNE", log10_val = FALSE)
```
Arguments

sce_cms A SingleCellExperiment object with the result scores (e.g. cms) to plot within colData(res_object).
metric_var Character Name of the metric scores to use. Default is "cms".
dim_red Character. Name of embeddings to use as subspace for plotting. Default is "TSNE".
log10_val Logical. Indicating if -log10(metric) should be plotted.

Details

Plots a reduced dimension plot colored by metric scores. The dimension reduction embedding can be specified, but only tsne embeddings will automatically be computed using runTSNE. Embeddings from data integration methods (e.g. mnn.correct) can be used as long as they are present in reducedDimNames(sce).

Value

a ggplot object.

See Also

visOverview, visGroup

Other visualize metric functions: visHist(), visOverview()

Examples

library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][, c(1:30, 300:320)]
sce_cms <- cms(sce, "batch", k = 20, n_dim = 2)
visMetric(sce_cms)
visOverview

Usage

visOverview(
 sce_cms,
 group,
 metric = "cms",
 prefix = TRUE,
 dim_red = "TSNE",
 log10_val = FALSE,
 other_var = NULL,
 metric_prefix = NULL
)

Arguments

sce_cms A SingleCellExperiment object with the result scores (e.g. cms) to plot in colData(sce_cms).
group Character. Name of group/batch variable. Needs to be one of names(colData(sce)).
metric Character vector. Specify names of colData(sce) to be plotted. Applies only if 'res_object' is a SingleCellExperiment object. Default is 'cms'. If prefix is TRUE all columns starting with 'metric' will be plotted.
prefix Boolean. Is 'metric' used to specify column's prefix(true) or complete column names (False).
dim_red Character. Name of embeddings to use as subspace for plotting. Default is "TSNE".
log10_val Logical. Indicating if -log10(metric) should be plotted.
other_var Character string. Name(s) of other variables to be plotted asided. Need correspond to one of colData(sce).
metric_prefix Former parameter to define prefix of the metric to be plotted. Will stop and ask for the new syntax.

Details

Plots reduced dimensions of cells colored by group variable and metric score. If 'red_dim' is not defined in reducedDimNames(sce) a tsne is calculated using runTSNE. Other color label as celltype label or smoothened scores can be plotted aside. Embeddings from data integration methods (e.g. mnn.correct) can be used if they are specified in reducedDimNames(sce).

Value

a ggplot object.

See Also

visMetric, visGroup

Other visualize metric functions: visHist(), visMetric()
Examples

```r
library(SingleCellExperiment)
sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
sce <- sim_list[[1]][, c(1:30, 300:330)]
sce_cms <- cms(sce, "batch", k = 20, n_dim = 2)

visOverview(sce_cms, "batch", other_var = "batch")
```
Index

* cms functions
 cms, 8

* helper functions
 .cmsCell, 3
 .defineSubspace, 4
 .filterKnn, 5
 .filterLocMin, 5
 .ldfKnn, 6
 .smoothCms, 7

* ldf functions
 ldfDiff, 15
 ldfSce, 17

* visualize functions
 visCluster, 21
 visGroup, 22
 visIntegration, 24

* visualize metric functions
 visHist, 23
 visMetric, 25
 visOverview, 26
 .cmsCell, 3, 4–9
 .defineSubspace, 4, 4, 5–8
 .filterKnn, 4, 5, 6–8
 .filterLocMin, 4, 5, 5, 7, 8
 .ldfKnn, 4–6, 6, 8, 16, 18
 .smoothCms, 4–7, 7, 9

ad.test, 4

BiocParallelParam, 9, 12

CellMixS-package, 2

cms, 2, 4, 6, 8, 8, 12, 13

entropy, 10, 13

evalIntegration, 11

isi, 14

ldfDiff, 2, 13, 15, 18

ldfSce, 4, 6, 7, 16, 17

LocalStruct, 12, 13, 19
locStructure, 13, 19

MixingMetric, 12, 13, 21
mixMetric, 13, 20

RunPCA, 19
runPCA, 19

visCluster, 21, 23, 25
visGroup, 22, 22, 26, 27
visHist, 23, 26, 27
visIntegration, 22, 24
visMetric, 23, 24, 25, 27
visOverview, 23, 24, 26, 26