Package ‘Cepo’

January 5, 2024

Title Cepo for the identification of differentially stable genes
Version 1.8.0
Description
Defining the identity of a cell is fundamental to understand the heterogeneity of cells to various environmental signals and perturbations. We present Cepo, a new method to explore cell identities from single-cell RNA-sequencing data using differential stability as a new metric to define cell identity genes. Cepo computes cell-type specific gene statistics pertaining to differential stable gene expression.

License MIT + file LICENSE
Encoding UTF-8
LazyData false
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1.9001
Imports DelayedMatrixStats, DelayedArray, HDF5Array, S4Vectors, methods, SingleCellExperiment, SummarizedExperiment, ggplot2, rlang, grDevices, patchwork, reshape2, BiocParallel, stats, dplyr
biocViews Classification, GeneExpression, SingleCell, Software, Sequencing, DifferentialExpression
Suggests knitr, rmarkdown, BiocStyle, testthat, covr, UpSetR, scater, scMerge, fgsea, escape, pheatmap, patchwork
VignetteBuilder knitr
Depends GSEABase, R (>= 4.1)

git_url https://git.bioconductor.org/packages/Cepo
git_branch RELEASE_3_18
git_last_commit 5482f8e
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-05

Author Hani Jieun Kim [aut, cre] (<https://orcid.org/0000-0003-1844-3275>), Kevin Wang [aut] (<https://orcid.org/0000-0003-2615-6102>)
Maintainer Hani Jieun Kim <hani.kim127@gmail.com>
R topics documented:

- cellbench .. 2
- Cepo .. 2
- plotDensities .. 4
- sce_pancreas .. 6
- setCepoBPPARAM 6
- topGenes .. 7

Description

A single-cell RNA-seq dataset adapted from sc_mixology

Usage

data(cellbench)

Format

An object of SingleCellExperiment class with 895 cells and 2001 genes.

Source

https://github.com/LuyiTian/sc_mixology

Description

ExprsMat accepts various matrix objects, including DelayedArray and HDF5Array for out-of-memory computations. See vignette.
Usage

Cepo(
 exprsMat,
 cellTypes,
 minCells = 20,
 minCelltype = 3,
 exprsPct = NULL,
 prefilter_sd = NULL,
 prefilter_pzero = NULL,
 logfc = NULL,
 computePvalue = NULL,
 computeFastPvalue = TRUE,
 variability = "CV",
 method = "weightedMean",
 weight = c(0.5, 0.5),
 workers = 1L,
 block = NULL,
 ...
)

Arguments

exprsMat Expression matrix where columns denote cells and rows denote genes
cellTypes Vector of cell type labels
minCells Integer indicating the minimum number of cells required within a cell type
minCelltype Integer indicating the minimum number of cell types required in each batch
exprsPct Percentage of lowly expressed genes to remove. Default to NULL to not remove any genes.
prefilter_sd Numeric value indicating threshold relating to standard deviation of genes. Used with prefilter_zeros.
logfc Numeric value indicating the threshold of log fold-change to use to filter genes.
computePvalue Whether to compute p-values using bootstrap test. Default to NULL to not make computations. Set this to an integer to set the number of bootstraps needed (recommend to be at least 100).
computeFastPvalue Logical vector indicating whether to perform a faster version of p-value calculation. Set to TRUE by default.
variability A character indicating the stability measure (CV, IQR, MAD, SD). Default is set to CV.
method Character indicating the method for integration the two stability measures. By default this is set to 'weightedMean' with equal weights.
weight Vector of two values indicating the weights for each stability measure. By default this value is c(0.5, 0.5).
workers Number of cores to use. Default to 1, which invokes BiocParallel::SerialParam. For workers greater than 1, see the workers argument in BiocParallel::MulticoreParam and BiocParallel::SnowParam.
plotDensities

block Vector of batch labels

... Additional arguments passed to BiocParallel::MulticoreParam and BiocParallel::SnowParam.

prefilter_pzeros Numeric value indicating threshold relating to the percentage of zero expression of genes. Used with prefilter_sd.

Value

Returns a list of key genes.

Examples

```r
library(SingleCellExperiment)
data('cellbench', package = 'Cepo')
cellbench
cepoOutput <- Cepo(logcounts(cellbench), cellbench$celltype)
cepoOutput
```

plotDensities *Plot densities*

Description

Plot densities

Usage

```r
plotDensities(
  x,
  cepoOutput,
  nGenes = 2,
  assay = "logcounts",
  celltypeColumn,
  celltype = NULL,
  genes = NULL,
  plotType = c("histogram", "density"),
  color = NULL
)
```

Arguments

- **x** a SummarizedExperiment or a SingleCellExperiment object.
- **cepoOutput** an output from Cepo or doLimma/doVoom/doTtest/doWilcoxon functions
- **nGenes** number of top genes from each celltype to plot. Default to 2.
plotDensities

- **assay**
 a character ('logcounts' by default), indicating the name of the assays(x) element which stores the expression data (i.e., `assays(x)$name_assays_expression`). We strongly encourage using normalized data, such as counts per million (CPM) or log-CPM.

- **celltypeColumn**
 a character, indicating the name of the name of the cell type column in the colData(x).

- **celltype**
 a character, indicating the name of the cell type to plot. Default is NULL which selects all celltypes in the cepoOutput.

- **genes**
 a character vector, indicating the name of the genes to plot. Default to NULL, so that 2 top genes from each celltype will be plotted.

- **plotType**
 Either 'histogram' or 'density'

- **color**
 a named color vector. The names should correspond to the celltype argument above

Value

A ggplot object with cell-type specific densities for a gene.

A ggplot object.

Examples

```r
library(SingleCellExperiment)
data('cellbench', package = 'Cepo')
cellbench
cepoOutput <- Cepo(logcounts(cellbench), cellbench$celltype)

plotDensities(
  x = cellbench,
  cepoOutput = cepoOutput,
  assay = 'logcounts',
  plotType = 'histogram',
  celltypeColumn = 'celltype'
)

plotDensities(
  x = cellbench,
  cepoOutput = cepoOutput,
  genes = c('PLTP', 'CPT1C', 'MEG3', 'SYCE1', 'MICOS10P3', 'HOXB7'),
  assay = 'logcounts',
  plotType = 'histogram',
  celltypeColumn = 'celltype'
)
```
sce_pancreas sce_pancreas

Description
A subsampled single-cell RNA-seq dataset

Usage
data(sce_pancreas)

Format
An object of SingleCellExperiment class with 528 cells and 1358 genes.

setCepoBPPARAM Setting parallel params based on operating platform

Description
Setting parallel params based on operating platform

Usage
setCepoBPPARAM(workers = 1L, ...)

Arguments

 workers Number of cores to use. Default to 1, which invokes BiocParallel::SerialParam.
 For workers greater than 1, see the workers argument in BiocParallel::MulticoreParam
 and BiocParallel::SnowParam.

 ... Additional arguments passed to BiocParallel::MulticoreParam and BiocParallel::SnowParam.

Value
Parameters for parallel computing depending on OS

Examples
 # system.time(BiocParallel::bplapply(1:3, FUN = function(i){Sys.sleep(i)},
 # BPPARAM = setCepoBPPARAM(workers = 1)))
 # system.time(BiocParallel::bplapply(1:3, FUN = function(i){Sys.sleep(i)},
 # BPPARAM = setCepoBPPARAM(workers = 3)))
Description
Extract the top genes from the Cepo output

Usage
```r
topGenes(object, n = 5, returnValues = FALSE)
```

Arguments
- `object` Output from the Cepo function
- `n` Number of top genes to extract
- `returnValues` Whether to return the numeric value associated with the top selected genes

Value
Returns a list of key genes.

Examples
```r
set.seed(1234)
n <- 50  # genes, rows
p <- 100  # cells, cols
colnames(exprMat) <- paste0('gene', 1:n)
colnames(exprMat) <- paste0('cell', 1:p)
celTypes <- sample(letters[1:3], size = p, replace = TRUE)

topGenes(cepo_output, n = 2)
topGenes(cepo_output, n = 2, returnValues = TRUE)
```
Index

* datasets
 cellbench, 2
 sce_pancreas, 6

cellbench, 2
Cepo, 2

ggplot, 5

plotDensities, 4

sce_pancreas, 6
setCepoBPPARAM, 6
SingleCellExperiment, 4
SummarizedExperiment, 4

topGenes, 7