Package ‘ChIPseeker’

May 1, 2024

Type Package

Title ChIPseeker for ChIP peak Annotation, Comparison, and Visualization

Version 1.40.0

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statistical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes.

Depends R (>= 3.5.0)

Imports AnnotationDbi, BiocGenerics, boot, enrichplot, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, ggplot2, gplots, graphics, grDevices, gtools, methods, plotrix, dplyr, parallel, magrittr, rtracklayer, S4Vectors, stats, TxDb.Hsapiens.UCSC.hg19.knownGene, utils, aplot, yulab.utils, tibble

Suggests clusterProfiler, ggimage, ggplotify, ggupset, ggVennDiagram, ReactomePA, org.Hs.eg.db, knitr, rmarkdown, testthat, prettydoc

Remotes GuangchuangYu/enrichplot

BugReports https://github.com/YuLab-SMU/ChIPseeker/issues

Encoding UTF-8

VignetteBuilder knitr

ByteCompile true
License Artistic-2.0

biocViews Annotation, ChIPSeq, Software, Visualization, MultipleComparison

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/ChIPseeker

git_branch RELEASE_3_19

git_last_commit 8063d66

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-04-30

Author Guangchuang Yu [aut, cre] (<https://orcid.org/0000-0002-6485-8781>), Ming Li [ctb], Qianwen Wang [ctb], Yun Yan [ctb], Hervé Pagès [ctb], Michael Kluge [ctb], Thomas Schwarzl [ctb], Zhougeng Xu [ctb]

Contents

ChIPseeker-package .. 4

.. 4
annotatePeak .. 5
as.data.frame.csAnno .. 7
as.GRanges ... 8
check_upstream_and_downstream 8
combine_csAnno .. 9
covplot ... 9
csAnno-class ... 10
downloadGEObedFiles .. 11
downloadGSMbedFiles ... 11
dropAnno ... 12
enrichAnnoOverlap ... 12
enrichPeakOverlap ... 13
getAnnoStat ... 14
getBIORegion .. 14
getGeneAnno .. 15
getGenomicAnnotation .. 16
getGEOgenomeVersion .. 17
getGEOInfo .. 17
getGEOspecies .. 18
getNearestFeatureIndicesAndDistances 18
getPromoters .. 19
getSampleFiles .. 20
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>getTagMatrix</td>
<td>20</td>
</tr>
<tr>
<td>getTagMatrix.binning.internal</td>
<td>22</td>
</tr>
<tr>
<td>getTagMatrix.internal</td>
<td>23</td>
</tr>
<tr>
<td>getTagMatrix2</td>
<td>23</td>
</tr>
<tr>
<td>getTagMatrix2.binning.internal</td>
<td>24</td>
</tr>
<tr>
<td>getTagMatrix2.internal</td>
<td>25</td>
</tr>
<tr>
<td>info</td>
<td>25</td>
</tr>
<tr>
<td>makeBioRegionFromGranges</td>
<td>26</td>
</tr>
<tr>
<td>overlap</td>
<td>27</td>
</tr>
<tr>
<td>peak_Profile_Heatmap</td>
<td>27</td>
</tr>
<tr>
<td>peakHeatmap</td>
<td>29</td>
</tr>
<tr>
<td>peakHeatmap_multiple_Sets</td>
<td>30</td>
</tr>
<tr>
<td>plotAnnoBar</td>
<td>31</td>
</tr>
<tr>
<td>plotAnnoBar.data.frame</td>
<td>32</td>
</tr>
<tr>
<td>plotAnnoPie</td>
<td>33</td>
</tr>
<tr>
<td>plotAnnoPie.csAnno</td>
<td>34</td>
</tr>
<tr>
<td>plotAvgProf</td>
<td>35</td>
</tr>
<tr>
<td>plotAvgProf.binning</td>
<td>36</td>
</tr>
<tr>
<td>plotAvgProf2</td>
<td>37</td>
</tr>
<tr>
<td>plotDistToTSS</td>
<td>39</td>
</tr>
<tr>
<td>plotDistToTSS.data.frame</td>
<td>40</td>
</tr>
<tr>
<td>plotMultiProf</td>
<td>41</td>
</tr>
<tr>
<td>plotMultiProf.binning</td>
<td>42</td>
</tr>
<tr>
<td>plotMultiProf.binning.internal</td>
<td>43</td>
</tr>
<tr>
<td>plotMultiProf.normal</td>
<td>44</td>
</tr>
<tr>
<td>plotMultiProf.normal.internal</td>
<td>45</td>
</tr>
<tr>
<td>plotPeakProf</td>
<td>45</td>
</tr>
<tr>
<td>plotPeakProf_MultiWindows</td>
<td>48</td>
</tr>
<tr>
<td>plotPeakProf2</td>
<td>50</td>
</tr>
<tr>
<td>readPeakFile</td>
<td>52</td>
</tr>
<tr>
<td>reexports</td>
<td>52</td>
</tr>
<tr>
<td>seq2gene</td>
<td>53</td>
</tr>
<tr>
<td>show</td>
<td>54</td>
</tr>
<tr>
<td>shuffle</td>
<td>54</td>
</tr>
<tr>
<td>tagHeatmap</td>
<td>55</td>
</tr>
<tr>
<td>upsetplot</td>
<td>56</td>
</tr>
<tr>
<td>vennpie</td>
<td>56</td>
</tr>
<tr>
<td>vennplot</td>
<td>57</td>
</tr>
<tr>
<td>vennplot.peakfile</td>
<td>58</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59</td>
</tr>
</tbody>
</table>
ChIPseeker-package ChIP-SEQ Annotation, Visualization and Comparison

Description
This package is designed for chip-seq data analysis

Details

Package: ChIPseeker
Type: Package
Version: 1.5.1
Date: 27-04-2015
biocViews: ChIPSeq, Annotation, Software
Depends:
Imports: methods, ggplot2
Suggests: clusterProfiler, GOSemSim
License: Artistic-2.0

Author(s)
Guangchuang Yu
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

Description
capture name of variable

Usage
.(... , .env = parent.frame())

Arguments
...
.expression
.env
.environment

Value
.expression
annotatePeak

Examples

x <- 1
eval(.x[[1]])

annotatePeak annotatePeak

Description

Annotate peaks

Usage

annotatePeak(
 peak,
 tssRegion = c(-3000, 3000),
 TxDB = NULL,
 level = "transcript",
 assignGenomicAnnotation = TRUE,
 genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
 "Downstream", "Intergenic"),
 annoDb = NULL,
 addFlankGeneInfo = FALSE,
 flankDistance = 5000,
 sameStrand = FALSE,
 ignoreOverlap = FALSE,
 ignoreUpstream = FALSE,
 ignoreDownstream = FALSE,
 overlap = "TSS",
 verbose = TRUE,
 columns = c("ENTREZID", "ENSEMBL", "SYMBOL", "GENENAME")
)

Arguments

peak peak file or GRanges object
tssRegion Region Range of TSS
TxDB TxDb or EnsDb annotation object
level one of transcript and gene
assignGenomicAnnotation logical, assign peak genomic annotation or not
genomicAnnotationPriority genomic annotation priority
annoDb annotation package
addFlankGeneInfo
logical, add flanking gene information from the peaks

flankDistance
distance of flanking sequence

sameStrand
logical, whether find nearest/overlap gene in the same strand

ignoreOverlap
logical, whether ignore overlap of TSS with peak

ignoreUpstream
logical, if True only annotate gene at the 3' of the peak.

ignoreDownstream
logical, if True only annotate gene at the 5' of the peak.

overlap
one of 'TSS' or 'all', if overlap="all", then gene overlap with peak will be re-
ported as nearest gene, no matter the overlap is at TSS region or not.

verbose
print message or not

columns
names of columns to be obtained from database

Value
data.frame or GRanges object with columns of:
all columns provided by input.
annotation: genomic feature of the peak, for instance if the peak is located in 5'UTR, it will anno-
tated by 5'UTR. Possible annotation is Promoter-TSS, Exon, 5' UTR, 3' UTR, Intron, and Inter-
genic.
geneChr: Chromosome of the nearest gene
geneStart: gene start
geneEnd: gene end
geneLength: gene length
geneStrand: gene strand
geneId: entrezgene ID
distanceToTSS: distance from peak to gene TSS
if annoDb is provided, extra column will be included:
ENSEMBL: ensembl ID of the nearest gene
SYMBOL: gene symbol
GENENAME: full gene name

Author(s)
G Yu

See Also
plotAnnoBar plotAnnoPie plotDistToTSS
Examples

```r
## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, tssRegion=c(-3000, 3000), TxDb=txdb)
peakAnno
## End(Not run)
```

Description

convert csAnno object to data.frame

Usage

```r
## S3 method for class 'csAnno'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- `x`: csAnno object
- `row.names`: row names
- `optional`: should be omitted.
- `...`: additional parameters

Value

data.frame

Author(s)

Guangchuang Yu https://guangchuangyu.github.io
as.GRanges

Description
convert csAnno object to GRanges

Usage
`as.GRanges(x)`

Arguments
- `x` csAnno object

Value
GRanges object

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

check_upstream_and_downstream

Description
check upstream and downstream parameter

Usage
`check_upstream_and_downstream(upstream, downstream)`

Arguments
- `upstream` upstream
- `downstream` downstream
combine_csAnno

Description

Combine csAnno Object

Usage

```
combine_csAnno(x, ...)
```

Arguments

- `x` csAnno object
- `...` csAnno objects

Details

https://github.com/YuLab-SMU/ChIPseeker/issues/157

Value

csAnno object

covplot

Description

plot peak coverage

Usage

```
covplot(
    peak,
    weightCol = NULL,
    xlab = "Chromosome Size (bp)",
    ylab = "",
    title = "ChIP Peaks over Chromosomes",
    chrs = NULL,
    xlim = NULL,
    lower = 1,
    fill_color = NULL
)
```
Arguments

- **peak**: peak file or GRanges object
- **weightCol**: weight column of peak
- **xlab**: xlab
- **ylab**: ylab
- **title**: title
- **chrs**: selected chromosomes to plot, all chromosomes by default
- **xlim**: ranges to plot, default is whole chromosome
- **lower**: lower cutoff of coverage signal
- **fill_color**: specify the color for the plot. Order matters

Value

ggplot2 object

Author(s)

G Yu

csAnno-class

Class "csAnno" This class represents the output of ChIPseeker Annotation

Description

Class "csAnno" This class represents the output of ChIPseeker Annotation

Slots

- anno: annotation
- tssRegion: TSS region
- level: transcript or gene
- hasGenomicAnnotation: logical
- detailGenomicAnnotation: Genomic Annotation in detail
- annoStat: annotation statistics
- peakNum: number of peaks

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

See Also

annotatePeak
Description

download all BED files of a particular genome version

Usage

```r
downloadGEObedFiles(genome, destDir = getwd())
```

Arguments

- `genome`: genome version
- `destDir`: destination folder

Author(s)

G Yu

Description

download BED supplementary files of a list of GSM accession numbers

Usage

```r
downloadGSMbedFiles(GSM, destDir = getwd())
```

Arguments

- `GSM`: GSM accession numbers
- `destDir`: destination folder

Author(s)

G Yu
dropAnno

Description

dropAnno

Usage

```r
dropAnno(csAnno, distanceToTSS_cutoff = 10000)
```

Arguments

- `csAnno`: output of `annotatePeak`
- `distanceToTSS_cutoff`: distance to TSS cutoff

Details

- drop annotation exceeding `distanceToTSS_cutoff`

Value

csAnno object

Author(s)

Guangchuang Yu

enrichAnnoOverlap

Description

calculate overlap significant of ChIP experiments based on their nearest gene annotation

Usage

```r
enrichAnnoOverlap(
    queryPeak, targetPeak, TxDB = NULL, pAdjustMethod = "BH", chainFile = NULL, distanceToTSS_cutoff = NULL
)
```
Arguments

- `queryPeak`: query bed file or GRanges object
- `targetPeak`: target bed file(s) or folder containing bed files or a list of GRanges objects
- `TxDb`: TxDb
- `pAdjustMethod`: pvalue adjustment method
- `chainFile`: chain file for liftOver
- `distanceToTSS_cutoff`: restrict nearest gene annotation by distance cutoff

Value

data.frame

Author(s)

G Yu

Description

calculate overlap significant of ChIP experiments based on the genome coordinations

Usage

```r
enrichPeakOverlap(
  queryPeak, targetPeak, TxDb = NULL,
  pAdjustMethod = "BH",
  nShuffle = 1000,
  chainFile = NULL,
  pool = TRUE,
  mc.cores = detectCores() - 1,
  verbose = TRUE
)
```

Arguments

- `queryPeak`: query bed file or GRanges object
- `targetPeak`: target bed file(s) or folder containing bed files or a list of GRanges objects
- `TxDb`: TxDb
- `pAdjustMethod`: pvalue adjustment method
getBioRegion

- nShuffle: shuffle numbers
- chainFile: chain file for liftOver
- pool: logical, whether pool target peaks
- mc.cores: number of cores, see mclapply
- verbose: logical

Value

data.frame

Author(s)

G Yu

getAnnoStat

Description

going status of annotation

Usage

getAnnoStat(x)

Arguments

- x: csAnno object

getBioRegion

Description

prepare a bioregion of selected feature

Usage

getBioRegion(
 TxDB = NULL,
 upstream = 1000,
 downstream = 1000,
 by = "gene",
 type = "start_site"
)
getGeneAnno

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxDb</td>
<td>TxDb</td>
</tr>
<tr>
<td>upstream</td>
<td>upstream from start site or end site</td>
</tr>
<tr>
<td>downstream</td>
<td>downstream from start site or end site</td>
</tr>
<tr>
<td>type</td>
<td>one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'</td>
</tr>
<tr>
<td>geneID</td>
<td>query geneID</td>
</tr>
<tr>
<td>type</td>
<td>gene ID type</td>
</tr>
<tr>
<td>columns</td>
<td>names of columns to be obtained from database</td>
</tr>
</tbody>
</table>

Details

this function combined previous functions getPromoters(), getBioRegion() and getGeneBody() in order to solve the following issues.

(1) https://github.com/GuangchuangYu/ChIPseeker/issues/16
(2) https://github.com/GuangchuangYu/ChIPseeker/issues/87

The getBioRegion() function can prevent a region of interest from txdb object. There are three kinds of regions, start_site, end_site and body.

We take transcript region to explain the differences of these three regions. tx: chr1 1000 1400.

- **body** region refers to the 1000-1400bp.
- **start_site** region with upstream = 100, downstream = 100 refers to 900-1100bp.
- **end_site** region with upstream = 100, downstream = 100 refers to 1300-1500bp.

Value

GRanges object

Author(s)

Guangchuang Yu, Ming L

Description

get gene annotation, symbol, gene name etc.

Usage

geneAnno(annoDb, geneID, type, columns)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>annoDb</td>
<td>annotation package</td>
</tr>
<tr>
<td>geneID</td>
<td>query geneID</td>
</tr>
<tr>
<td>type</td>
<td>gene ID type</td>
</tr>
<tr>
<td>columns</td>
<td>names of columns to be obtained from database</td>
</tr>
</tbody>
</table>
getGenomicAnnotation

Description
get Genomic Annotation of peaks

Usage
getGenomicAnnotation(
 peaks,
 distance,
 tssRegion = c(-3000, 3000),
 TxDb,
 level,
 genomicAnnotationPriority,
 sameStrand = FALSE
)

Arguments
peaks peaks in GRanges object
distance distance of peak to TSS
tssRegion tssRegion, default is -3kb to +3kb
TxDb TxDb object
level one of gene or transcript
genomicAnnotationPriority
genoic Annotation Priority
sameStrand whether annotate gene in same strand

Value
character vector

Author(s)
G Yu
getGEOgenomeVersion

Description

get genome version statistics collecting from GEO ChIPseq data

Usage

getGEOgenomeVersion()

Value

data.frame

Author(s)

G Yu

getGEOInfo

Description

get subset of GEO information by genome version keyword

Usage

getGEOInfo(genome, simplify = TRUE)

Arguments

- genome: genome version
- simplify: simplify result or not

Value

data.frame

Author(s)

G Yu
Description

accessing species statistics collecting from GEO database

Usage

```r
getGEOspecies()
```

Value

data.frame

Author(s)

G Yu

Description

get index of features that closest to peak and calculate distance

Usage

```r
getNearestFeatureIndicesAndDistances(
  peaks,
  features,
  sameStrand = FALSE,
  ignoreOverlap = FALSE,
  ignoreUpstream = FALSE,
  ignoreDownstream = FALSE,
  overlap = "TSS"
)
```
getPromoters

Arguments
- **peaks**: peak in GRanges
- **features**: features in GRanges
- **sameStrand**: logical, whether find nearest gene in the same strand
- **ignoreOverlap**: logical, whether ignore overlap of TSS with peak
- **ignoreUpstream**: logical, if True only annotate gene at the 3’ of the peak.
- **ignoreDownstream**: logical, if True only annotate gene at the 5’ of the peak.
- **overlap**: one of "TSS" or "all"

Value
- list

Author(s)
- G Yu

Description
prepare the promoter regions

Usage
getPromoters(TxDB = NULL, upstream = 1000, downstream = 1000, by = "gene")

Arguments
- **TxDb**: TxDb
- **upstream**: upstream from TSS site
- **downstream**: downstream from TSS site
- **by**: one of gene or transcript

Value
- GRanges object
getSampleFiles

Description

get filenames of sample files

Usage

getSampleFiles()

Value

list of file names

Author(s)

G Yu

getTagMatrix

Description

calculate the tag matrix

Usage

getTagMatrix(
 peak,
 upstream,
 downstream,
 windows,
 type,
 by,
 TxDB = NULL,
 weightCol = NULL,
 nbin = NULL,
 verbose = TRUE,
 ignore_strand = FALSE
)
getTagMatrix

Arguments

- **peak**: peak peak file or GRanges object
- **upstream**: the distance of upstream extension
- **downstream**: the distance of downstream extension
- **windows**: a collection of region
- **type**: one of "start_site", "end_site", "body"
- **by**: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users
- **TxDb**: TxDb or self-made granges object, served as txdb
- **weightCol**: column name of weight, default is NULL
- **nbin**: the amount of nbines
- **verbose**: print message or not
- **ignore_strand**: ignore the strand information or not

Details

getTagMatrix() function can produce the matrix for visualization. peak stands for the peak file. window stands for a collection of regions that users want to look into. Users can use window to capture the peak of interest. There are two ways to input window.

The first way is that users can use getPromoters()/getBioRegion()/makeBioRegionFromGranges() to get window and put it into getTagMatrix().

The second way is that users can use getTagMatrix() to call getPromoters()/getBioRegion()/makeBioRegionFromGranges(). In this way users do not need to input window parameter but they need to input txdb.

txdb is a set of packages contained annotation of regions of different genomes. Users can get the regions of interest through specific functions. These specific functions are built in getPromoters()/getBioRegion(). Many regions can not be gain through txdb, like insulator and enhancer regions. Users can provide these regions in the form of granges object. These self-made granges object will be passed to TxDb parameter and they will be passed to makeBioRegionFromGranges() to produce the window. In a word, TxDb parameter is a reference information. Users can pass txdb object or self-made granges into it.

Details see getPromoters, getBioRegion and makeBioRegionFromGranges

upstream and downstream parameter have different usages:

1. window parameter is provided,
 - if type == 'body', upstream and downstream can use to extend the flank of body region.
 - if type == 'start_site'/end_site', upstream and downstream do not play a role in getTagMatrix() function.

2. window parameter is missing,
 - if type == 'body', upstream and downstream can use to extend the flank of body region.
 - if type == 'start_site'/end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight vaule. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.
Value

`tagMatrix`

Description

calculate the `tagMatrix` by binning the idea was derived from the function of deeptools https://deeptools.readthedocs.io/en/develop/content/tools/computeMatrix.html

Usage

getTagMatrix.binning.internal(
 peak,
 weightCol = NULL,
 windows,
 nbin = 800,
 upstream = NULL,
 downstream = NULL,
 ignore_strand = FALSE
)

Arguments

- `peak`
 peak peak file or GRanges object
- `weightCol`
 weightCol column name of weight, default is NULL
- `windows`
 windows a collection of region with equal or not equal size, eg. promoter region, gene region.
- `nbin`
 the amount of nbines needed to be splited and it should not be more than min_body_length
- `upstream`
 rel object, NULL or actual number
- `downstream`
 rel object, NULL or actual number
- `ignore_strand`
 ignore the strand information or not

Value

`tagMatrix`
getTagMatrix.internal

Description

calculate the tag matrix

Usage

getTagMatrix.internal(peak, weightCol = NULL, windows, ignore_strand = FALSE)

Arguments

- peak: peak file or GRanges object
- weightCol: column name of weight, default is NULL
- windows: a collection of region with equal size, eg. promoter region.
- ignore_strand: ignore the strand information or not

Value

tagMatrix

Author(s)

G Yu

getTagMatrix2

Description

Nested function for getTagMatrix() to deal with multiple windows

Usage

getTagMatrix2(
 peak,
 upstream,
 downstream,
 windows_name,
 type,
 by,
 TxDb = NULL,
 weightCol = NULL,
 nbin = NULL,
)
verbatim = TRUE,
ignore_strand = FALSE
)

Arguments

peak: peak peak file or GRanges object
upstream: the distance of upstream extension
downstream: the distance of downstream extension
windows_name: the names of windows
type: one of "start_site", "end_site", "body"
by: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users
TxDb: TxDb or self-made granges object, served as txdb
weightCol: column name of weight, default is NULL
nbin: the amount of nbines
verbose: print message or not
ignore_strand: ignore the strand information or not

Details

This is an internal function.

Value

tagMatrix

Description

internal function

Usage

getTagMatrix2.binning.internal(
 peak,
 weightCol = NULL,
 windows,
 windows_name,
 nbin = 800,
 upstream = NULL,
 downstream = NULL,
 ignore_strand = FALSE
)
getTagMatrix2.internal

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak</td>
<td>peak peak file or GRanges object</td>
</tr>
<tr>
<td>weightCol</td>
<td>column name of weight, default is NULL</td>
</tr>
<tr>
<td>windows</td>
<td>a collection of region</td>
</tr>
<tr>
<td>windows_name</td>
<td>the name of windows</td>
</tr>
<tr>
<td>nbin</td>
<td>the amount of nbines</td>
</tr>
<tr>
<td>upstream</td>
<td>the distance of upstream extension</td>
</tr>
<tr>
<td>downstream</td>
<td>the distance of downstream extension</td>
</tr>
<tr>
<td>ignore_strand</td>
<td>ignore the strand information or not</td>
</tr>
</tbody>
</table>

getTagMatrix2.internal

Description

getiagMatrix2.internal

Usage

getiagMatrix2.internal(
 peak,
 weightCol = NULL,
 windows,
 windows_name,
 ignore_strand = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak</td>
<td>peak peak file or GRanges object</td>
</tr>
<tr>
<td>weightCol</td>
<td>column name of weight, default is NULL</td>
</tr>
<tr>
<td>windows</td>
<td>a collection of region</td>
</tr>
<tr>
<td>windows_name</td>
<td>the name of windows</td>
</tr>
<tr>
<td>ignore_strand</td>
<td>ignore the strand information or not</td>
</tr>
</tbody>
</table>

info

Information Datasets

Description

cucsc genome version, precalculated data and gsm information
makeBioRegionFromGranges

Description
make windows from granges object

Usage
makeBioRegionFromGranges(gr, by, type, upstream = 1000, downstream = 1000)

Arguments
- **gr**: a grange object containing region of interest
- **by**: specify be users, e.g. gene, insulator, enhancer
- **type**: one of "start_site", "end_site", "body"
- **upstream**: upstream from start site or end site, can be NULL if the type == 'body'
- **downstream**: downstream from start site or end site, can be NULL if the type == 'body'

Details
makeBioRegionFromGranges() function can make bioregion from granges object.

The differences between makeBioRegionFromGranges() and getBioRegion() is that getBioRegion() get the region object from txdb object but makeBioRegionFromGranges() get the region from the granges object provided by users. For example, txdb object do not contain insulator or enhancer regions. Users can provide these regions through self-made granges object.

There are three kinds of regions, start_site, end_site and body.

We take enhancer region to explain the differences of these three regions. enhancer: chr1 1000-1400.

body region refers to the 1000-1400bp.

start_site region with upstream = 100, downstream = 100 refers to 900-1100bp.

end_site region with upstream = 100, downstream = 100 refers to 1300-1500bp.

In makeBioRegionFromGranges(), upstream and downstream can be NULL if the type == 'body'.

by should be specified by users and can not be omitted. by parameter will be used to made labels.
type should also be specified.

https://github.com/YuLab-SMU/ChIPseeker/issues/189

Value
GRanges object
overlap

Description

calculate the overlap matrix, which is useful for vennplot

Usage

```r
overlap(Sets)
```

Arguments

- `Sets` a list of objects

Value

data.frame

Author(s)

G Yu

peak_Profile_Heatmap

Description

plot peak heatmap and profile in a picture

Usage

```r
peak_Profile_Heatmap(
  peak,
  weightCol = NULL,
  TxDb = NULL,
  upstream = 1000,
  downstream = 1000,
  xlab = "",
  ylab = "",
  title = NULL,
  palette = NULL,
  verbose = TRUE,
  by = "gene",
  type = "start_site",
  nbin = NULL,
)```
ignore_strand = FALSE,
windows_name = NULL,
ncol = NULL,
nrow = NULL,
facet_label_text_size = 12,
conf,
facet = "row",
free_y = TRUE,
height_proportion = 4
}

Arguments

peak file or GRanges object

weightCol column name of weight

TxDb TxDb object

upstream upstream position
downstream downstream position

xlab xlab

ylab ylab
title title

palette palette to be filled in, details see \texttt{scale\_colour\_brewer}

verbose print message or not

by one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
type one of "start\_site", "end\_site", "body"

nbin the amount of nbines
ignore_strand ignore the strand information or not
windows_name the name for each window, which will also be showed in the picture as labels
ncol the ncol of plotting a list of peak
nrow the nrow of plotting a list of peak

facet_label_text_size the size of facet label text

conf confidence interval

facet one of 'none', 'row' and 'column'

free_y if TRUE, y will be scaled by AvgProf

height_proportion the proportion of profiling picture and heatmap
Description

plot the heatmap of peaks

Usage

peakHeatmap(
  peak,
  weightCol = NULL,
  TxDb = NULL,
  upstream = 1000,
  downstream = 1000,
  xlab = '',
  ylab = '',
  title = NULL,
  palette = NULL,
  verbose = TRUE,
  by = "gene",
  type = "start_site",
  nbin = NULL,
  ignore_strand = FALSE,
  windows,
  ncol = NULL,
  nrow = NULL
)

Arguments

peak file or GRanges object
weightCol column name of weight
TxDb TxDB object
upstream upstream position
downstream downstream position
xlab xlab
ylab ylab
title title
palette palette to be filled in, details see scale_colour_brewer
verbose print message or not
by one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
type one of "start_site", "end_site", "body"
peakHeatmap_multiple_Sets

value
figure

Author(s)
G Yu

Description
plot the heatmap of peaks align to a sets of regions

Usage

peakHeatmap_multiple_Sets(
peak,
weightCol = NULL,
TxDb = NULL,
upstream = 1000,
downstream = 1000,
xlab = "",
ylab = "",
title = NULL,
palette = NULL,
verbose = TRUE,
by = "gene",
type = "start_site",
nbin = NULL,
ignore_strand = FALSE,
windows_name = NULL,
ncol = NULL,
nrow = NULL,
facet_label_text_size = 12
)
Arguments

- **peak**: peak file or GRanges object
- **weightCol**: column name of weight
- **TxDb**: TxDb object
- **upstream**: upstream position
- **downstream**: downstream position
- **xlab**: xlab
- **ylab**: ylab
- **title**: title
- **palette**: palette to be filled in, details see `scale_colour_brewer`
- **verbose**: print message or not
- **by**: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
- **type**: one of "start_site", "end_site", "body"
- **nbin**: the amount of nbines
- **ignore_strand**: ignore the strand information or not
- **windows_name**: the name for each window, which will also be showed in the picture as labels
- **ncol**: the ncol of plotting a list of peak
- **nrow**: the nrow of plotting a list of peak
- **facet_label_text_size**: the size of facet label text

Value

- **figure**

---

plotAnnoBar

**plotAnnoBar method generics**

Description

plotAnnoBar method for csAnno instance

Usage

```
plotAnnoBar(
 x,
 xlab = "",
 ylab = "Percentage(%)",
 title = "Feature Distribution",
 ...
)
```
plotAnnoBar.data.frame

## S4 method for signature 'list'
plotAnnoBar(
  x,
  xlab = "",
  ylab = "Percentage(%)",
  title = "Feature Distribution",
  ...
)

plotAnnoBar(x, xlab="", ylab='Percentage(%)',title="Feature Distribution", ...)

Arguments

- **x**  
  csAnno instance
- **xlab**  
  xlab
- **ylab**  
  ylab
- **title**  
  title
- **...**  
  additional parameter

Value

- plot

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

plotAnnoBar.data.frame

plot feature distribution based on their chromosome region

Usage

plotAnnoBar.data.frame(
  anno.df,
  xlab = "",
  ylab = "Percentage(%)",
  title = "Feature Distribution",
  categoryColumn
)
plotAnnoPie

Arguments

- anno.df: annotation stats
- xlab: xlab
- ylab: ylab
- title: plot title
- categoryColumn: category column

Details

plot chromosome region features

Value

bar plot that summarize genomic features of peaks

Author(s)

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

See Also

annotatePeak plotAnnoPie

plotAnnoPie

plotAnnoPie method generics

Description

plotAnnoPie method for csAnno instance

Usage

```r
plotAnnoPie(
 x,
 ndigit = 2,
 cex = 0.9,
 col = NA,
 legend.position = "rightside",
 pie3D = FALSE,
 radius = 0.8,
 ...
)
```

```r
plotAnnoPie(x,ndigit=2,cex=0.9,col=NA,legend.position="rightside",pie3D=FALSE,radius=0.8,...)
```
**Arguments**

- `x`: csAnno instance
- `ndigit`: number of digit to round
- `cex`: label cex
- `col`: color
- `legend.position`: topright or other.
- `pie3D`: plot in 3D or not
- `radius`: radius of the pie
- `...`: extra parameter

**Value**

- `plot`

**Author(s)**

Guangchuang Yu [https://guangchuangyu.github.io](https://guangchuangyu.github.io)

**Description**

Pieplot from peak genomic annotation

**Usage**

```r
plotAnnoPie.csAnno(
 x,
 ndigit = 2,
 cex = 0.8,
 col = NA,
 legend.position = "rightside",
 pie3D = FALSE,
 radius = 0.8,
 ...
)
```
plotAvgProf

Arguments

- `x` csAnno object
- `ndigit` number of digit to round
- `cex` label cex
- `col` color
- `legend.position` topright or other.
- `pie3D` plot in 3D or not
- `radius` radius of Pie
- `...` extra parameter

Value

pie plot of peak genomic feature annotation

Author(s)

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

See Also

annotatePeak, plotAnnoBar

Examples

```r
Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="chipseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotAnnoPie(peakAnno)

End(Not run)
```

Description

plot the profile of peaks
plotAvgProf.binning

Usage

plotAvgProf(
  tagMatrix,
  xlim,
  xlab = "Genomic Region (5'->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  origin_label = "TSS",
  verbose = TRUE,
  ...
)

Arguments

tagMatrix tagMatrix or a list of tagMatrix
xlim xlim
xlab x label
ylab y label
conf confidence interval
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
origin_label label of the center
verbose print message or not
... additional parameter

Value

ggplot object

Author(s)

G Yu; Y Yan

Description

plot the profile of peaks by binning
Usage

```r
plotAvgProf.binning(
 tagMatrix,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 conf,
 facet = "none",
 free_y = TRUE,
 upstream = NULL,
 downstream = NULL,
 label,
 ...
)
```

Arguments

- **tagMatrix**: tagMatrix or a list of tagMatrix
- **xlab**: x label
- **ylab**: y label
- **conf**: confidence interval
- **facet**: one of 'none', 'row' and 'column'
- **free_y**: if TRUE, y will be scaled
- **upstream**: rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
- **downstream**: rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
- **label**: label
- **...**: additional parameter

Value

ggplot object

Description

plot the profile of peaks that align to flank sequences of TSS
Usage

plotAvgProf2(
    peak,
    weightCol = NULL,
    TxDb = NULL,
    upstream = 1000,
    downstream = 1000,
    xlab = "Genomic Region (5'->3')",
    ylab = "Peak Count Frequency",
    conf,
    facet = "none",
    free_y = TRUE,
    verbose = TRUE,
    ignore_strand = FALSE,
    ...
)

Arguments

peak      peak file or GRanges object
weightCol column name of weight
TxDb      TxDB object
upstream  upstream position
downstream downstream position
xlab      xlab
ylab      ylab
conf      confidence interval
facet     one of 'none', 'row' and 'column'
free_y    if TRUE, y will be scaled by AvgProf
verbose   print message or not
ignore_strand ignore the strand information or not
...       additional parameter

Details

This function is the old function of plotPeakProf2. It can only plot the start site region of gene.

Value

ggplot object

Author(s)

G Yu, Ming L
Description

plotDistToTSS method for csAnno instance

Usage

plotDistToTSS(
  x,
  distanceColumn = "distanceToTSS",
  xlab = "", ylab = "Binding sites (%) (5'->3')",
  title = "Distribution of transcription factor-binding loci relative to TSS",
  ...
)

## S4 method for signature 'list'

plotDistToTSS(
  x,
  distanceColumn = "distanceToTSS",
  xlab = "", ylab = "Binding sites (%) (5'->3')",
  title = "Distribution of transcription factor-binding loci relative to TSS",
  ...
)

plotDistToTSS(x,distanceColumn="distanceToTSS", xlab="", ylab="Binding sites (%) (5'->3')",
  title="Distribution of transcription factor-binding loci relative to TSS",...)

Arguments

x     csAnno instance
distanceColumn distance column name
xlab xlab
ylab ylab
title title
... additional parameter

Value

plot
Author(s)

Guangchuang Yu https://guangchuangyu.github.io

plotDistToTSS.data.frame

Description

plot feature distribution based on the distances to the TSS

Usage

plotDistToTSS.data.frame(
  peakDist,
  distanceColumn = "distanceToTSS",
  xlab = "",
  ylab = "Binding sites (%) (5'->3')",
  title = "Distribution of transcription factor-binding loci relative to TSS",
  categoryColumn
)

Arguments

  peakDist     peak annotation
  distanceColumn column name of the distance from peak to nearest gene
  xlab         x label
  ylab         y label
  title        figure title
  categoryColumn category column

Value

bar plot that summarize distance from peak to TSS of the nearest gene.

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

See Also

annotatePeak
**plotMultiProf**  

Internal function for `plotPeakProf_MultiWindows`  

---

**Description**

Internal function for `plotPeakProf_MultiWindows`

**Usage**

```r
plotMultiProf(
 tagMatrix,
 conf,
 xlab = "Genomic Region (5'-->3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 ...
)
```

**Arguments**

- `tagMatrix`: tagMatrix
- `conf`: confidence interval
- `xlab`: xlab
- `ylab`: ylab
- `facet`: one of 'none', 'row' and 'column'
- `free_y`: if TRUE, y will be scaled by AvgProf
- `...`: additional parameter

---

**Examples**

```r
Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotDistToTSS(peakAnno)

End(Not run)
```
plotMultiProf.binning  

Description

internal function

Usage

plotMultiProf.binning(
  tagMatrix,
  xlab = "Genomic Region (5'->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  upstream = NULL,
  downstream = NULL,
  label,
  ...
)

Arguments

tagMatrix  tagMatrix
xlab  xlab
ylab  ylab
conf  confidence interval
facet  one of 'none', 'row' and 'column'
free_y  if TRUE, y will be scaled by AvgProf
upstream  the upstream extension
downstream  the downstream extension
label  the label of the center
...  additional parameter
Description

internal function

Usage

plotMultiProf.binning.internal(
  tagMatrix,
  conf,
  xlab = "Genomic Region (5'-->3')",
  ylab = "Peak Count Frequency",
  facet = "none",
  free_y = TRUE,
  upstream = NULL,
  downstream = NULL,
  label,
  ...
)

Arguments

tagMatrix    tagMatrix
conf          confidence interval
xlab          xlab
ylab          ylab
facet         one of 'none', 'row' and 'column'
free_y        if TRUE, y will be scaled by AvgProf
upstream      the upstream extension
downstream    the downstream extension
label         the label of the center
...            additional parameter
Description

internal function

Usage

plotMultiProf.normal(
tagMatrix, xlab = "Genomic Region (5'->3')", ylab = "Peak Count Frequency", conf, facet = "none", free_y = TRUE, origin_label = "TSS", verbose = TRUE, ...)

Arguments

tagMatrix, xlab, ylab, conf, facet, free_y, origin_label, verbose, ...

- tagMatrix: tagMatrix
- xlab: xlab
- ylab: ylab
- conf: confidence interval
- facet: one of 'none', 'row' and 'column'
- free_y: if TRUE, y will be scaled by AvgProf
- origin_label: the label of the center
- verbose: print message or not
- ...: additional parameter
plotMultiProf.normal.internal

*internal function*

**Description**

internal function

**Usage**

```r
plotMultiProf.normal.internal(
 tagMatrix,
 conf,
 xlim = c(-3000, 3000),
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 facet = "row",
 free_y = TRUE,
 origin_label,
 ...
)
```

**Arguments**

- `tagMatrix`  
tagMatrix
- `conf`  
  confidence interval
- `xlim`  
  xlim
- `xlab`  
  xlab
- `ylab`  
  ylab
- `facet`  
  one of 'none', 'row' and 'column'
- `free_y`  
  if TRUE, y will be scaled by AvgProf
- `origin_label`  
  the label of the center
- ...  
  additional parameter

**plotPeakProf**

*plotPeakProf_MultiWindows*

**Description**

plot the profile of peaks. `plotPeakProf_MultiWindows()` is almost the same as `plotPeakProf2()`, having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.
plotPeakProf(tagMatrix = NULL, peak, upstream, downstream, conf, by, type, windows_name = NULL, weightCol = NULL, TxDb = NULL, xlab = "Genomic Region (5'->3')", ylab = "Peak Count Frequency", facet = "row", free_y = TRUE, verbose = TRUE, nbin = NULL, ignore_strand = FALSE, ...)

Arguments

- **tagMatrix**: tagMatrix or a list of tagMatrix
- **peak**: peak file or GRanges object
- **upstream**: upstream position
- **downstream**: downstream position
- **conf**: confidence interval
- **by**: feature of interest
- **type**: one of "start_site", "end_site", "body"
- **windows_name**: the name for each window, which will also be showed in the picture as labels
- **weightCol**: column name of weight
- **TxDb**: TxDb object or self-made granges objects
- **xlab**: xlab
- **ylab**: ylab
- **facet**: one of 'none', 'row' and 'column'
- **free_y**: if TRUE, y will be scaled by AvgProf
- **verbose**: print message or not
- **nbin**: the amount of bines
- **ignore_strand**: ignore the strand information or not
- **...**: additional parameter
Details

TxDb parameter can accept txdb object. But many regions cannot be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

by the features of interest.

(1) if users use txdb, by can be one of ‘gene’, ‘transcript’, ‘exon’, ‘intron’, ‘3UTR’, ‘5UTR’, ‘UTR’. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site'/'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.

There are two ways input a list of window.

(1) Users can input a list of self-made granges objects

(2) Users can input a list of by and only one type. In this way, plotPeakProf_MultiWindows() can made a list of window from txdb object based on by and type.

Warning:

(1) All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.

(2) So it will be only one type and several by.

(3) Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR' or 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.

(4) Users can mingle the by designed for the two ways. plotPeakProf_MultiWindows can accpet the hybrid by. But the above rules should be followed.

https://github.com/YuLab-SMU/ChIPseeker/issues/189

Value

ggplot object
plotPeakProf_MultiWindows

Description

plot the profile of peaks in two or more windows

Usage

plotPeakProf_MultiWindows(
  peak,
  upstream,
  downstream,
  conf,
  by,
  type,
  windows_name = NULL,
  weightCol = NULL,
  TxDb = NULL,
  xlab = "Genomic Region (5'->3')",
  ylab = "Peak Count Frequency",
  facet = "row",
  free_y = TRUE,
  verbose = TRUE,
  nbin = NULL,
  ignore_strand = FALSE,
  ...
)

Arguments

  peak            peak file or GRanges object
  upstream        upstream position
  downstream      downstream position
  conf            confidence interval
  by              feature of interest
  type            one of "start_site", "end_site", "body"
  windows_name    the name for each window, which will also be showed in the picture as labels
  weightCol       column name of weight
  TxDb            TxDb object or self-made granges objects
  xlab            xlab
  ylab            ylab
  facet           one of 'none', 'row' and 'column'
**plotPeakProf_MultiWindows**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>free_y</td>
<td>if TRUE, y will be scaled by AvgProf</td>
</tr>
<tr>
<td>verbose</td>
<td>print message or not</td>
</tr>
<tr>
<td>nbin</td>
<td>the amount of bins</td>
</tr>
<tr>
<td>ignore_strand</td>
<td>ignore the strand information or not</td>
</tr>
<tr>
<td>...</td>
<td>additional parameter</td>
</tr>
</tbody>
</table>

**Details**

This function comes from https://github.com/YuLab-SMU/ChIPseeker/issues/189 `plotPeakProf_MultiWindows()` is almost the same as `plotPeakProf2()`, having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.

TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

by the features of interest.

(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

**type** means the property of the region. one of the "start site", "end site" and "body".

**upstream** and downstream parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site'/"end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. `getTagMatrix()` provide a binning method to get the tag matrix.

There are two ways input a list of window.

(1) Users can input a list of self-made granges objects

(2) Users can input a list of by and only one type. In this way, `plotPeakProf_MultiWindows()` can made a list of window from txdb object based on by and type.

**Warning:**

(1) All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.

(2) So it will be only one type and several by.

(3) Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR' or 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.

(4) Users can mingle the by designed for the two ways. `plotPeakProf_MultiWindows()` can accept the hybrid by. But the above rules should be followed.
**plotPeakProf2**

**Value**

ggplot object

**Description**

plot the profile of peaks automatically

**Usage**

```r
plotPeakProf2(
 peak,
 upstream,
 downstream,
 conf,
 by,
 type,
 weightCol = NULL,
 TxDb = NULL,
 xlab = "Genomic Region (5'--3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 verbose = TRUE,
 nbin = NULL,
 ignore_strand = FALSE,
 ...
)
```

**Arguments**

- `peak`: peak file or GRanges object
- `upstream`: upstream position
- `downstream`: downstream position
- `conf`: confidence interval
- `by`: e.g. ‘gene’, ‘transcript’, ‘exon’ or features of interest(e.g. "enhancer")
- `type`: one of "start_site", "end_site", "body"
- `weightCol`: column name of weight
- `TxDb`: TxDb object, or self-made granges object
- `xlab`: xlab
- `ylab`: ylab
plotPeakProf2

facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
nbin the amount of nbines
ignore_strand ignore the strand information or not
... additional parameter

Details

peak stands for the peak file.
by the features of interest.

(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site' / 'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight vaule. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins, providing a binning method to get the tag matrix.

TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

plotPeakProf2() is different from the plotPeakProf(). plotPeakProf2() do not need to provide window parameter, which means plotPeakProf2() will call relevent functions to make window automatically.

Value

ggplot object

Author(s)

G Yu, Ming Li
readPeakFile

Description

read peak file and store in data.frame or GRanges object

Usage

readPeakFile(peakfile, as = "GRanges", ...)

Arguments

peakfile  peak file
as        output format, one of GRanges or data.frame
...       additional parameter

Value

peak information, in GRanges or data.frame object

Author(s)

G Yu

Examples

peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peak.gr <- readPeakFile(peakfile, as="GRanges")
peak.gr

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

GenomicRanges  GRangesList
ggplot2  rel
seq2gene

Description
annotate genomic regions to genes in many-to-many mapping

Usage
seq2gene(seq, tssRegion, flankDistance, TxDb, sameStrand = FALSE)

Arguments

seq          genomic regions in GRanges object

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tssRegion</td>
<td>TSS region</td>
</tr>
<tr>
<td>flankDistance</td>
<td>flanking search radius</td>
</tr>
<tr>
<td>TxDb</td>
<td>TranscriptDb object</td>
</tr>
<tr>
<td>sameStrand</td>
<td>logical whether find nearest/overlap gene in the same strand</td>
</tr>
</tbody>
</table>

Details
This function associates genomic regions with coding genes in a many-to-many mapping. It first maps genomic regions to host genes (either located in exon or intron), proximal genes (located in promoter regions) and flanking genes (located in upstream and downstream within user specify distance).

Value
gene vector

Author(s)
Guangchuang Yu

Examples
## Not run:
library(TxDb.Hsapiens.UCSC.hg19_knownGene)
TxDb <- TxDb.Hsapiens.UCSC.hg19_knownGene
file <- getSampleFiles()[[1]] # a bed file
gr <- readPeakFile(file)
gen <- seq2gene(gr, tssRegion=c(-1000, 1000), flankDistance = 3000, TxDb)

## End(Not run)
**show**

*show method*

**Description**

show method for csAnno instance

**Usage**

`show(object)`

**Arguments**

- `object`: A csAnno instance

**Value**

message

**Author(s)**

Guangchuang Yu [https://guangchuangyu.github.io](https://guangchuangyu.github.io)

---

**shuffle**

**Description**

shuffle the position of peak

**Usage**

`shuffle(peak.gr, TxDb)`

**Arguments**

- `peak.gr`: GRanges object
- `TxDb`: TxDb

**Value**

GRanges object

**Author(s)**

G Yu
Description

plot the heatmap of tagMatrix

Usage

tagHeatmap(
  tagMatrix,
  xlab = "",
  ylab = "",
  title = NULL,
  palette = "RdBu",
  nrow = NULL,
  ncol = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tagMatrix</td>
<td>tagMatrix or a list of tagMatrix</td>
</tr>
<tr>
<td>xlab</td>
<td>xlab</td>
</tr>
<tr>
<td>ylab</td>
<td>ylab</td>
</tr>
<tr>
<td>title</td>
<td>title</td>
</tr>
<tr>
<td>palette</td>
<td>palette to be filled in, details see (\text{scale_colour_brewer})</td>
</tr>
<tr>
<td>nrow</td>
<td>the nrow of plotting a list of peak</td>
</tr>
<tr>
<td>ncol</td>
<td>the ncol of plotting a list of peak</td>
</tr>
</tbody>
</table>

Value

figure

Author(s)

G Yu
Description

upsetplot method generics

Usage

upsetplot(x, ...)

Arguments

x  A csAnno instance
...

Value

plot

Author(s)

Guangchuang Yu [https://guangchuangyu.github.io](https://guangchuangyu.github.io)

Description

vennpie method generics

Usage

vennpie(x, r = 0.2, cex = 1.2, ...)

Arguments

x  A csAnno instance
r  initial radius
cex  value to adjust legend
...

Additional parameter
vennplot

Value
plot

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

---

**Description**
plot the overlap of a list of object

**Usage**
vennplot(Sets, by = "gplots", ...)

**Arguments**
- **Sets**: a list of object, can be vector or GRanges object
- **by**: one of gplots, ggVennDiagram or Vennerable
- **...**: extra parameters using ggVennDiagram. Details see [ggVennDiagram](https://cran.r-project.org/web/packages/ggVennDiagram/index.html)

**Details**
There are two ways to plot, which users can specify through `by`.
The first way is to use `gplots` packages, by setting `by = gplots`. This method is default method. The venn plot produced through this way has no color.
The second way is to use `ggVennDiagram` packages, by setting `by = ggVennDiagram`. The venn plot produced through this way has colors which can be defined by users using ggplot2 grammar e.g.(scale_fill_distiller()). And users can specify any details, like digital number, text size and showing percentage or not, by inputting `...` extra parameters.

**Value**
venn plot that summarize the overlap of peaks from different experiments or gene annotation from different peak files.

**Author(s)**
G Yu
Examples

```r
example not run
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfiles <- getSampleFiles()
peakAnnoList <- lapply(peakfiles, annotatePeak)
names(peakAnnoList) <- names(peakfiles)
genes= lapply(peakAnnoList, function(i) as.data.frame(i)$geneId)
vennplot(genes)
```

Description

vennplot for peak files

Usage

```r
vennplot.peakfile(files, labels = NULL)
```

Arguments

- `files` peak files
- `labels` labels for peak files

Value

figure

Author(s)

G Yu
Index

* classes
  csAnno-class, 10
* datasets
  info, 25
* internal
  reexports, 52
* package
  ChIPseeker-package, 4
.., 4
annotatePeak, 5, 10, 25, 40
as.data.frame.csAnno, 7
as.GRanges, 8
check_upstream_and_downstream, 8
ChIPseeker (ChIPseeker-package), 4
ChIPseeker-package, 4
combine_csAnno, 9
covplot, 9
csAnno-class, 10
downloadGEObedFiles, 11
downloadGSMbedFiles, 11
dropAnno, 12
enrichAnnoOverlap, 12
enrichPeakOverlap, 13
getAnnoStat, 14
getBioRegion, 14, 27
getGeneAnno, 15
getGenomicAnnotation, 16
getGEOgenomeVersion, 17
getGEOinfo, 17
getGEOspecies, 18
getNearestFeatureIndicesAndDistances, 18
getPromoters, 19, 27
getSampleFiles, 20
getTagMatrix, 20
getTagMatrix.binning.internal, 22
getTagMatrix.internal, 23
getTagMatrix2, 23
getTagMatrix2.binning.internal, 24
getTagMatrix2.internal, 25
ggVennDiagram, 57
GRangesList, 52
GRangesList (reexports), 52
gsminfo (info), 25
info, 25
makeBioRegionFromGranges, 21, 26
mclapply, 14
overlap, 27
peak_Profile_Heatmap, 27
peakHeatmap, 29
peakHeatmap_multiple_Sets, 30
plotAnnoBar, 6, 31, 35
plotAnnoBar, csAnno, ANY-method
  (plotAnnoBar), 31
plotAnnoBar, csAnno-method
  (csAnno-class), 10
plotAnnoBar, list-method (plotAnnoBar),
  31
plotAnnoBar.data.frame, 32
plotAnnoPie, 6, 33, 33
plotAnnoPie, csAnno, ANY-method
  (plotAnnoPie), 33
plotAnnoPie, csAnno-method
  (csAnno-class), 10
plotAnnoPie.csAnno, 34
plotAvgProf, 35
plotAvgProf.binning, 36
plotAvgProf2, 37
plotDistToTSS, 6, 39
plotDistToTSS, csAnno, ANY-method
  (plotDistToTSS), 39
plotDistToTSS, csAnno-method
  (csAnno-class), 10
plotDistToTSS, list-method
  (plotDistToTSS), 39
plotDistToTSS.data.frame, 40
plotMultiProf, 41
plotMultiProf.binning, 42
plotMultiProf.binning.internal, 43
plotMultiProf.normal, 44
plotMultiProf.normal.internal, 45
plotPeakProf, 45
plotPeakProf2, 50
plotPeakProf_MultiWindows, 48

readPeakFile, 52
reexports, 52
rel, 52
rel (reexports), 52

scale_colour_brewer, 28, 29, 31, 55
seq2gene, 53
show, 54
show, csAnno, ANY-method (show), 54
show, csAnno-method (csAnno-class), 10
shuffle, 54
subset, csAnno-method (csAnno-class), 10

tagHeatmap, 55
tagMatrixList (info), 25
ucsc_release (info), 25
upsetplot, 56
upsetplot, csAnno-method (csAnno-class), 10

vennpie, 56
vennpie, csAnno-method (csAnno-class), 10
vennplot, 57
vennplot.peakfile, 58