Package ‘ChIPseeker’

January 8, 2024

Type Package

Title ChIPseeker for ChIP peak Annotation, Comparison, and Visualization

Version 1.38.0

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statistical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes.

Depends R (>= 3.5.0)

Imports AnnotationDbi, BiocGenerics, boot, enrichplot, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, ggplot2, ggplot, graphics, grDevices, gtools, methods, plotrix, dplyr, parallel, magrittr, rtracklayer, S4Vectors, stats, TxDb.Hsapiens.UCSC.hg19.knownGene, utils, aplot, yulab.utils, tibble

Suggests clusterProfiler, ggimage, ggplotify, ggupset, ggVennDiagram, ReactomePA, org.Hs.eg.db, knitr, rmarkdown, testthat, prettydoc

Remotes GuangchuangYu/enrichplot

BugReports https://github.com/YuLab-SMU/ChIPseeker/issues

Encoding UTF-8

VignetteBuilder knitr

ByteCompile true
License Artistic-2.0
biocViews Annotation, ChIPSeq, Software, Visualization, MultipleComparison
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/ChIPseeker
git_branch RELEASE_3_18
git_last_commit 7da66e2
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-08
Author Guangchuang Yu [aut, cre] (<https://orcid.org/0000-0002-6485-8781>), Ming Li [ctb], Qianwen Wang [ctb], Yun Yan [ctb], Hervé Pagès [ctb], Michael Kluge [ctb], Thomas Schwarzl [ctb], Zhougeng Xu [ctb]

R topics documented:

ChIPseeker-package ... 4
annotatePeak .. 4
as.data.frame.csAnno .. 7
as.GRanges ... 8
check_upstream_and_downstream 8
combine_csAnno .. 9
covplot ... 9
csAnno-class .. 10
downloadGEObedFiles 11
downloadGSMbedFiles 11
dropAnno .. 12
enrichAnnoOverlap ... 12
enrichPeakOverlap ... 13
getAnnoStat .. 14
getBioRegion ... 14
getGeneAnno ... 15
getGenomicAnnotation 16
getGEOgenomeVersion 17
getGEOInfo .. 17
getGEOspecies ... 18
getNearestFeatureIndicesAndDistances 18
getPromoters .. 19
getSampleFiles ... 20
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>getTagMatrix</td>
<td>20</td>
</tr>
<tr>
<td>getTagMatrix.binning.internal</td>
<td>22</td>
</tr>
<tr>
<td>getTagMatrix.internal</td>
<td>23</td>
</tr>
<tr>
<td>getTagMatrix2</td>
<td>23</td>
</tr>
<tr>
<td>getTagMatrix2.binning.internal</td>
<td>24</td>
</tr>
<tr>
<td>getTagMatrix2.internal</td>
<td>25</td>
</tr>
<tr>
<td>info</td>
<td>25</td>
</tr>
<tr>
<td>makeBioRegionFromGranges</td>
<td>26</td>
</tr>
<tr>
<td>overlap</td>
<td>27</td>
</tr>
<tr>
<td>peakHeatmap</td>
<td>27</td>
</tr>
<tr>
<td>peakHeatmap_multiple_Sets</td>
<td>29</td>
</tr>
<tr>
<td>peak_Profile_Heatmap</td>
<td>30</td>
</tr>
<tr>
<td>plotAnnoBar</td>
<td>31</td>
</tr>
<tr>
<td>plotAnnoBar.data.frame</td>
<td>32</td>
</tr>
<tr>
<td>plotAnnoPie</td>
<td>33</td>
</tr>
<tr>
<td>plotAnnoPie.csAnno</td>
<td>34</td>
</tr>
<tr>
<td>plotAvgProf</td>
<td>36</td>
</tr>
<tr>
<td>plotAvgProf.binning</td>
<td>37</td>
</tr>
<tr>
<td>plotAvgProf2</td>
<td>38</td>
</tr>
<tr>
<td>plotDistToTSS</td>
<td>39</td>
</tr>
<tr>
<td>plotDistToTSS.data.frame</td>
<td>40</td>
</tr>
<tr>
<td>plotMultiProf</td>
<td>41</td>
</tr>
<tr>
<td>plotMultiProf.binning</td>
<td>42</td>
</tr>
<tr>
<td>plotMultiProf.binning.internal</td>
<td>43</td>
</tr>
<tr>
<td>plotMultiProf.normal</td>
<td>44</td>
</tr>
<tr>
<td>plotMultiProf.normal.internal</td>
<td>45</td>
</tr>
<tr>
<td>plotPeakProf</td>
<td>45</td>
</tr>
<tr>
<td>plotPeakProf2</td>
<td>48</td>
</tr>
<tr>
<td>plotPeakProf_MultiWindows</td>
<td>50</td>
</tr>
<tr>
<td>readPeakFile</td>
<td>52</td>
</tr>
<tr>
<td>reexports</td>
<td>52</td>
</tr>
<tr>
<td>seq2gene</td>
<td>53</td>
</tr>
<tr>
<td>show</td>
<td>54</td>
</tr>
<tr>
<td>shuffle</td>
<td>54</td>
</tr>
<tr>
<td>tagHeatmap</td>
<td>55</td>
</tr>
<tr>
<td>upsetplot</td>
<td>56</td>
</tr>
<tr>
<td>vennpie</td>
<td>56</td>
</tr>
<tr>
<td>vennplot</td>
<td>57</td>
</tr>
<tr>
<td>vennplot.peakfile</td>
<td>58</td>
</tr>
</tbody>
</table>

Index

59
ChIPseeker-package ChIP-SEQ Annotation, Visualization and Comparison

Description

This package is designed for chip-seq data analysis

Details

Package: ChIPseeker
Type: Package
Version: 1.5.1
Date: 27-04-2015
biocViews: ChIPSeq, Annotation, Software
Depends:
Imports: methods, ggplot2
Suggests: clusterProfiler, GOSemSim
License: Artistic-2.0

Author(s)

Guangchuang Yu
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

Description

capture name of variable

Usage

\(.\ldots, .env = \text{parent.frame}()\)

Arguments

\ldots expression
.env environment

Value

expression
annotatePeak

Examples

```r
x <- 1
eval(.x[[1]])
```

Description

Annotate peaks

Usage

```r
annotatePeak(
  peak,
  tssRegion = c(-3000, 3000),
  TxDB = NULL,
  level = "transcript",
  assignGenomicAnnotation = TRUE,
  genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
                              "Downstream", "Intergenic"),
  annoDb = NULL,
  addFlankGeneInfo = FALSE,
  flankDistance = 5000,
  sameStrand = FALSE,
  ignoreOverlap = FALSE,
  ignoreUpstream = FALSE,
  ignoreDownstream = FALSE,
  overlap = "TSS",
  verbose = TRUE,
  columns = c("ENTREZID", "ENSEMBL", "SYMBOL", "GENENAME")
)
```

Arguments

- **peak**: peak file or GRanges object
- **tssRegion**: Region Range of TSS
- **TxDB**: TxDB or EnsDb annotation object
- **level**: one of transcript and gene
- **assignGenomicAnnotation**: logical, assign peak genomic annotation or not
- **genomicAnnotationPriority**: genomic annotation priority
- **annoDb**: annotation package
annotatePeak

```r
addFlankGeneInfo
  logical, add flanking gene information from the peaks

flankDistance
  distance of flanking sequence

sameStrand
  logical, whether find nearest/overlap gene in the same strand

ignoreOverlap
  logical, whether ignore overlap of TSS with peak

ignoreUpstream
  logical, if True only annotate gene at the 3' of the peak.

ignoreDownstream
  logical, if True only annotate gene at the 5' of the peak.

overlap
  one of 'TSS' or 'all', if overlap="all", then gene overlap with peak will be reported as nearest gene, no matter the overlap is at TSS region or not.

verbose
  print message or not

columns
  names of columns to be obtained from database
```

Value

data.frame or GRanges object with columns of:

- all columns provided by input.
- annotation: genomic feature of the peak, for instance if the peak is located in 5'UTR, it will annotated by 5'UTR. Possible annotation is Promoter-TSS, Exon, 5' UTR, 3' UTR, Intron, and Intergenic.
- geneChr: Chromosome of the nearest gene
- geneStart: gene start
- geneEnd: gene end
- geneLength: gene length
- geneStrand: gene strand
- geneId: entrezgene ID
- distanceToTSS: distance from peak to gene TSS

if annoDb is provided, extra column will be included:
- ENSEMBL: ensembl ID of the nearest gene
- SYMBOL: gene symbol
- GENENAME: full gene name

Author(s)

G Yu

See Also

plotAnnoBar plotAnnoPie plotDistToTSS
Examples

```r
## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, tssRegion=c(-3000, 3000), TxDb=txdb)
peakAnno

## End(Not run)
```

Description

convert csAnno object to data.frame

Usage

```r
## S3 method for class 'csAnno'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- `x` csAnno object
- `row.names` row names
- `optional` should be omitted.
- `...` additional parameters

Value

data.frame

Author(s)

Guangchuang Yu https://guangchuangyu.github.io
as.GRanges

Description
convert csAnno object to GRanges

Usage
```r
as.GRanges(x)
```

Arguments

- `x`: csAnno object

Value
GRanges object

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

check_upstream_and_downstream

Description
check upstream and downstream parameter

Usage
```r
check_upstream_and_downstream(upstream, downstream)
```

Arguments

- `upstream`: upstream
- `downstream`: downstream
combine_csAnno

Description

Combine csAnno Object

Usage

```r
combine_csAnno(x, ...)
```

Arguments

- `x` csAnno object
- `...` csAnno objects

Details

https://github.com/YuLab-SMU/ChIPseeker/issues/157

Value

csAnno object

covplot

Description

plot peak coverage

Usage

```r
covplot(  
  peak,  
  weightCol = NULL,  
  xlab = "Chromosome Size (bp)",  
  ylab = "",  
  title = "ChIP Peaks over Chromosomes",  
  chrs = NULL,  
  xlim = NULL,  
  lower = 1,  
  fill_color = NULL  
)
```

Arguments

- **peak**: peak file or GRanges object
- **weightCol**: weight column of peak
- **xlab**: xlab
- **ylab**: ylab
- **title**: title
- **chrs**: selected chromosomes to plot, all chromosomes by default
- **xlim**: ranges to plot, default is whole chromosome
- **lower**: lower cutoff of coverage signal
- **fill_color**: specify the color for the plot. Order matters

Value

- ggplot2 object

Author(s)

- G Yu

csAnno-class

Class "csAnno" This class represents the output of ChIPseeker Annotation

Description

Class "csAnno" This class represents the output of ChIPseeker Annotation

Slots

- anno annotation
- tssRegion TSS region
- level transcript or gene
- hasGenomicAnnotation logical
- detailGenomicAnnotation Genomic Annotation in detail
- annoStat annotation statistics
- peakNum number of peaks

Author(s)

- Guangchuang Yu https://guangchuangyu.github.io

See Also

- annotatePeak
downloadGEObedFiles

Description

download all BED files of a particular genome version

Usage

downloadGEObedFiles(genome, destDir = getwd())

Arguments

genoeme genome version

destDir destination folder

Author(s)

G Yu

downloadGSMbedFiles

Description

download BED supplementary files of a list of GSM accession numbers

Usage

downloadGSMbedFiles(GSM, destDir = getwd())

Arguments

GSM GSM accession numbers

destDir destination folder

Author(s)

G Yu

dropAnno

Description

dropAnno

Usage

```r
dropAnno(csAnno, distanceToTSS_cutoff = 10000)
```

Arguments

- `csAnno`: output of `annotatePeak`
- `distanceToTSS_cutoff`: distance to TSS cutoff

Details

drop annotation exceeding `distanceToTSS_cutoff`

Value

csAnno object

Author(s)

Guangchuang Yu

enrichAnnoOverlap

Description

calculate overlap significant of ChIP experiments based on their nearest gene annotation

Usage

```r
enrichAnnoOverlap(
    queryPeak,
    targetPeak,
    TxDb = NULL,
    pAdjustMethod = "BH",
    chainFile = NULL,
    distanceToTSS_cutoff = NULL
)
```
enrichPeakOverlap

Arguments

queryPeak query bed file
targetPeak target bed file(s) or folder containing bed files
TxDb TxDb
pAdjustMethod pvalue adjustment method
chainFile chain file for liftOver
distanceToTSS_cutoff restrict nearest gene annotation by distance cutoff

Value
data.frame

Author(s)
G Yu

Description
calculate overlap significant of ChIP experiments based on the genome coordinations

Usage
enrichPeakOverlap(
 queryPeak,
 targetPeak,
 TxDb = NULL,
 pAdjustMethod = "BH",
 nShuffle = 1000,
 chainFile = NULL,
 pool = TRUE,
 mc.cores = detectCores() - 1,
 verbose = TRUE
)

Arguments
queryPeak query bed file or GRanges object
targetPeak target bed file(s) or folder that containing bed files or a list of GRanges objects
TxDb TxDb
pAdjustMethod pvalue adjustment method
nShuffle shuffle numbers
chainFile chain file for liftOver
pool logical, whether pool target peaks
mc.cores number of cores, see mclapply
verbose logical

Value

data.frame

Author(s)

G Yu

getAnnoStat

description
getting status of annotation

Usage

getAnnoStat(x)

Arguments

x csAnno object

getBioRegion

description
prepare a bioregion of selected feature

Usage

getBioRegion(
 TxDb = NULL,
 upstream = 1000,
 downstream = 1000,
 by = "gene",
 type = "start_site"
)
getGeneAnno

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxDB</td>
<td>TxDb that represents the genome annotation</td>
</tr>
<tr>
<td>upstream</td>
<td>upstream from start site or end site</td>
</tr>
<tr>
<td>downstream</td>
<td>downstream from start site or end site</td>
</tr>
<tr>
<td>by</td>
<td>one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'</td>
</tr>
<tr>
<td>type</td>
<td>one of "start_site", "end_site", "body"</td>
</tr>
</tbody>
</table>

Details

This function combined previous functions getPromoters(), getBioRegion() and getGeneBody() in order to solve the following issues.

(1) https://github.com/GuangchuangYu/ChIPseeker/issues/16
(2) https://github.com/GuangchuangYu/ChIPseeker/issues/87

The getBioRegion() function can prevoid a region of interest from txdb object. There are three kinds of regions, start_site, end_site and body.

We take transcript region to explain the differences of these three regions. tx: chr1 1000 1400.

- **body** region refers to the 1000-1400bp.
- **start_site** region with upstream = 100, downstream = 100 refers to 900-1100bp.
- **end_site** region with upstream = 100, downstream = 100 refers to 1300-1500bp.

Value

GRanges object

Author(s)

Guangchuang Yu, Ming L

Description

get gene annotation, symbol, gene name etc.

Usage

geneAnno(annoDb, geneID, type, columns)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>annoDb</td>
<td>annotation package</td>
</tr>
<tr>
<td>geneID</td>
<td>query geneID</td>
</tr>
<tr>
<td>type</td>
<td>gene ID type</td>
</tr>
<tr>
<td>columns</td>
<td>names of columns to be obtained from database</td>
</tr>
</tbody>
</table>
getGenomicAnnotation

Value
data.frame

Author(s)
G Yu

Description
get Genomic Annotation of peaks

Usage
getGenomicAnnotation(
 peaks,
 distance,
 tssRegion = c(-3000, 3000),
 TxDb,
 level,
 genomicAnnotationPriority,
 sameStrand = FALSE
)

Arguments
 peaks peaks in GRanges object
 distance distance of peak to TSS
 tssRegion tssRegion, default is -3kb to +3kb
 TxDb TxDb object
 level one of gene or transcript
 genomicAnnotationPriority
 genomic Annotation Priority
 sameStrand whether annotate gene in same strand

Value
character vector

Author(s)
G Yu
getGEOgenomeVersion

getGEOgenomeVersion [getGEOgenomeVersion]

Description

get genome version statistics collecting from GEO ChIPseq data

Usage

```r
getGEOgenomeVersion()
```

Value

data.frame

Author(s)

G Yu

getGEOInfo [getGEOInfo]

Description

get subset of GEO information by genome version keyword

Usage

```r
getGEOInfo(genome, simplify = TRUE)
```

Arguments

- `genome`: genome version
- `simplify`: simplify result or not

Value

data.frame

Author(s)

G Yu
getGEOspecies

Description

accessing species statistics collecting from GEO database

Usage

getGEOspecies()

Value

data.frame

Author(s)

G Yu

gNearestFeatureIndicesAndDistances

Description

get index of features that closest to peak and calculate distance

Usage

gNearestFeatureIndicesAndDistances(
 peaks,
 features,
 sameStrand = FALSE,
 ignoreOverlap = FALSE,
 ignoreUpstream = FALSE,
 ignoreDownstream = FALSE,
 overlap = "TSS"
)

Arguments

- **peaks**: peak in GRanges
- **features**: features in GRanges
- **sameStrand**: logical, whether find nearest gene in the same strand
- **ignoreOverlap**: logical, whether ignore overlap of TSS with peak
- **ignoreUpstream**: logical, if True only annotate gene at the 3’ of the peak.
- **ignoreDownstream**: logical, if True only annotate gene at the 5’ of the peak.
- **overlap**: one of "TSS" or "all"

Value

- list

Author(s)

- G Yu

getPromoters

Usage

```
getPromoters(TxDB = NULL, upstream = 1000, downstream = 1000, by = "gene")
```

Arguments

- **TxDb**: TxDb
- **upstream**: upstream from TSS site
- **downstream**: downstream from TSS site
- **by**: one of gene or transcript

Value

- GRanges object
Description
get filenames of sample files

Usage
getSampleFiles()

Value
list of file names

Author(s)
G Yu

Description
calculate the tag matrix

Usage
getTagMatrix(
 peak,
 upstream,
 downstream,
 windows,
 type,
 by,
 TxDb = NULL,
 weightCol = NULL,
 nbin = NULL,
 verbose = TRUE,
 ignore_strand = FALSE
)

Arguments

- **peak**: peak peak file or GRanges object
- **upstream**: the distance of upstream extension
- **downstream**: the distance of downstream extension
- **windows**: a collection of region
- **type**: one of "start_site", "end_site", "body"
- **by**: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users
- **TxDb**: TxDb or self-made granges object, served as txdb
- **weightCol**: column name of weight, default is NULL
- **nbin**: the amount of nbines
- **verbose**: print message or not
- **ignore_strand**: ignore the strand information or not

Details

`getTagMatrix()` function can produce the matrix for visualization. `peak` stands for the peak file. `window` stands for a collection of regions that users want to look into. Users can use `window` to capture the peak of interest. There are two ways to input `window`.

The first way is that users can use `getPromoters()/getBioRegion()/makeBioRegionFromGranges()` to get `window` and put it into `getTagMatrix()`.

The second way is that users can use `getTagMatrix()` to call `getPromoters()/getBioRegion()/makeBioRegionFromGranges()`. In this way users do not need to input `window` parameter but they need to input `txdb`.

`txdb` is a set of packages contained annotation of regions of different genomes. Users can get the regions of interest through specific functions. These specific functions are built in `getPromoters()/getBioRegion()`. Many regions can not be gain through `txdb`, like insulator and enhancer regions. Users can provide these regions in the form of granges object. These self-made granges object will be passed to `TxDb` parameter and they will be passed to `makeBioRegionFromGranges()` to produce the `window`. In a word, `TxDb` parameter is a reference information. Users can pass `txdb` object or self-made granges into it.

Details see **getPromoters**, **getBioRegion** and **makeBioRegionFromGranges**

`upstream` and `downstream` parameter have different usages:

1. **(1)** `window` parameter is provided,
 - if `type` == 'body', `upstream` and `downstream` can use to extend the flank of body region.
 - if `type` == 'start_site'/end_site', `upstream` and `downstream` do not play a role in `getTagMatrix()` function.

2. **(2)** `window` parameter is missing,
 - if `type` == 'body', `upstream` and `downstream` can use to extend the flank of body region.
 - if `type` == 'start_site'/end_site', `upstream` and `downstream` refer to the upstream and downstream of the start_site or the end_site.

`weightCol` refers to column in peak file. This column acts as a weight vaule. Details see **https://github.com/YuLab-SMU/ChIPseeker/issues/15**

`nbin` refers to the number of bins. `getTagMatrix()` provide a binning method to get the tag matrix.
getTagMatrix.binning.internal

Description

calculate the tagMatrix by binning the idea was derived from the function of deeptools https://deeptools.readthedocs.io/en/develop/content/tools/computeMatrix.html

Usage

getTagMatrix.binning.internal(
 peak,
 weightCol = NULL,
 windows,
 nbin = 800,
 upstream = NULL,
 downstream = NULL,
 ignore_strand = FALSE
)

Arguments

peak peak peak file or GRanges object
weightCol weightCol column name of weight, default is NULL
windows windows a collection of region with equal or not equal size, eg. promoter region, gene region.
nbin the amount of nbines needed to be splited and it should not be more than min_body_length
upstream rel object, NULL or actual number
downstream rel object, NULL or actual number
ignore_strand ignore the strand information or not

Value

tagMatrix
getTagMatrix.internal

Description

calculate the tag matrix

Usage

getTagMatrix.internal(peak, weightCol = NULL, windows, ignore_strand = FALSE)

Arguments

- peak: peak file or GRanges object
- weightCol: column name of weight, default is NULL
- windows: a collection of region with equal size, e.g. promoter region.
- ignore_strand: ignore the strand information or not

Value

tagMatrix

Author(s)

G Yu

getTagMatrix2

Description

Nested function for getTagMatrix() to deal with multiple windows

Usage

getTagMatrix2(
 peak,
 upstream,
 downstream,
 windows_name,
 type,
 by,
 TxDB = NULL,
 weightCol = NULL,
 nbin = NULL,
)
getTagMatrix2.binning.internal

Arguments

peak peak peak file or GRanges object
upstream the distance of upstream extension
downstream the distance of downstream extension
windows_name the names of windows
type one of "start_site", "end_site", "body"
by one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users
TxDb TxDb or self-made granges object, served as txdb
weightCol column name of weight, default is NULL
nbin the amount of nbines
verbose print message or not
ignore_strand ignore the strand information or not

Details

This is an internal function.

Value

tagMatrix

Usage

getTagMatrix2.binning.internal(
peak,
weightCol = NULL,
windows,
windows_name,
nbin = 800,
upstream = NULL,
downstream = NULL,
ignore_strand = FALSE
)
getTagMatrix2.internal

Arguments

- **peak**: peak peak file or GRanges object
- **weightCol**: column name of weight, default is NULL
- **windows**: a collection of region
- **windows_name**: the name of windows
- **nbin**: the amount of nbines
- **upstream**: the distance of upstream extension
- **downstream**: the distance of downstream extension
- **ignore_strand**: ignore the strand information or not

getTagMatrix2.internal

Description

getTagMatrix2.internal

Usage

```r
getTagMatrix2.internal(
  peak,
  weightCol = NULL,
  windows,
  windows_name,
  ignore_strand = FALSE
)
```

Arguments

- **peak**: peak peak file or GRanges object
- **weightCol**: column name of weight, default is NULL
- **windows**: a collection of region
- **windows_name**: the name of windows
- **ignore_strand**: ignore the strand information or not

Info

Information Datasets

Description

ucsc genome version, precalculated data and gsm information
makeBioRegionFromGranges

Description

make windows from granges object

Usage

makeBioRegionFromGranges(gr, by, type, upstream = 1000, downstream = 1000)

Arguments

- **gr**: a grange object contain region of interest
- **by**: specify be users, e.g. gene, insulator, enhancer
- **type**: one of "start_site", "end_site", "body"
- **upstream**: upstream from start site or end site, can be NULL if the type == 'body'
- **downstream**: downstream from start site or end site, can be NULL if the type == 'body'

Details

makeBioRegionFromGranges() function can make bioregion from granges object.

The differences between makeBioRegionFromGranges() and getBioRegion() is that getBioRegion() get the region object from txdb object but makeBioRegionFromGranges() get the region from the granges object provided by users. For example, txdb object do not contain insulator or enhancer regions. Users can provide these regions through self-made granges object.

There are three kinds of regions, start_site, end_site and body.

We take enhancer region to explain the differences of these three regions. enhancer: chr1 1000-1400.

- **body** region refers to the 1000-1400bp.
- **start_site** region with upstream = 100, downstream = 100 refers to 900-1100bp.
- **end_site** region with upstream = 100, downstream = 100 refers to 1300-1500bp.

In makeBioRegionFromGranges(), upstream and downstream can be NULL if the type == 'body'. by should be specified by users and can not be omitted. by parameter will be used to made labels. type should also be specified.

https://github.com/YuLab-SMU/ChIPseeker/issues/189

Value

GRanges object
overlap

Description
calculate the overlap matrix, which is useful for vennplot

Usage
`overlap(Sets)`

Arguments
- `Sets` a list of objects

Value
data.frame

Author(s)
G Yu

peakHeatmap

Description
plot the heatmap of peaks

Usage
`peakHeatmap(peak, weightCol = NULL, TxDb = NULL, upstream = 1000, downstream = 1000, xlab = "", ylab = "", title = NULL, palette = NULL, verbose = TRUE, by = "gene", type = "start_site", nbin = NULL,`
ignore_strand = FALSE,
windows,
ncol = NULL,
nrow = NULL
)

Arguments

peak file or GRanges object

peak file or GRanges object

weightCol

column name of weight

TxDb

TxDb object

upstream

upstream position

downstream

downstream position

xlab

xlab

ylab

ylab

title

title

palette

palette to be filled in, details see `scale_colour_brewer`

verbose

print message or not

by

one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'

type

one of "start_site", "end_site", "body"

nbin

the amount of nbines

ignore_strand

ignore the strand information or not

windows

a collection of region

ncol

the ncol of plotting a list of peak

nrow

the nrow of plotting a list of peak

Value

figure

Author(s)

G Yu
Description

plot the heatmap of peaks align to a sets of regions

Usage

peakHeatmap_multiple_Sets(
 peak,
 weightCol = NULL,
 TxDb = NULL,
 upstream = 1000,
 downstream = 1000,
 xlab = "",
 ylab = "",
 title = NULL,
 palette = NULL,
 verbose = TRUE,
 by = "gene",
 type = "start_site",
 nbin = NULL,
 ignore_strand = FALSE,
 windows_name = NULL,
 ncol = NULL,
 nrow = NULL,
 facet_label_text_size = 12
)

Arguments

peak file or GRanges object
weightCol column name of weight
TxDb TxDB object
upstream upstream position
downstream downstream position
xlab xlab
ylab ylab
title title
palette palette to be filled in, details see scale_colour_brewer
verbose print message or not
by one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
type: one of "start_site", "end_site", "body"

nbin: the amount of nbines

ignore_strand: ignore the strand information or not

windows_name: the name for each window, which will also be showed in the picture as labels

ncol: the ncol of plotting a list of peak

nrow: the nrow of plotting a list of peak

facet_label_text_size: the size of facet label text

Value

figure

Description

plot peak heatmap and profile in a picture

Usage

peak_Profile_Heatmap(
 peak,
 weightCol = NULL,
 TxDb = NULL,
 upstream = 1000,
 downstream = 1000,
 xlab = "",
 ylab = "",
 title = NULL,
 palette = NULL,
 verbose = TRUE,
 by = "gene",
 type = "start_site",
 nbin = NULL,
 ignore_strand = FALSE,
 windows_name = NULL,
 ncol = NULL,
 nrow = NULL,
 facet_label_text_size = 12,
 conf,
 facet = "row",
 free_y = TRUE,
 height_proportion = 4
)
Arguments

- **peak**: peak file or GRanges object
- **weightCol**: column name of weight
- **TxDb**: TxDb object
- **upstream**: upstream position
- **downstream**: downstream position
- **xlab**: xlab
- **ylab**: ylab
- **title**: title
- **palette**: palette to be filled in, details see `scale_colour_brewer`
- **verbose**: print message or not
- **by**: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
- **type**: one of "start_site", "end_site", "body"
- **nbin**: the amount of nbines
- **ignore_strand**: ignore the strand information or not
- **windows_name**: the name for each window, which will also be showed in the picture as labels
- **ncol**: the ncol of plotting a list of peak
- **nrow**: the nrow of plotting a list of peak
- **facet_label_text_size**: the size of facet label text
- **conf**: confidence interval
- **facet**: one of 'none', 'row' and 'column'
- **free_y**: if TRUE, y will be scaled by AvgProf
- **height_proportion**: the proportion of profiling picture and heatmap

plotAnnoBar

plotAnnoBar method generics

Description

plotAnnoBar method for csAnno instance
Usage

```r
plotAnnoBar(
  x,
  xlab = "",
  ylab = "Percentage(%)",
  title = "Feature Distribution",
  ...
)
```

```r
## S4 method for signature 'list'
plotAnnoBar(
  x,
  xlab = "",
  ylab = "Percentage(%)",
  title = "Feature Distribution",
  ...
)
```

```r
plotAnnoBar(x, xlab="", ylab='Percentage(%)',title="Feature Distribution", ...)
```

Arguments

- `x` csAnno instance
- `xlab` xlab
- `ylab` ylab
- `title` title
- `...` additional parameter

Value

plot

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

Description

plot feature distribution based on their chromosome region
Usage

plotAnnoBar.data.frame(
 anno.df,
 xlab = "",
 ylab = "Percentage(%)",
 title = "Feature Distribution",
 categoryColumn
)

Arguments

anno.df annotation stats
xlab xlab
ylab ylab
title plot title
categoryColumn category column

Details

plot chromosome region features

Value

bar plot that summarize genomic features of peaks

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

annotatePeak plotAnnoPie

Description

plotAnnoPie method for csAnno instance
Usage

plotAnnoPie(
 x,
 ndigit = 2,
 cex = 0.9,
 col = NA,
 legend.position = "rightside",
 pie3D = FALSE,
 radius = 0.8,
 ...
)

plotAnnoPie(x,ndigit=2,cex=0.9,col=NA,legend.position="rightside",pie3D=FALSE,radius=0.8,...)

Arguments

x csAnno instance
ndigit number of digit to round
cex label cex
col color
legend.position topright or other.
pie3D plot in 3D or not
radius radius of the pie
... extra parameter

Value

plot

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

Description

Pieplot from peak genomic annotation
plotAnnoPie.csAnno

Usage

plotAnnoPie.csAnno(
 x,
 ndigit = 2,
 cex = 0.8,
 col = NA,
 legend.position = "rightside",
 pie3D = FALSE,
 radius = 0.8,
 ...
)

Arguments

x csAnno object
ndigit number of digit to round
cex label cex
col color
legend.position topright or other.
pie3D plot in 3D or not
radius radius of Pie
... extra parameter

Value

pie plot of peak genomic feature annotation

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

annotatePeak plotAnnoBar

Examples

Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="chipseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotAnnoPie(peakAnno)

End(Not run)
Description

plot the profile of peaks

Usage

plotAvgProf(
 tagMatrix,
 xlim,
 xlab = "Genomic Region (5'-->3')",
 ylab = "Peak Count Frequency",
 conf,
 facet = "none",
 free_y = TRUE,
 origin_label = "TSS",
 verbose = TRUE,
 ...
)

Arguments

tagMatrix tagMatrix or a list of tagMatrix
xlim xlim
xlab x label
ylab y label
conf confidence interval
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
origin_label label of the center
verbose print message or not
...
additional parameter

Value

ggplot object

Author(s)

G Yu; Y Yan
Description
plot the profile of peaks by binning

Usage
```
plotAvgProf.binning(
tagMatrix,
xlab = "Genomic Region (5'->3')",
ylab = "Peak Count Frequency",
conf,
facet = "none",
free_y = TRUE,
upstream = NULL,
downstream = NULL,
label,
...)
```

Arguments
- **tagMatrix**: tagMatrix or a list of tagMatrix
- **xlab**: x label
- **ylab**: y label
- **conf**: confidence interval
- **facet**: one of 'none', 'row' and 'column'
- **free_y**: if TRUE, y will be scaled
- **upstream**: rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
- **downstream**: rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
- **label**: label
- **...**: additional parameter

Value
ggplot object
plotAvgProf2

Description

plot the profile of peaks that align to flank sequences of TSS

Usage

plotAvgProf2(
 peak,
 weightCol = NULL,
 TxDB = NULL,
 upstream = 1000,
 downstream = 1000,
 xlab = "Genomic Region (5'-->3')",
 ylab = "Peak Count Frequency",
 conf,
 facet = "none",
 free_y = TRUE,
 verbose = TRUE,
 ignore_strand = FALSE,
 ...
)

Arguments

peak peak file or GRanges object
weightCol column name of weight
TxDB TxDB object
upstream upstream position
downstream downstream position
xlab xlab
ylab ylab
conf confidence interval
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
ignore_strand ignore the strand information or not
... additional parameter

Details

This function is the old function of plotPeakProf2. It can only plot the start site region of gene.
plotDistToTSS

Value

ggplot object

Author(s)

G Yu, Ming L

plotDistToTSS method generics

Description

plotDistToTSS method for csAnno instance

Usage

plotDistToTSS(
 x,
 distanceColumn = "distanceToTSS",
 xlab = "",
 ylab = "Binding sites (%) (5'->3')",
 title = "Distribution of transcription factor-binding loci relative to TSS",
 ...
)

S4 method for signature 'list'
plotDistToTSS(
 x,
 distanceColumn = "distanceToTSS",
 xlab = "",
 ylab = "Binding sites (%) (5'->3')",
 title = "Distribution of transcription factor-binding loci relative to TSS",
 ...
)

plotDistToTSS(x,distanceColumn="distanceToTSS", xlab="", ylab="Binding sites (%) (5'->3')", title="Distribution of transcription factor-binding loci relative to TSS",...)

Arguments

 x csAnno instance
distanceColumn distance column name
xlab xlab
ylab ylab
title title
 ... additional parameter
Description

plot feature distribution based on the distances to the TSS.

Usage

```r
plotDistToTSS.data.frame(
  peakDist,
  distanceColumn = "distanceToTSS",
  xlab = "",
  ylab = "Binding sites (%) (5'->3')",
  title = "Distribution of transcription factor-binding loci relative to TSS",
  categoryColumn
)
```

Arguments

- `peakDist`: peak annotation
- `distanceColumn`: column name of the distance from peak to nearest gene
- `xlab`: x label
- `ylab`: y label
- `title`: figure title
- `categoryColumn`: category column

Value

bar plot that summarize distance from peak to TSS of the nearest gene.

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

See Also

annotatePeak
plotMultiProf

Examples

```r
## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotDistToTSS(peakAnno)
## End(Not run)
```

Description

internal function for `plotPeakProf_MultiWindows`

Usage

```r
plotMultiProf(
  tagMatrix,  # tagMatrix
  conf,  # confidence interval
  xlab = "Genomic Region (5'->3')",  # xlab
  ylab = "Peak Count Frequency",  # ylab
  facet = "none",  # facet
  free_y = TRUE,  # free_y
  ...  # additional parameter
)
```

Arguments

- `tagMatrix`: tagMatrix
- `conf`: confidence interval
- `xlab`: xlab
- `ylab`: ylab
- `facet`: one of `"none"`, `"row"` and `"column"`
- `free_y`: if TRUE, y will be scaled by AvgProf
- `...`: additional parameter
plotMultiProf.binning

Description

internal function

Usage

```r
plotMultiProf.binning(
  tagMatrix,
  xlab = "Genomic Region (5'-->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  upstream = NULL,
  downstream = NULL,
  label,
  ...
)
```

Arguments

- `tagMatrix`
- `xlab`
- `ylab`
- `conf`
- `facet`
- `free_y`
- `upstream`
- `downstream`
- `label`
- `...`

additional parameter
Description

internal function

Usage

plotMultiProf.binning.internal(
 tagMatrix,
 conf,
 xlab = "Genomic Region (5'-->3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 upstream = NULL,
 downstream = NULL,
 label,
 ...
)

Arguments

tagMatrix tagMatrix
cnf confidence interval
xlab xlab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
upstream the upstream extension
downstream the downstream extension
label the label of the center
... additional parameter
plotMultiProf.normal internal function

Description

internal function

Usage

plotMultiProf.normal(
 tagMatrix,
 xlim,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 conf,
 facet = "none",
 free_y = TRUE,
 origin_label = "TSS",
 verbose = TRUE,
 ...
)

Arguments

tagMatrix tagMatrix
xlim xlim
xlab xlab
ylab ylab
conf confidence interval
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
origin_label the label of the center
verbose print message or not
... additional parameter
Description

internal function

Usage

plotMultiProf.normal.internal(
 tagMatrix,
 conf,
 xlim = c(-3000, 3000),
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 facet = "row",
 free_y = TRUE,
 origin_label,
 ...
)

Arguments

tagMatrix tagMatrix
conf confidence interval
xlim xlim
xlab xlab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
origin_label the label of the center
... additional parameter

Description

plot the profile of peaks `plotPeakProf_MultiWindows()` is almost the same as `plotPeakProf2()`, having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.
Usage

plotPeakProf(
 tagMatrix = NULL,
 peak,
 upstream,
 downstream,
 conf,
 by,
 type,
 windows_name = NULL,
 weightCol = NULL,
 TxDb = NULL,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 facet = "row",
 free_y = TRUE,
 verbose = TRUE,
 nbin = NULL,
 ignore_strand = FALSE,
 ...
)

Arguments

tagMatrix tagMatrix or a list of tagMatrix
peak peak file or GRanges object
upstream upstream position
downstream downstream position
conf confidence interval
by feature of interest
type one of "start_site", "end_site", "body"
windows_name the name for each window, which will also be showed in the picture as labels
weightCol column name of weight
TxDb TxDb object or self-made granges objects
xlab xlab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
nbin the amount of bines
ignore_strand ignore the strand information or not
... additional parameter
Details

TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

by the features of interest.

(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site'/ 'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.

There are two ways input a list of window.

(1) Users can input a list of self-made granges objects

(2) Users can input a list of by and only one type. In this way, plotPeakProf_MultiWindows() can made a list of window from txdb object based on by and type.

Warning:

(1) All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.

(2) So it will be only one type and several by.

(3) Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR' or 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.

(4) Users can mingle the by designed for the two ways. plotPeakProf_MultiWindows can acception the hybrid by. But the above rules should be followed.

https://github.com/YuLab-SMU/ChIPseeker/issues/189

Value

ggplot object
Description

plot the profile of peaks automatically

Usage

plotPeakProf2(
 peak,
 upstream,
 downstream,
 conf,
 by,
 type,
 weightCol = NULL,
 TxDb = NULL,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 verbose = TRUE,
 nbin = NULL,
 ignore_strand = FALSE,
 ...
)

Arguments

peak peak file or GRanges object
upstream upstream position
downstream downstream position
conf confidence interval
by e.g. 'gene', 'transcript', 'exon' or features of interest(e.g. "enhancer")
type one of "start_site", "end_site", "body"
weightCol column name of weight
TxDb TxDb object, or self-made granges object
xlab xlab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
plotPeakProf2

- `nbin` the amount of nbines
- `ignore_strand` ignore the strand information or not
- ... additional parameter

Details

peak stands for the peak file.

by the features of interest.

(1) if users use `txdb`, `by` can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, `by` can be everything. Because this `by` will not pass to functions to get features, which is different from the case of using txdb object. This `by` is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:

(1) if `type == 'body'`, upstream and downstream can use to extend the flank of body region.

(2) if `type == 'start_site'/ 'end_site'`, upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

`weightCol` refers to column in peak file. This column acts as a weight vaule. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

`nbin` refers to the number of bins, providing a binning method to get the tag matrix.

`TxDb` parameter can accept `txdb` object. But many regions can not be obtained by `txdb` object. In this case, Users can provide self-made granges served the same role as `txdb` object and pass to `TxDb` object.

`plotPeakProf2()` is different from the `plotPeakProf()`. `plotPeakProf2()` do not need to provide `window` parameter, which means `plotPeakProf2()` will call relevent functions to make `window` automatically.

Value

- ggplot object

Author(s)

G Yú, Ming Li
plotPeakProf_MultiWindows

Description

plot the profile of peaks in two or more windows

Usage

```r
plotPeakProf_MultiWindows(
  peak,
  upstream,
  downstream,
  conf,
  by,
  type,
  windows_name = NULL,
  weightCol = NULL,
  TxDb = NULL,
  xlab = "Genomic Region (5'-3')",
  ylab = "Peak Count Frequency",
  facet = "row",
  free_y = TRUE,
  verbose = TRUE,
  nbin = NULL,
  ignore_strand = FALSE,
  ...)
```

Arguments

- `peak`: peak file or GRanges object
- `upstream`: upstream position
- `downstream`: downstream position
- `conf`: confidence interval
- `by`: feature of interest
- `type`: one of "start_site", "end_site", "body"
- `windows_name`: the name for each window, which will also be showed in the picture as labels
- `weightCol`: column name of weight
- `TxDb`: TxDb object or self-made granges objects
- `xlab`: xlab
- `ylab`: ylab
- `facet`: one of 'none', 'row' and 'column'
plotPeakProf_MultiWindows

- **free_y**: if TRUE, y will be scaled by AvgProf
- **verbose**: print message or not
- **nbin**: the amount of bins
- **ignore_strand**: ignore the strand information or not
- **...**: additional parameter

Details

This function comes from https://github.com/YuLab-SMU/ChIPseeker/issues/189. `plotPeakProf_MultiWindows()` is almost the same as `plotPeakProf2()`, having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.

TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to `TxDb` object.

by the features of interest.

1. if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.
2. if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and **downstream** parameter have different usages:

1. if type == 'body', upstream and downstream can use to extend the flank of body region.
2. if type == 'start site'/ 'end site', upstream and downstream refer to the upstream and downstream of the start site or the end site.

weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. **getTagMatrix()** provide a binning method to get the tag matrix.

There are two ways input a list of window.

1. Users can input a list of self-made granges objects
2. Users can input a list of by and only one type. In this way, `plotPeakProf_MultiWindows()` can made a list of window from txdb object based on by and type.

Warning:

1. All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.
2. So it will be only one type and several by.
3. Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.
4. Users can mingle the by designed for the two ways. `plotPeakProf_MultiWindows()` can accept the hybrid by. But the above rules should be followed.
Value

ggplot object

Description

read peak file and store in data.frame or GRanges object

Usage

readPeakFile(peakfile, as = "GRanges", ...)

Arguments

peakfile peak file
as output format, one of GRanges or data.frame
... additional parameter

Value

peak information, in GRanges or data.frame object

Author(s)

G Yu

Examples

peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peak.gr <- readPeakFile(peakfile, as="GRanges")
peak.gr

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

GenomicRanges GRangesList
ggplot2 rel
Description
annotate genomic regions to genes in many-to-many mapping

Usage
seq2gene(seq, tssRegion, flankDistance, TxDb, sameStrand = FALSE)

Arguments
- seq: genomic regions in GRanges object
- tssRegion: TSS region
- flankDistance: flanking search radius
- TxDb: TranscriptDb object
- sameStrand: logical whether find nearest/overlap gene in the same strand

Details
This function associates genomic regions with coding genes in a many-to-many mapping. It first maps genomic regions to host genes (either located in exon or intron), proximal genes (located in promoter regions) and flanking genes (located in upstream and downstream within user specified distance).

Value
gene vector

Author(s)
Guangchuang Yu

Examples
```r
## Not run:
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
file <- getSampleFiles()[[1]] # a bed file
gr <- readPeakFile(file)
genes <- seq2gene(gr, tssRegion=c(-1000, 1000), flankDistance = 3000, TxDb)
## End(Not run)
```
show
show method

Description
show method for csAnno instance

Usage
show(object)

Arguments

- **object**: A csAnno instance

Value

- message

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

shuffle

Description
shuffle the position of peak

Usage

shuffle(peak.gr, TxDb)

Arguments

- **peak.gr**: GRanges object
- **TxDb**: TxDb

Value

- GRanges object

Author(s)

G Yu
Description

plot the heatmap of tagMatrix

Usage

tagHeatmap(
 tagMatrix,
 xlab = "",
 ylab = "",
 title = NULL,
 palette = "RdBu",
 nrow = NULL,
 ncol = NULL
)

Arguments

tagMatrix: tagMatrix or a list of tagMatrix
xlab: xlab
ylab: ylab
title: title
palette: palette to be filled in, details see scale_colour_brewer
nrow: the nrow of plotting a list of peak
ncol: the ncol of plotting a list of peak

Value

figure

Author(s)

G Yu
upsetplot
upsetplot method

Description

upsetplot method generics

Usage

```r
upsetplot(x, ...)
```

Arguments

- `x`: A `csAnno` instance
- `...`: additional parameter

Value

plot

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

vennpie
vennpie method generics

Description

vennpie method generics

Usage

```r
vennpie(x, r = 0.2, cex = 1.2, ...)
```

```r
vennpie(x, r = 0.2, cex=1.2, ...)
```

Arguments

- `x`: A `csAnno` instance
- `r`: initial radius
- `cex`: value to adjust legend
- `...`: additional parameter
vennplot

Value
plot

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

Description
plot the overlap of a list of object

Usage
vennplot(Sets, by = "gplots", ...)

Arguments
Sets a list of object, can be vector or GRanges object
by one of gplots, ggVennDiagram or Vennerable
... extra parameters using ggVennDiagram. Details see ggVennDiagram

Details
There are two ways to plot, which users can specify through ‘by’.
The first way is to use ‘gplots’ packages, by setting ‘by = gplots’. This method is default method.
The venn plot produced through this way has no color.
The second way is to use ‘ggVennDiagram’ packages, by setting ‘by = ggVennDiagram’. The venn plot produced through this way has colors which can be defined by users using ggplot2 grammar e.g.(scale_fill_distiller()). And users can specify any details, like digital number, text size and showing percentage or not, by inputting ‘...’ extra parameters.

Value
venn plot that summarize the overlap of peaks from different experiments or gene annotation from different peak files.

Author(s)
G Yu
Examples

```r
## example not run
## require(TxDb.Hsapiens.UCSC.hg19.knownGene)
## txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
## peakfiles <- getSampleFiles()
## peakAnnoList <- lapply(peakfiles, annotatePeak)
## names(peakAnnoList) <- names(peakfiles)
## genes = lapply(peakAnnoList, function(i) as.data.frame(i)$geneId)
## vennplot(genes)
```

Description

vennplot for peak files

Usage

```r
vennplot.peakfile(files, labels = NULL)
```

Arguments

- **files**: peak files
- **labels**: labels for peak files

Value

- **figure**

Author(s)

G Yu
Index

* classes
 csAnno-class, 10
* datasets
 info, 25
* internal
 reexports, 52
* package
 ChIPseeker-package, 4
 ., 4
annotatePeak, 5, 10, 33, 25, 40
as.data.frame.csAnno, 7
as.GRanges, 8
check_upstream_and_downstream, 8
ChIPseeker (ChIPseeker-package), 4
ChIPseeker-package, 4
combine_csAnno, 9
covplot, 9
csAnno-class, 10
downloadGEObedFiles, 11
downloadGSMbedFiles, 11
dropAnno, 12
enrichAnnoOverlap, 12
enrichPeakOverlap, 13
getAnnoStat, 14
getBioRegion, 14, 21
geneAnno, 15
getGenomicAnnotation, 16
getGOgenomeVersion, 17
gетодGOInfo, 17
gетодGOspecies, 18
getNearestFeatureIndicesAndDistances, 18
gетодPromoters, 19, 21
gетодSampleFiles, 20
gетодTagMatrix, 20
gетодTagMatrix.binning.internal, 22
getTagMatrix, 23
gетодTagMatrix2, 23
gетодTagMatrix2.binning.internal, 24
gетодTagMatrix2.internal, 25
ggVennDiagram, 57
GRangesList, 52
GRangesList (reexports), 52
gsminfo (info), 25
info, 25
makeBioRegionFromGranges, 21, 26
mclapply, 14
overlap, 27
peak_Profile_Heatmap, 30
peakHeatmap, 27
peakHeatmap_multiple_Sets, 29
plotAnnoBar, 6, 31, 35
plotAnnoBar, csAnno, ANY-method
 (plotAnnoBar), 31
plotAnnoBar, csAnno-method
 (csAnno-class), 10
plotAnnoBar, list-method (plotAnnoBar), 31
plotAnnoBar.data.frame, 32
plotAnnoPie, 6, 33, 33
plotAnnoPie, csAnno, ANY-method
 (plotAnnoPie), 33
plotAnnoPie, csAnno-method
 (csAnno-class), 10
plotAnnoPie.csAnno, 34
plotAvgProf, 36
plotAvgProf.binning, 37
plotAvgProf2, 38
plotDistToTSS, 6, 39
plotDistToTSS, csAnno, ANY-method
 (plotDistToTSS), 39
plotDistToTSS, csAnno-method
 (csAnno-class), 10
plotDistToTSS, list-method
 (plotDistToTSS), 39
plotDistToTSS.data.frame, 40
plotMultiProf, 41
plotMultiProf.binning, 42
plotMultiProf.binning.internal, 43
plotMultiProf.normal, 44
plotMultiProf.normal.internal, 45
plotPeakProf, 45
plotPeakProf2, 48
plotPeakProf_MultiWindows, 50

readPeakFile, 52
reexports, 52
rel, 52
rel (reexports), 52

scale_colour_brewer, 28, 29, 31, 55
seq2gene, 53
show, 54
show,csAnno, ANY-method (show), 54
show,csAnno-method (csAnno-class), 10
shuffle, 54
subset,csAnno-method (csAnno-class), 10

tagHeatmap, 55
tagMatrixList (info), 25

ucsc_release (info), 25
upsetplot, 56
upsetplot,csAnno-method (csAnno-class), 10

vennpie, 56
vennpie,csAnno-method (csAnno-class), 10
vennplot, 57
vennplot.peakfile, 58