Package ‘ChIPseeker’

March 5, 2024

Type Package

Title ChIPseeker for ChIP peak Annotation, Comparison, and Visualization

Version 1.38.0

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statistical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes.

Depends R (>= 3.5.0)

Imports AnnotationDbi, BiocGenerics, boot, enrichplot, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, ggplot2, gplots, graphics, grDevices, gtools, methods, plotrix, dplyr, parallel, magrittr, rtracklayer, S4Vectors, stats, TxDb.Hsapiens.UCSC.hg19.knownGene, utils, aplot, yulab.utils, tibble

Suggests clusterProfiler, ggimage, ggplotify, ggupset, ggVennDiagram, ReactomePA, org.Hs.eg.db, knitr, rmarkdown, testthat, prettydoc

Remotes GuangchuangYu/enrichplot

BugReports https://github.com/YuLab-SMU/ChIPseeker/issues

Encoding UTF-8

VignetteBuilder knitr

ByteCompile true
License Artistic-2.0

biocViews Annotation, ChIPSeq, Software, Visualization, MultipleComparison

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/ChIPseeker

git_branch RELEASE_3_18

git_last_commit 7da66e2

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-05

Author Guangchuang Yu [aut, cre] (<https://orcid.org/0000-0002-6485-8781>), Ming Li [ctb], Qianwen Wang [ctb], Yun Yan [ctb], Hervé Pagès [ctb], Michael Kluge [ctb], Thomas Schwarzl [ctb], Zhougeng Xu [ctb]

R topics documented:

ChIPseeker-package .. 4

.......................... 4

annotatePeak .. 5

as.data.frame.csAnno .. 7

as.GRanges .. 8

check_upstream_and_downstream 8

combine_csAnno .. 9

covplot .. 9

csAnno-class ... 10
downloadGEObedFiles ... 11
downloadGSMbedFiles ... 11
dropAnno .. 12

enrichAnnoOverlap ... 12

enrichPeakOverlap .. 13

getAnnoStat .. 14

getBioRegion .. 14

geneAnno .. 15

genomicAnnotation ... 16

genGEOgenomeVersion .. 17

genGEOInfo .. 17

genGEOspecies .. 18

genNearestFeatureIndicesAndDistances 18

genPromoters .. 19

genSampleFiles .. 20
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>getTagMatrix</td>
<td>20</td>
</tr>
<tr>
<td>getTagMatrix.binning.internal</td>
<td>22</td>
</tr>
<tr>
<td>getTagMatrix.internal</td>
<td>23</td>
</tr>
<tr>
<td>getTagMatrix2</td>
<td>23</td>
</tr>
<tr>
<td>getTagMatrix2.binning.internal</td>
<td>24</td>
</tr>
<tr>
<td>getTagMatrix2.internal</td>
<td>25</td>
</tr>
<tr>
<td>info</td>
<td>25</td>
</tr>
<tr>
<td>makeBioRegionFromGranges</td>
<td>26</td>
</tr>
<tr>
<td>overlap</td>
<td>27</td>
</tr>
<tr>
<td>peakHeatmap</td>
<td>27</td>
</tr>
<tr>
<td>peakHeatmap_multiple_Sets</td>
<td>29</td>
</tr>
<tr>
<td>peak_Profile_Heatmap</td>
<td>30</td>
</tr>
<tr>
<td>plotAnnoBar</td>
<td>31</td>
</tr>
<tr>
<td>plotAnnoBar.data.frame</td>
<td>32</td>
</tr>
<tr>
<td>plotAnnoPie</td>
<td>33</td>
</tr>
<tr>
<td>plotAnnoPie.csAnno</td>
<td>34</td>
</tr>
<tr>
<td>plotAvgProf</td>
<td>36</td>
</tr>
<tr>
<td>plotAvgProf.binning</td>
<td>37</td>
</tr>
<tr>
<td>plotAvgProf2</td>
<td>38</td>
</tr>
<tr>
<td>plotDistToTSS</td>
<td>39</td>
</tr>
<tr>
<td>plotDistToTSS.data.frame</td>
<td>40</td>
</tr>
<tr>
<td>plotMultiProf</td>
<td>41</td>
</tr>
<tr>
<td>plotMultiProf.binning</td>
<td>42</td>
</tr>
<tr>
<td>plotMultiProf.binning.internal</td>
<td>42</td>
</tr>
<tr>
<td>plotMultiProf.normal</td>
<td>44</td>
</tr>
<tr>
<td>plotMultiProf.normal.internal</td>
<td>45</td>
</tr>
<tr>
<td>plotPeakProf</td>
<td>45</td>
</tr>
<tr>
<td>plotPeakProf2</td>
<td>48</td>
</tr>
<tr>
<td>plotPeakProf_MultiWindows</td>
<td>50</td>
</tr>
<tr>
<td>readPeakFile</td>
<td>52</td>
</tr>
<tr>
<td>reexports</td>
<td>52</td>
</tr>
<tr>
<td>seq2gene</td>
<td>53</td>
</tr>
<tr>
<td>show</td>
<td>54</td>
</tr>
<tr>
<td>shuffle</td>
<td>54</td>
</tr>
<tr>
<td>tagHeatmap</td>
<td>55</td>
</tr>
<tr>
<td>upsetplot</td>
<td>56</td>
</tr>
<tr>
<td>vennpie</td>
<td>56</td>
</tr>
<tr>
<td>vennplot</td>
<td>57</td>
</tr>
<tr>
<td>vennplot.peakfile</td>
<td>58</td>
</tr>
</tbody>
</table>

Index 59
ChIPseeker-package ChIP-SEQ Annotation, Visualization and Comparison

Description

This package is designed for chip-seq data analysis

Details

Package: ChIPseeker
Type: Package
Version: 1.5.1
Date: 27-04-2015
biocViews: ChIPSeq, Annotation, Software
Depends:
Imports: methods, ggplot2
Suggests: clusterProfiler, GOSemSim
License: Artistic-2.0

Author(s)

Guangchuang Yu
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

Description

capture name of variable

Usage

.(..., .env = parent.frame())

Arguments

... expression
.env environment

Value

eexpression
annotatePeak

Examples

```r
x <- 1
eval(.x[[1]])
```

annotatePeak annotatePeak

Description

Annotate peaks

Usage

```r
annotatePeak(
  peak,
  tssRegion = c(-3000, 3000),
  TxDb = NULL,
  level = "transcript",
  assignGenomicAnnotation = TRUE,
  genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
    "Downstream", "Intergenic"),
  annoDb = NULL,
  addFlankGeneInfo = FALSE,
  flankDistance = 5000,
  sameStrand = FALSE,
  ignoreOverlap = FALSE,
  ignoreUpstream = FALSE,
  ignoreDownstream = FALSE,
  overlap = "TSS",
  verbose = TRUE,
  columns = c("ENTREZID", "ENSEMBL", "SYMBOL", "GENENAME")
)
```

Arguments

- **peak**: peak file or GRanges object
- **tssRegion**: Region Range of TSS
- **TxDb**: TxDb or EnsDb annotation object
- **level**: one of transcript and gene
- **assignGenomicAnnotation**: logical, assign peak genomic annotation or not
- **genomicAnnotationPriority**: genomic annotation priority
- **annoDb**: annotation package
addFlankGeneInfo
 logical, add flanking gene information from the peaks
flankDistance
distance of flanking sequence
sameStrand
 logical, whether find nearest/overlap gene in the same strand
ignoreOverlap
 logical, whether ignore overlap of TSS with peak
ignoreUpstream
 logical, if True only annotate gene at the 3’ of the peak.
ignoreDownstream
 logical, if True only annotate gene at the 5’ of the peak.
overlap
 one of ‘TSS’ or ‘all’, if overlap=“all”, then gene overlap with peak will be reported as nearest gene, no matter the overlap is at TSS region or not.
verbose
 print message or not
columns
 names of columns to be obtained from database

Value
data.frame or GRanges object with columns of:
all columns provided by input.
annotation: genomic feature of the peak, for instance if the peak is located in 5’UTR, it will annotated by 5’UTR. Possible annotation is Promoter-TSS, Exon, 5’ UTR, 3’ UTR, Intron, and Intergenic.
geneChr: Chromosome of the nearest gene
geneStart: gene start
geneEnd: gene end
geneLength: gene length
geneStrand: gene strand
genId: entrezgene ID
distanceToTSS: distance from peak to gene TSS
if annoDb is provided, extra column will be included:
ENSEMBL: ensembl ID of the nearest gene
SYMBOL: gene symbol
GENENAME: full gene name

Author(s)
G Yu

See Also
plotAnnoBar plotAnnoPie plotDistToTSS
Examples

```r
## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, tssRegion=c(-3000, 3000), TxDb=txdb)
peakAnno

## End(Not run)
```

as.data.frame.csAnno

Description

convert csAnno object to data.frame

Usage

```r
## S3 method for class 'csAnno'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- `x`: csAnno object
- `row.names`: row names
- `optional`: should be omitted.
- `...`: additional parameters

Value

data.frame

Author(s)

Guangchuang Yu https://guangchuangyu.github.io
as.GRanges

Description

convert csAnno object to GRanges

Usage

as.GRanges(x)

Arguments

x csAnno object

Value

GRanges object

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

check_upstream_and_downstream

Description

check_upstream_and_downstream

Usage

check_upstream_and_downstream(upstream, downstream)

Arguments

upstream upstream
downstream downstream
combine_csAnno

Description

Combine csAnno Object

Usage

```r
combine_csAnno(x, ...)
```

Arguments

- `x` csAnno object
- `...` csAnno objects

Details

https://github.com/YuLab-SMU/ChIPseeker/issues/157

Value

csAnno object

covplot

Description

plot peak coverage

Usage

```r
covplot(
  peak,
  weightCol = NULL,
  xlab = "Chromosome Size (bp)",
  ylab = "",
  title = "ChIP Peaks over Chromosomes",
  chrs = NULL,
  xlim = NULL,
  lower = 1,
  fill_color = NULL
)
```
Arguments

peak: peak file or GRanges object
weightCol: weight column of peak
xlab: xlab
ylab: ylab
title: title
chrs: selected chromosomes to plot, all chromosomes by default
xlim: ranges to plot, default is whole chromosome
lower: lower cutoff of coverage signal
fill_color: specify the color for the plot. Order matters

Value

ggplot2 object

Author(s)

G Yu

csAnno-class

Class "csAnno" This class represents the output of ChIPseeker Annotation

Description

Class "csAnno" This class represents the output of ChIPseeker Annotation

Slots

anno: annotation
tssRegion: TSS region
level: transcript or gene
hasGenomicAnnotation: logical
detailGenomicAnnotation: Genomic Annotation in detail
annoStat: annotation statistics
peakNum: number of peaks

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

See Also

annotatePeak
downloadGEObedFiles

Description

download all BED files of a particular genome version

Usage

downloadGEObedFiles(genome, destDir = getwd())

Arguments

- genome: genome version
- destDir: destination folder

Author(s)

G Yu

downloadGSMbedFiles

Description

download BED supplementary files of a list of GSM accession numbers

Usage

downloadGSMbedFiles(GSM, destDir = getwd())

Arguments

- GSM: GSM accession numbers
- destDir: destination folder

Author(s)

G Yu
dropAnno

Description

dropAnno

Usage

```r
dropAnno(csAnno, distanceToTSS_cutoff = 10000)
```

Arguments

- `csAnno`: output of `annotatePeak`
- `distanceToTSS_cutoff`: distance to TSS cutoff

Details

drop annotation exceeding `distanceToTSS_cutoff`

Value

`csAnno` object

Author(s)

Guangchuang Yu

enrichAnnoOverlap

Description

calculate overlap significant of ChIP experiments based on their nearest gene annotation

Usage

```r
enrichAnnoOverlap(
    queryPeak,
    targetPeak,
    TxDb = NULL,
    pAdjustMethod = "BH",
    chainFile = NULL,
    distanceToTSS_cutoff = NULL
)
```
enrichPeakOverlap

Arguments

- `queryPeak` : query bed file
- `targetPeak` : target bed file(s) or folder containing bed files
- `TxDb` : TxDb
- `pAdjustMethod` : pvalue adjustment method
- `chainFile` : chain file for liftOver
- `distanceToTSS_cutoff` : restrict nearest gene annotation by distance cutoff

Value
data.frame

Author(s)
G Yu

Description
calculate overlap significant of ChIP experiments based on the genome coordinations

Usage

```r
enrichPeakOverlap(
  queryPeak,       # query bed file or GRanges object
  targetPeak,      # target bed file(s) or folder that containing bed files or a list of GRanges objects
  TxDb = NULL,     # TxDb
  pAdjustMethod = "BH", # pvalue adjustment method
  nShuffle = 1000,  # number of shuffles
  chainFile = NULL, # chain file for liftOver
  pool = TRUE,     # use multiple cores
  mc.cores = detectCores() - 1, # number of cores
  verbose = TRUE   # verbose output
)
```

Arguments

- `queryPeak` : query bed file or GRanges object
- `targetPeak` : target bed file(s) or folder that containing bed files or a list of GRanges objects
- `TxDb` : TxDb
- `pAdjustMethod` : pvalue adjustment method
getBioRegion

- nShuffle: shuffle numbers
- chainFile: chain file for liftOver
- pool: logical, whether pool target peaks
- mc.cores: number of cores, see mclapply
- verbose: logical

Value
data.frame

Author(s)
G Yu

getAnnoStat

Description
getting status of annotation

Usage
getAnnoStat(x)

Arguments
x: csAnno object

getBioRegion

Description
prepare a bioregion of selected feature

Usage
getBioRegion(
 TxDb = NULL,
 upstream = 1000,
 downstream = 1000,
 by = "gene",
 type = "start_site"
)
getGeneAnno

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxDB</td>
<td>TxDB</td>
</tr>
<tr>
<td>upstream</td>
<td>upstream from start site or end site</td>
</tr>
<tr>
<td>downstream</td>
<td>downstream from start site or end site</td>
</tr>
<tr>
<td>by</td>
<td>one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'</td>
</tr>
<tr>
<td>type</td>
<td>one of "start_site", "end_site", "body"</td>
</tr>
</tbody>
</table>

Details

This function combined previous functions getPromoters(), getBioRegion() and getGeneBody() in order to solve the following issues.

(1) https://github.com/GuangchuangYu/ChIPseeker/issues/16
(2) https://github.com/GuangchuangYu/ChIPseeker/issues/87

The getBioRegion() function can prevoid a region of interest from txdb object. There are three kinds of regions, start_site, end_site and body.

We take transcript region to explain the differences of these three regions. tx: chr1 1000 1400.

- **body** region refers to the 1000-1400bp.
- **start_site** region with upstream = 100, downstream = 100 refers to 900-1100bp.
- **end_site** region with upstream = 100, downstream = 100 refers to 1300-1500bp.

Value

GRanges object

Author(s)

Guangchuang Yu, Ming L

Description

gene annotation, symbol, gene name etc.

Usage

geneAnno(annoDb, geneID, type, columns)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>annoDb</td>
<td>annotation package</td>
</tr>
<tr>
<td>geneID</td>
<td>query geneID</td>
</tr>
<tr>
<td>type</td>
<td>gene ID type</td>
</tr>
<tr>
<td>columns</td>
<td>names of columns to be obtained from database</td>
</tr>
</tbody>
</table>
Value

data.frame

Author(s)

G Yu

description

get Genomic Annotation of peaks

Usage

getGenomicAnnotation(
 peaks,
 distance,
 tssRegion = c(-3000, 3000),
 TxDb,
 level,
 genomicAnnotationPriority,
 sameStrand = FALSE
)

Arguments

peaks peaks in GRanges object
distance distance of peak to TSS
tssRegion tssRegion, default is -3kb to +3kb
TxDb TxDb object
level one of gene or transcript
genomicAnnotationPriority genomic Annotation Priority
sameStrand whether annotate gene in same strand

Value

character vector

Author(s)

G Yu
getGEOgenomeVersion

Description

get genome version statistics collecting from GEO ChIPseq data

Usage

getGEOgenomeVersion()

Value
data.frame

Author(s)
G Yu

getGEOInfo

Description

get subset of GEO information by genome version keyword

Usage

g GEOInfo(genome, simplify = TRUE)

Arguments

geno me

simplify

geno me version

simplify result or not

Value
data.frame

Author(s)
G Yu
getGEOspecies

Description
accessing species statistics collecting from GEO database

Usage
getGEOspecies()

Value
data.frame

Author(s)
G Yu

gNearestFeatureIndicesAndDistances

describeImage}}

Description
get index of features that closest to peak and calculate distance

Usage
gNearestFeatureIndicesAndDistances(
 peaks,
 features,
 sameStrand = FALSE,
 ignoreOverlap = FALSE,
 ignoreUpstream = FALSE,
 ignoreDownstream = FALSE,
 overlap = "TSS"
)
getPromoters

Arguments

- **peaks**: peak in GRanges
- **features**: features in GRanges
- **sameStrand**: logical, whether find nearest gene in the same strand
- **ignoreOverlap**: logical, whether ignore overlap of TSS with peak
- **ignoreUpstream**: logical, if True only annotate gene at the 3' of the peak.
- **ignoreDownstream**: logical, if True only annotate gene at the 5' of the peak.
- **overlap**: one of "TSS" or "all"

Value

- list

Author(s)

- G Yu

Description

prepare the promoter regions

Usage

getPromoters(TxDb = NULL, upstream = 1000, downstream = 1000, by = "gene")

Arguments

- **TxDb**: TxDb
- **upstream**: upstream from TSS site
- **downstream**: downstream from TSS site
- **by**: one of gene or transcript

Value

- GRanges object
getSampleFiles

Description

calculate the tag matrix

Usage

```r
getTagMatrix(
  peak,
  upstream,
  downstream,
  windows,
  type,
  by,
  TxDb = NULL,
  weightCol = NULL,
  nbin = NULL,
  verbose = TRUE,
  ignore_strand = FALSE
)
```
getTagMatrix

Arguments

- **peak**: peak peak file or GRanges object
- **upstream**: the distance of upstream extension
- **downstream**: the distance of downstream extension
- **windows**: a collection of region
- **type**: one of "start_site", "end_site", "body"
- **by**: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users
- **TxDb**: TxDb or self-made granges object, served as txdb
- **weightCol**: column name of weight, default is NULL
- **nbin**: the amount of nbines
- **verbose**: print message or not
- **ignore_strand**: ignore the strand information or not

Details

getTagMatrix() function can produce the matrix for visualization. peak stands for the peak file. window stands for a collection of regions that users want to look into. Users can use window to capture the peak of interest. There are two ways to input window.

The first way is that users can use getPromoters()/getBioRegion()/makeBioRegionFromGranges() to get window and put it into getTagMatrix().

The second way is that users can use getTagMatrix() to call getPromoters()/getBioRegion()/makeBioRegionFromGranges(). In this way users do not need to input window parameter but they need to input txdb.

txdb is a set of packages contained annotation of regions of different genomes. Users can get the regions of interest through specific functions. These specific functions are built in getPromoters()/getBioRegion(). Many regions can not be gain through txdb, like insulator and enhancer regions. Users can provide these regions in the form of granges object. These self-made granges object will be passed to TxDb parameter and they will be passed to makeBioRegionFromGranges() to produce the window. In a word, TxDb parameter is a reference information. Users can pass txdb object or self-made granges into it.

Details see **getPromoters**, **getBioRegion** and **makeBioRegionFromGranges**

upstream and downstream parameter have different usages:

1. **window parameter is provided**, if type == 'body', upstream and downstream can use to extend the flank of body region.
 - if type == 'start_site'/ 'end_site', upstream and downstream do not play a role in getTagMatrix() function.

2. **window parameter is missing**, if type == 'body', upstream and downstream can use to extend the flank of body region.
 - if type == 'start_site'/ 'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight vaule. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.
getValueMatrix.binning.internal

Value
tagMatrix

describeMatrix.binning.internal
describeMatrix.binning.internal

description
calculate the tagMatrix by binning the idea was derived from the function of deeptools https://deeptools.readthedocs.io/en/develop/content/tools/computeMatrix.html

Usage
generateMatrix.binning.internal(
 peak,
 weightCol = NULL,
 windows,
 nbin = 800,
 upstream = NULL,
 downstream = NULL,
 ignore_strand = FALSE
)

Arguments

peak peak peak file or GRanges object

weightCol weightCol column name of weight, default is NULL

windows windows a collection of region with equal or not equal size, eg. promoter region, gene region.

nbin the amount of nbines needed to be split and it should not be more than min_body_length

upstream rel object, NULL or actual number

downstream rel object, NULL or actual number

ignore_strand ignore the strand information or not

Value
tagMatrix
getTagMatrix.internal

Description

calculate the tag matrix

Usage

gETFtagetMatrix.internal(peak, weightCol = NULL, windows, ignore_strand = FALSE)

Arguments

- **peak**: peak file or GRanges object
- **weightCol**: column name of weight, default is NULL
- **windows**: a collection of region with equal size, eg. promoter region.
- **ignore_strand**: ignore the strand information or not

Value

tagMatrix

Author(s)

G Yu

getTagMatrix2

Description

Nested function for getTagMatrix() to deal with multiple windows

Usage

gETFtagetMatrix2(
peak,
upstream,
downstream,
windows_name,
type,
by,
TxDb = NULL,
weightCol = NULL,
nbin = NULL,
Arguments

peak: peak peak file or GRanges object
upstream: the distance of upstream extension
downstream: the distance of downstream extension
windows_name: the names of windows
type: one of "start_site", "end_site", "body"
by: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users
TxDb: TxDb or self-made granges object, served as txdb
weightCol: column name of weight, default is NULL
nbin: the amount of nbines
verbose: print message or not
ignore_strand: ignore the strand information or not

Details

This is an internal function.

Value

tagMatrix

Usage

getTagMatrix2.binning.internal(
 peak,
 weightCol = NULL,
 windows,
 windows_name,
 nbin = 800,
 upstream = NULL,
 downstream = NULL,
 ignore_strand = FALSE
)
Arguments

peak
weightCol
windows
windows_name
nbin
upstream
downstream
ignore_strand

Description

getTagMatrix2.internal

Usage

getTagMatrix2.internal(
 peak,
 weightCol = NULL,
 windows,
 windows_name,
 ignore_strand = FALSE
)

Arguments

peak
weightCol
windows
windows_name
ignore_strand

Description

ucsc genome version, precalculated data and gsm information
Description

make windows from granges object

Usage

```r
makeBioRegionFromGranges(gr, by, type, upstream = 1000, downstream = 1000)
```

Arguments

- `gr`: a grange object contain region of interest
- `by`: specify be users, e.g. gene, insulator, enhancer
- `type`: one of "start_site", "end_site", "body"
- `upstream`: upstream from start site or end site, can be NULL if the type == 'body'
- `downstream`: downstream from start site or end site, can be NULL if the type == 'body'

Details

`makeBioRegionFromGranges()` function can make bioregion from granges object.

The differences between `makeBioRegionFromGranges()` and `getBioRegion()` is that `getBioRegion()` get the region object from txdb object but `makeBioRegionFromGranges()` get the region from the granges object provided by users. For example, txdb object do not contain insulator or enhancer regions. Users can provide these regions through self-made granges object.

There are three kinds of regions, start_site, end_site and body.

We take enhancer region to explain the differences of these three regions. enhancer: chr1 1000-1400.

body region refers to the 1000-1400bp.

start_site region with upstream = 100, downstream = 100 refers to 900-1100bp.

end_site region with upstream = 100, downstream = 100 refers to 1300-1500bp.

In `makeBioRegionFromGranges()`, upstream and downstream can be NULL if the type == 'body'. by should be specified by users and cannot be omitted. by parameter will be used to made labels. type should also be specified.

https://github.com/YuLab-SMU/ChIPseeker/issues/189

Value

GRanges object
overlap

Description
calculate the overlap matrix, which is useful for vennplot

Usage
overlap(Sets)

Arguments
Sets a list of objects

Value
data.frame

Author(s)
G Yu

peakHeatmap

Description
plot the heatmap of peaks

Usage
peakHeatmap(
 peak,
 weightCol = NULL,
 TxDb = NULL,
 upstream = 1000,
 downstream = 1000,
 xlab = "",
 ylab = "",
 title = NULL,
 palette = NULL,
 verbose = TRUE,
 by = "gene",
 type = "start_site",
 nbin = NULL,
)
ignore_strand = FALSE,
windows,
ncol = NULL,
nrow = NULL
)

Arguments

peak file or GRanges object

weightCol column name of weight

TxDb TxDB object

upstream upstream position

downstream downstream position

xlab xlab

ylab ylab

title title

palette palette to be filled in, details see `scale_colour_brewer`

verbose print message or not

by one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'

type one of "start_site", "end_site", "body"

sbin the amount of nbines

ignore_strand ignore the strand information or not

windows a collection of region

ncol the ncol of plotting a list of peak

nrow the nrow of plotting a list of peak

Value

figure

Author(s)

G Yu
peakHeatmap_multiple_Sets

peakHeatmap

Description

plot the heatmap of peaks align to a sets of regions

Usage

```r
peakHeatmap_multiple_Sets(
    peak,
    weightCol = NULL,
    TxDb = NULL,
    upstream = 1000,
    downstream = 1000,
    xlab = "",
    ylab = "",
    title = NULL,
    palette = NULL,
    verbose = TRUE,
    by = "gene",
    type = "start_site",
    nbin = NULL,
    ignore_strand = FALSE,
    windows_name = NULL,
    ncol = NULL,
    nrow = NULL,
    facet_label_text_size = 12
)
```

Arguments

- `peak`: peak file or GRanges object
- `weightCol`: column name of weight
- `TxDb`: TxDb object
- `upstream`: upstream position
- `downstream`: downstream position
- `xlab`: xlab
- `ylab`: ylab
- `title`: title
- `palette`: palette to be filled in, details see `scale_colour_brewer`
- `verbose`: print message or not
- `by`: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
peak_Profile_Heatmap

- **type**
 - one of "start_site", "end_site", "body"
- **nbin**
 - the amount of nbines
- **ignore_strand**
 - ignore the strand information or not
- **windows_name**
 - the name for each window, which will also be showed in the picture as labels
- **ncol**
 - the ncol of plotting a list of peak
- **nrow**
 - the nrow of plotting a list of peak
- **facet_label_text_size**
 - the size of facet label text

Value

figure

Description

plot peak heatmap and profile in a picture

Usage

```r
peak_Profile_Heatmap(
  peak,
  weightCol = NULL,
  TxDb = NULL,
  upstream = 1000,
  downstream = 1000,
  xlab = "",
  ylab = "",
  title = NULL,
  palette = NULL,
  verbose = TRUE,
  by = "gene",
  type = "start_site",
  nbin = NULL,
  ignore_strand = FALSE,
  windows_name = NULL,
  ncol = NULL,
  nrow = NULL,
  facet_label_text_size = 12,
  conf,
  facet = "row",
  free_y = TRUE,
  height_proportion = 4
)
```
Arguments

- **peak**: peak file or GRanges object
- **weightCol**: column name of weight
- **TxDb**: TxDb object
- **upstream**: upstream position
- **downstream**: downstream position
- **xlab**: xlab
- **ylab**: ylab
- **title**: title
- **palette**: palette to be filled in, details see `scale_colour_brewer`
- **verbose**: print message or not
- **by**: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
- **type**: one of "start_site", "end_site", "body"
- **nbin**: the amount of nbines
- **ignore_strand**: ignore the strand information or not
- **windows_name**: the name for each window, which will also be showed in the picture as labels
- **ncol**: the ncol of plotting a list of peak
- **nrow**: the nrow of plotting a list of peak
- **facet_label_text_size**: the size of facet label text
- **conf**: confidence interval
- **facet**: one of 'none', 'row' and 'column'
- **free_y**: if TRUE, y will be scaled by AvgProf
- **height_proportion**: the proportion of profiling picture and heatmap

Description

`plotAnnoBar` method for `csAnno` instance
plotAnnoBar.data.frame

Usage

plotAnnoBar(
 x,
 xlab = "",
 ylab = "Percentage(%)",
 title = "Feature Distribution",
 ...
)

S4 method for signature 'list'
plotAnnoBar(
 x,
 xlab = "",
 ylab = "Percentage(%)",
 title = "Feature Distribution",
 ...
)

plotAnnoBar(x, xlab="", ylab='Percentage(%)',title="Feature Distribution", ...)

Arguments

x csAnno instance
xlab xlab
ylab ylab
title title
... additional parameter

Value

plot

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

Description

plot feature distribution based on their chromosome region
Usage

plotAnnoBar.data.frame(
 anno.df,
 xlab = "",
 ylab = "Percentage(%)",
 title = "Feature Distribution",
 categoryColumn
)

Arguments

anno.df annotation stats
xlab xlab
ylab ylab
title plot title
categoryColumn category column

Details

plot chromosome region features

Value

bar plot that summarize genomic features of peaks

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

annotatePeak plotAnnoPie

plotAnnoPie method generics

Description

plotAnnoPie method for csAnno instance
Usage

```
plotAnnoPie(
  x,
  ndigit = 2,
  cex = 0.9,
  col = NA,
  legend.position = "rightside",
  pie3D = FALSE,
  radius = 0.8,
  ...)
```

plotAnnoPie(x, ndigit=2, cex=0.9, col=NA, legend.position="rightside", pie3D=FALSE, radius=0.8, ...)

Arguments

- `x`: csAnno instance
- `ndigit`: number of digit to round
- `cex`: label cex
- `col`: color
- `legend.position`: topright or other.
- `pie3D`: plot in 3D or not
- `radius`: radius of the pie
- `...`: extra parameter

Value

- `plot`

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

Description

pieplot from peak genomic annotation
Usage

plotAnnoPie.csAnno(
 x,
 ndigit = 2,
 cex = 0.8,
 col = NA,
 legend.position = "rightside",
 pie3D = FALSE,
 radius = 0.8,
 ...
)

Arguments

x csAnno object
ndigit number of digit to round
cex label cex
col color
legend.position
topleft or other.
pie3D plot in 3D or not
radius radius of Pie
... extra parameter

Value

pie plot of peak genomic feature annotation

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

annotatePeak plotAnnoBar

Examples

Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="chipseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotAnnoPie(peakAnno)

End(Not run)
Description

plot the profile of peaks

Usage

```r
plotAvgProf(
  tagMatrix,
  xlim,
  xlab = "Genomic Region (5'-->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  origin_label = "TSS",
  verbose = TRUE,
  ...
)
```

Arguments

tagMatrix: tagMatrix or a list of tagMatrix
xlim: xlim
xlab: x label
ylab: y label
conf: confidence interval
facet: one of 'none', 'row' and 'column'
free_y: if TRUE, y will be scaled by AvgProf
origin_label: label of the center
verbose: print message or not
...
additional parameter

Value

ggplot object

Author(s)

G Yu; Y Yan
Description

plot the profile of peaks by binning

Usage

plotAvgProf.binning(
tagMatrix,
xlab = "Genomic Region (5'--3')",
ylab = "Peak Count Frequency",
conf,
facet = "none",
free_y = TRUE,
upstream = NULL,
downstream = NULL,
label,
...
)

Arguments

tagMatrix tagMatrix or a list of tagMatrix
xlab x label
ylab y label
conf confidence interval
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled
upstream rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
downstream rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
label label
... additional parameter

Value

ggplot object
Description

plot the profile of peaks that align to flank sequences of TSS

Usage

```r
plotAvgProf2(
  peak,
  weightCol = NULL,
  TxDb = NULL,
  upstream = 1000,
  downstream = 1000,
  xlab = "Genomic Region (5'->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  verbose = TRUE,
  ignore_strand = FALSE,
  ...
)
```

Arguments

- `peak`: peak file or GRanges object
- `weightCol`: column name of weight
- `TxDb`: TxDb object
- `upstream`: upstream position
- `downstream`: downstream position
- `xlab`: xlab
- `ylab`: ylab
- `conf`: confidence interval
- `facet`: one of 'none', 'row' and 'column'
- `free_y`: if TRUE, y will be scaled by AvgProf
- `verbose`: print message or not
- `ignore_strand`: ignore the strand information or not
- `...`: additional parameter

Details

This function is the old function of `plotPeakProf2`. It can only plot the start site region of gene.
\textit{plotDistToTSS}

\textbf{Value}

ggplot object

\textbf{Author(s)}

G Yu, Ming L

\begin{verbatim}
plotDistToTSS method generics

\textbf{Description}

plotDistToTSS method for \texttt{csAnno} instance

\textbf{Usage}

\begin{verbatim}
plotDistToTSS(
 x,
 distanceColumn = "distanceToTSS",
 xlab = "",
 ylab = "Binding sites (%) (5'->3')",
 title = "Distribution of transcription factor-binding loci relative to TSS",
 ...
)

S4 method for signature 'list'
plotDistToTSS(
 x,
 distanceColumn = "distanceToTSS",
 xlab = "",
 ylab = "Binding sites (%) (5'->3')",
 title = "Distribution of transcription factor-binding loci relative to TSS",
 ...
)

plotDistToTSS(x,distanceColumn="distanceToTSS", xlab="",
 ylab="Binding sites (%) (5'->3')",
 title="Distribution of transcription factor-binding loci relative to TSS",...)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} \texttt{csAnno} instance
 \item \texttt{distanceColumn} \hspace{1cm} distance column name
 \item \texttt{xlab} \hspace{1cm} xlab
 \item \texttt{ylab} \hspace{1cm} ylab
 \item \texttt{title} \hspace{1cm} title
 \item \texttt{...} \hspace{1cm} additional parameter
\end{itemize}
\end{verbatim}

\end{verbatim}
plotDistToTSS.data.frame

Value
plot

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

Description
plot feature distribution based on the distances to the TSS

Usage
plotDistToTSS.data.frame(
 peakDist,
 distanceColumn = "distanceToTSS",
 xlab = "", ylab = "Binding sites (%) (5'->3')",
 title = "Distribution of transcription factor-binding loci relative to TSS",
 categoryColumn
)

Arguments
peakDist peak annotation
distanceColumn column name of the distance from peak to nearest gene
xlab x label
ylab y label
title figure title
categoryColumn category column

Value
bar plot that summarize distance from peak to TSS of the nearest gene.

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

See Also
annotatePeak
Examples

```r
## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
taxdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotDistToTSS(peakAnno)

## End(Not run)
```

Description

plotMultiProf is an internal function for **plotPeakProf_MultiWindows**

Usage

```r
plotMultiProf(
  tagMatrix,  # tagMatrix
  conf,       # confidence interval
  xlab = "Genomic Region (5'–>3')",
  ylab = "Peak Count Frequency",
  facet = "none",
  free_y = TRUE,
  ...
)
```

Arguments

- `tagMatrix` # tagMatrix
- `conf` # confidence interval
- `xlab` # xlab
- `ylab` # ylab
- `facet` # one of 'none', 'row' and 'column'
- `free_y` # if TRUE, y will be scaled by AvgProf
- `...` # additional parameter
plotMultiProf.binning

Description

 internal function

Usage

 plotMultiProf.binning(
 tagMatrix,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 conf,
 facet = "none",
 free_y = TRUE,
 upstream = NULL,
 downstream = NULL,
 label,
 ...
)

Arguments

 tagMatrix tagMatrix
 xlab xlab
 ylab ylab
 conf confidence interval
 facet one of 'none', 'row' and 'column'
 free_y if TRUE, y will be scaled by AvgProf
 upstream the upstream extension
 downstream the downstream extension
 label the label of the center
 ... additional parameter
plotMultiProf.binning.internal

internal function

Description

internal function

Usage

plotMultiProf.binning.internal(
tagMatrix,
 conf,
 xlab = "Genomic Region (5'→3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 upstream = NULL,
 downstream = NULL,
 label,
 ...
)

Arguments

tagMatrix tagMatrix
 confidence interval
xlab lab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
upstream the upstream extension
downstream the downstream extension
label the label of the center
... additional parameter
plotMultiProf.normal *internal function*

Description

internal function

Usage

```r
plotMultiProf.normal(
  tagMatrix,
  xlim,
  xlab = "Genomic Region (5'-->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  origin_label = "TSS",
  verbose = TRUE,
  ...
)
```

Arguments

- `tagMatrix`: tagMatrix
- `xlim`: xlim
- `xlab`: xlab
- `ylab`: ylab
- `conf`: confidence interval
- `facet`: one of 'none', 'row' and 'column'
- `free_y`: if TRUE, y will be scaled by AvgProf
- `origin_label`: the label of the center
- `verbose`: print message or not
- `...`: additional parameter
plotMultiProf.normal.internal

internal function

Description

internal function

Usage

```r
plotMultiProf.normal.internal(
  tagMatrix, conf,
  xlim = c(-3000, 3000),
  xlab = "Genomic Region (5'->3')",
  ylab = "Peak Count Frequency",
  facet = "row",
  free_y = TRUE,
  origin_label, ...
)
```

Arguments

- **tagMatrix**
 - tagMatrix
- **conf**
 - confidence interval
- **xlim**
 - xlim
- **xlab**
 - xlab
- **ylab**
 - ylab
- **facet**
 - one of 'none', 'row' and 'column'
- **free_y**
 - if TRUE, y will be scaled by AvgProf
- **origin_label**
 - the label of the center
- **...**
 - additional parameter

plotPeakProf

plotPeakProf_MultiWindows

Description

plot the profile of peaks. `plotPeakProf_MultiWindows()` is almost the same as `plotPeakProf2()`, having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.
plotPeakProf(
tagMatrix = NULL,
peak,
upstream,
downstream,
conf,
by,
type,
windows_name = NULL,
weightCol = NULL,
TxDb = NULL,
xlab = "Genomic Region (5'-->3')",
ylab = "Peak Count Frequency",
facet = "row",
free_y = TRUE,
verbose = TRUE,
nbin = NULL,
ignore_strand = FALSE,
...
)

Arguments

tagMatrix: tagMatrix or a list of tagMatrix
peak: peak file or GRanges object
upstream: upstream position
downstream: downstream position
conf: confidence interval
by: feature of interest
type: one of "start_site", "end_site", "body"
windows_name: the name for each window, which will also be showed in the picture as labels
weightCol: column name of weight
TxDb: TxDb object or self-made granges objects
xlab: xlab
ylab: ylab
facet: one of 'none', 'row' and 'column'
free_y: if TRUE, y will be scaled by AvgProf
verbose: print message or not
nbin: the amount of bines
ignore_strand: ignore the strand information or not
...: additional parameter
plotPeakProf

Details

TxDb parameter can accept txdb object. But many regions cannot be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

by the features of interest.

(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site'/"end_site", upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.

There are two ways input a list of window.

(1) Users can input a list of self-made granges objects

(2) Users can input a list of by and only one type. In this way, plotPeakProf_MultiWindows() can made a list of window from txdb object based on by and type.

Warning:

(1) All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.

(2) So it will be only one type and several by.

(3) Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR' or 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.

(4) Users can mingle the by designed for the two ways. plotPeakProf_MultiWindows can accept the hybrid by. But the above rules should be followed.

https://github.com/YuLab-SMU/ChIPseeker/issues/189

Value

ggplot object
plotPeakProf2

Description
plot the profile of peaks automatically

Usage
plotPeakProf2(
 peak,
 upstream,
 downstream,
 conf,
 by,
 type,
 weightCol = NULL,
 TxDb = NULL,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 verbose = TRUE,
 nbin = NULL,
 ignore_strand = FALSE,
 ...
)

Arguments
peak peak file or GRanges object
upstream upstream position
downstream downstream position
conf confidence interval
by e.g. 'gene', 'transcript', 'exon' or features of interest (e.g. "enhancer")
type one of "start_site", "end_site", "body"
weightCol column name of weight
TxDb TxDb object, or self-made granges object
xlab xlab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
nbin the amount of nbines
ignore_strand ignore the strand information or not
... additional parameter

Details

peak stands for the peak file.
by the features of interest.
(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.
(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to make labels showed in picture.
type means the property of the region. one of the "start site", "end site" and "body".
upstream and downstream parameter have different usages:
(1) if type == 'body', upstream and downstream can use to extend the flank of body region.
(2) if type == 'start_site'/'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.
weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15
nbin refers to the number of bins, providing a binning method to get the tag matrix.
TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.
plotPeakProf2() is different from the plotPeakProf(). plotPeakProf2() do not need to provide window parameter, which means plotPeakProf2() will call relevant functions to make window automatically.

Value

ggplot object

Author(s)

G Yü, Ming Li
plotPeakProf_MultiWindows

Description
plot the profile of peaks in two or more windows

Usage
plotPeakProf_MultiWindows(
 peak,
 upstream,
 downstream,
 conf,
 by,
 type,
 windows_name = NULL,
 weightCol = NULL,
 TxDb = NULL,
 xlab = "Genomic Region (5'-3')",
 ylab = "Peak Count Frequency",
 facet = "row",
 free_y = TRUE,
 verbose = TRUE,
 nbin = NULL,
 ignore_strand = FALSE,
 ...
)

Arguments
peak peak file or GRanges object
upstream upstream position
downstream downstream position
conf confidence interval
by feature of interest
type one of "start_site", "end_site", "body"
windows_name the name for each window, which will also be showed in the picture as labels
weightCol column name of weight
TxDb TxDb object or self-made granges objects
xlab xlab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
nbin the amount of bins
ignore_strand ignore the strand information or not
... additional parameter

Details

This function comes from https://github.com/YuLab-SMU/ChIPseeker/issues/189 'plotPeakProf_MultiWindows()' is almost the same as plotPeakProf2(), having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.

TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

by the features of interest.
(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.
(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:
(1) if type == 'body', upstream and downstream can use to extend the flank of body region.
(2) if type == 'start_site'/'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbins refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.

There are two ways input a list of window.
(1) Users can input a list of self-made granges objects
(2) Users can input a list of by and only one type. In this way, plotPeakProf_MultiWindows() can made a list of window from txdb object based on by and type.

Warning:
(1) All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.
(2) So it will be only one type and several by.
(3) Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR' or 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.
(4) Users can mingle the by designed for the two ways. plotPeakProf_MultiWindows() can accpet the hybrid by. But the above rules should be followed.
Value

ggplot object

Description

read peak file and store in data.frame or GRanges object

Usage

readPeakFile(peakfile, as = "GRanges", ...)

Arguments

peakfile peak file
as output format, one of GRanges or data.frame
... additional parameter

Value

peak information, in GRanges or data.frame object

Author(s)

G Yu

Examples

peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peak.gr <- readPeakFile(peakfile, as="GRanges")
peak.gr

Description

These objects are imported from other packages. Follow the links below to see their documentation.

GenomicRanges GRangesList
ggplot2 rel
seq2gene

Description
annotate genomic regions to genes in many-to-many mapping

Usage

```r
seq2gene(seq, tssRegion, flankDistance, TxDb, sameStrand = FALSE)
```

Arguments
- `seq`: genomic regions in GRanges object
- `tssRegion`: TSS region
- `flankDistance`: flanking search radius
- `TxDb`: TranscriptDb object
- `sameStrand`: logical whether find nearest/overlap gene in the same strand

Details
This function associates genomic regions with coding genes in a many-to-many mapping. It first maps genomic regions to host genes (either located in exon or intron), proximal genes (located in promoter regions) and flanking genes (located in upstream and downstream within user specified distance).

Value
gene vector

Author(s)
Guangchuang Yu

Examples
```r
# Not run:
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
file <- getSampleFiles()[[1]] # a bed file
gr <- readPeakFile(file)
genes <- seq2gene(gr, tssRegion=c(-1000, 1000), flankDistance = 3000, TxDb)
# End(Not run)
```
show

show method

Description

show method for csAnno instance

Usage

show(object)

Arguments

- object
 A csAnno instance

Value

- message

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

shuffle

Description

shuffle the position of peak

Usage

shuffle(peak.gr, TxDb)

Arguments

- peak.gr GRanges object
- TxDb TxDb

Value

- GRanges object

Author(s)

G Yu
Description

plot the heatmap of tagMatrix

Usage

tagHeatmap(
 tagMatrix,
 xlab = "",
 ylab = "",
 title = NULL,
 palette = "RdBu",
 nrow = NULL,
 ncol = NULL
)

Arguments

tagMatrix tagMatrix or a list of tagMatrix
xlab xlab
ylab ylab
title title
palette palette to be filled in, details see scale_colour_brewer
nrow the nrow of plotting a list of peak
ncol the ncol of plotting a list of peak

Value

figure

Author(s)

G Yu
upsetplot

Description

upsetplot method generics

Usage

```r
upsetplot(x, ...)
```

Arguments

- `x` A `csAnno` instance
- `...` additional parameter

Value

plot

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

vennpie

Description

vennpie method generics

Usage

```r
vennpie(x, r = 0.2, cex = 1.2, ...)
```

Arguments

- `x` A `csAnno` instance
- `r` initial radius
- `cex` value to adjust legend
- `...` additional parameter
vennplot

Value
plot

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

Description
plot the overlap of a list of object

Usage
vennplot(Sets, by = "gplots", ...)

Arguments
- **Sets**: a list of object, can be vector or GRanges object
- **by**: one of gplots, ggVennDiagram or Vennerable
- **...**: extra parameters using ggVennDiagram. Details see [ggVennDiagram](https://ggplot2.tidyverse.org/reference/ggVennDiagram.html)

Details
There are two ways to plot, which users can specify through `by`.
The first way is to use `gplots` packages, by setting `by = gplots`. This method is default method. The venn plot produced through this way has no color.
The second way is to use `ggVennDiagram` packages, by setting `by = ggVennDiagram`. The venn plot produced through this way has colors which can be defined by users using ggplot2 grammar e.g. `scale_fill_distiller()`. And users can specify any details, like digital number, text size and showing percentage or not, by inputting `...` extra parameters.

Value
venn plot that summarize the overlap of peaks from different experiments or gene annotation from different peak files.

Author(s)
G Yu
Examples

```r
## example not run
## require(TxDb.Hsapiens.UCSC.hg19.knownGene)
## txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
## peakfiles <- getSampleFiles()
## peakAnnoList <- lapply(peakfiles, annotatePeak)
## names(peakAnnoList) <- names(peakfiles)
## genes= lapply(peakAnnoList, function(i) as.data.frame(i)$geneId)
## vennplot(genes)
```

Description

vennplot for peak files

Usage

`vennplot.peakfile(files, labels = NULL)`

Arguments

- `files` peak files
- `labels` labels for peak files

Value

figure

Author(s)

G Yu
Index

* classes
 csAnno-class, 10
* datasets
 info, 25
* internal
 reexports, 52
* package
 ChIPseeker-package, 4
 .., 4
annotatePeak, 5, 10, 33, 35, 40
as.data.frame.csAnno, 7
as.GRanges, 8
check_upstream_and_downstream, 8
ChIPseeker (ChIPseeker-package), 4
ChIPseeker-package, 4
combine_csAnno, 9
covplot, 9
csAnno-class, 10
downloadGEObedFiles, 11
downloadGSMbedFiles, 11
dropAnno, 12
enrichAnnoOverlap, 12
enrichPeakOverlap, 13
genAnnoStat, 14
genBioRegion, 14, 21
genGeneAnno, 15
genGenomicAnnotation, 16
genGOgenomeVersion, 17
genGOInfo, 17
genGOspecies, 18
genNearestFeatureIndicesAndDistances, 18
genPromoters, 19, 21
genSampleFiles, 20
genTagMatrix, 20
genTagMatrix.binning.internal, 22
getTagMatrix.internal, 23
genTagMatrix2, 23
genTagMatrix2.binning.internal, 24
genTagMatrix2.internal, 25
ggVennDiagram, 57
GRangesList, 52
GRangesList (reexports), 52
gsminfo (info), 25
info, 25
makeBioRegionFromGranges, 21, 26
mclapply, 14
overlap, 27
peak_Profile_Heatmap, 30
peakHeatmap, 27
peakHeatmap_multiple_Sets, 29
plotAnnoBar, 6, 31, 35
plotAnnoBar.csAnno, ANY-method
 (plotAnnoBar), 31
plotAnnoBar.csAnno-method
 (csAnno-class), 10
plotAnnoBar.list-method (plotAnnoBar),
 31
plotAnnoBar.data.frame, 32
plotAnnoPie, 6, 33, 33
plotAnnoPie.csAnno, ANY-method
 (plotAnnoPie), 33
plotAnnoPie.csAnno-method
 (csAnno-class), 10
plotAnnoPie.csAnno, 34
plotAvgProf, 36
plotAvgProf.binning, 37
plotAvgProf2, 38
plotDistToTSS, 6, 39
plotDistToTSS.csAnno, ANY-method
 (plotDistToTSS), 39
plotDistToTSS.csAnno-method
 (csAnno-class), 10

59
plotDistToTSS, list-method
 (plotDistToTSS), 39
plotDistToTSS.data.frame, 40
plotMultiProf, 41
plotMultiProf.binning, 42
plotMultiProf.binning.internal, 43
plotMultiProf.normal, 44
plotMultiProf.normal.internal, 45
plotPeakProf, 45
plotPeakProf2, 48
plotPeakProf_MultiWindows, 50

readPeakFile, 52
reexports, 52
rel, 52
rel (reexports), 52

scale_colour_brewer, 28, 29, 31, 55
seq2gene, 53
show, 54
show, csAnno, ANY-method (show), 54
show, csAnno-method (csAnno-class), 10
shuffle, 54
subset, csAnno-method (csAnno-class), 10

tagHeatmap, 55
tagMatrixList (info), 25

ucsc_release (info), 25
upsetplot, 56
upsetplot, csAnno-method (csAnno-class), 10

vennpie, 56
vennpie, csAnno-method (csAnno-class), 10
vennpplot, 57
vennpplot.peakfile, 58