Package ‘CiteFuse’

April 3, 2024

Type Package

Title CiteFuse: multi-modal analysis of CITE-seq data

Version 1.14.0

Description CiteFuse package implements a suite of methods and tools for CITE-seq data from pre-processing to integrative analytics, including doublet detection, network-based modality integration, cell type clustering, differential RNA and protein expression analysis, ADT evaluation, ligand-receptor interaction analysis, and interactive web-based visualisation of the analyses.

License GPL-3

Encoding UTF-8

Depends R (>= 4.0)

Imports SingleCellExperiment (>= 1.8.0), SummarizedExperiment (>= 1.16.0), Matrix, mixtools, cowplot, ggplot2, gridExtra, grid, dbscan, uwot, Rtsne, S4Vectors (>= 0.24.0), igraph, scales, scran (>= 1.14.6), graphics, methods, stats, utils, reshape2, ggridges, randomForest, pheatmap, ggraph, grDevices, rhdf5, rlang, Rcpp, compositions

LinkingTo Rcpp

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, DT, mclust, scater, ExPosition, BiocStyle, pkgdown

VignetteBuilder knitr

LazyData false

biocViews SingleCell, GeneExpression

BugReports https://github.com/SydneyBioX/CiteFuse/issues

git_url https://git.bioconductor.org/packages/CiteFuse

git_branch RELEASE_3_18

git_last_commit 154770f

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-03
Author Yingxin Lin [aut, cre],
Hani Kim [aut]

Maintainer Yingxin Lin <yingxin.lin@sydney.edu.au>

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiteFuse</td>
<td>2</td>
</tr>
<tr>
<td>CITEseq_example</td>
<td>4</td>
</tr>
<tr>
<td>crossSampleDoublets</td>
<td>4</td>
</tr>
<tr>
<td>DEbubblePlot</td>
<td>5</td>
</tr>
<tr>
<td>DEcomparisonPlot</td>
<td>6</td>
</tr>
<tr>
<td>DEgenes</td>
<td>7</td>
</tr>
<tr>
<td>DEgenesCross</td>
<td>9</td>
</tr>
<tr>
<td>geneADTnetwork</td>
<td>10</td>
</tr>
<tr>
<td>igraphClustering</td>
<td>12</td>
</tr>
<tr>
<td>importanceADT</td>
<td>13</td>
</tr>
<tr>
<td>ligandReceptorTest</td>
<td>14</td>
</tr>
<tr>
<td>lr_pair_subset</td>
<td>16</td>
</tr>
<tr>
<td>normaliseExprs</td>
<td>16</td>
</tr>
<tr>
<td>plotHTO</td>
<td>17</td>
</tr>
<tr>
<td>plotHTOSingle</td>
<td>18</td>
</tr>
<tr>
<td>preprocessing</td>
<td>18</td>
</tr>
<tr>
<td>readFrom10X</td>
<td>19</td>
</tr>
<tr>
<td>reducedDimSNF</td>
<td>20</td>
</tr>
<tr>
<td>sce_control_subset</td>
<td>21</td>
</tr>
<tr>
<td>sce_ctcl_subset</td>
<td>21</td>
</tr>
<tr>
<td>selectDEgenes</td>
<td>22</td>
</tr>
<tr>
<td>spectralClustering</td>
<td>23</td>
</tr>
<tr>
<td>visImportance</td>
<td>24</td>
</tr>
<tr>
<td>visLigandReceptor</td>
<td>25</td>
</tr>
<tr>
<td>visualiseDim</td>
<td>26</td>
</tr>
<tr>
<td>visualiseExprs</td>
<td>27</td>
</tr>
<tr>
<td>visualiseExprsList</td>
<td>28</td>
</tr>
<tr>
<td>visualiseKNN</td>
<td>29</td>
</tr>
<tr>
<td>withinSampleDoublets</td>
<td>30</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>CiteFuse</th>
<th>CiteFuse</th>
</tr>
</thead>
</table>

Description

A function to runSNF for CITE seq data
CiteFuse

Usage

CiteFuse(
 sce,
 altExp_name = "ADT",
 W_list = NULL,
 gene_select = TRUE,
 dist_cal_RNA = "correlation",
 dist_cal_ADT = "propr",
 ADT_subset = NULL,
 K_knn = 20,
 K_knn_Aff = 30,
 sigma = 0.45,
 t = 10,
 metadata_names = NULL,
 verbose = TRUE,
 topN = 2000
)

Arguments

sce a SingleCellExperiment
altExp_name expression name of ADT matrix
W_list affinity list, if it is NULL, the function will calculate it.
gene_select whether highly variable genes will be selected for RNA-seq to calculate similarity matrix using ‘scran’ package
dist_cal_RNA similarity metrics used for RNA matrix
dist_cal_ADT similarity metrics used for ADT matrix
ADT_subset A vector indicates the subset that will be used.
K_knn Number of nearest neighbours
K_knn_Aff Number of nearest neighbors for computing affinity matrix
sigma Variance for local model for computing affinity matrix
t Number of iterations for the diffusion process.
metadata_names A vector indicates the names of metadata returned
verbose whether print out the process
topN top highly variable genes are used variable gene selection (see ‘modelGeneVar’ in ‘scran’ package for more details)

Value

A SingleCellExperiment object with fused matrix results stored

References

Examples

```r
data("sce_ctcl_subset", package = "CiteFuse")
sce_ctcl_subset <- CiteFuse(sce_ctcl_subset)
```

Description

Data from Mimitou et al. ECCITE-seq PBMC control sample data, which is a list of three matrices of RNA, ADT and HTO

Usage

```r
data(CITEseq_example, package = 'CiteFuse')
```

Format

An object of class list of length 3.

Source

Gene Expression Omnibus with the accession code GSE126310.

References

crossSampleDoublets

crossSampleDoublets

Description

A function that perform normalisation for alternative expression

Usage

```r
crossSampleDoublets(sce, altExp_name = NULL, totalExp_threshold = 10)
```
DEbubblePlot

Arguments

sce A SingleCellExperiment object
altExp_name Name of alternative expression that will be used to perform normalisation. If it is NULL, it will set to HTO.
totalExp_threshold the threshold indicates for the HTO less than this threshold will be filtered from the analysis

Value

A SingleCellExperiment Object

Examples

data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
altExp_name = "HTO",
transform = "log")
sce_citeseq <- crossSampleDoublets(sce_citeseq)

DEbubblePlot(de_list)

Arguments

de_list A list of results from 'DE genes ()'

Value

A ggplot to visualise the DE results via bubble plot
Examples

```r
library(S4Vectors)
data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- DEgenes(sce_control_subset,
altExp_name = "none",
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset,
altExp_name = "none")

sce_control_subset <- DEgenes(sce_control_subset,
altExp_name = "ADT",
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset,
altExp_name = "ADT")

rna_DEgenes <- metadata(sce_control_subset)[["DE_res_RNA_filter"]] 
adt_DEgenes <- metadata(sce_control_subset)[["DE_res_ADT_filter"]] 

rna_DEgenes <- lapply(rna_DEgenes, function(x){
  x$name <- gsub("hg19_", "", x$name)
  x})
DEbubblePlot(list(RNA = rna_DEgenes, ADT = adt_DEgenes))
```

Description

A function to visualise the pairwise comparison of p-value in different data modality.

Usage

```r
DEcomparisonPlot(de_list, feature_list)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>de_list</td>
<td>A list including two lists results from <code>DE genes ()</code>.</td>
</tr>
<tr>
<td>feature_list</td>
<td>A list including two lists features indicating the selected subset of features will be visualised</td>
</tr>
</tbody>
</table>
DEgenes

Value

A ggplot2 to visualise the comparison plot of DE.

Examples

```r
library(S4Vectors)
data(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
   group = sce_control_subset$SNF_W_louvain,
   return_all = TRUE,
   exprs_pct = 0.5)
sce_control_subset <- selectDEgenes(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
   altExp_name = "ADT",
   group = sce_control_subset$SNF_W_louvain,
   return_all = TRUE,
   exprs_pct = 0.5)
sce_control_subset <- selectDEgenes(sce_control_subset,
   altExp_name = "ADT")
rna_list <- c("hg19_CD4",
   "hg19_CD8A",
   "hg19_HLA-DRB1",
   "hg19_ITGAX",
   "hg19_NCAM1",
   "hg19_CD27",
   "hg19_CD19")
adt_list <- c("CD4", "CD8", "MHCII (HLA-DR)", "CD11c", "CD56", "CD27", "CD19")
rna_DEgenes_all <- S4Vectors::metadata(sce_control_subset)[["DE_res_RNA"]]
adt_DEgenes_all <- S4Vectors::metadata(sce_control_subset)[["DE_res_ADT"]]
feature_list <- list(RNA = rna_list, ADT = adt_list)
de_list <- list(RNA = rna_DEgenes_all, ADT = adt_DEgenes_all)
DEcomparisonPlot(de_list = de_list,
   feature_list = feature_list)
```

Description

A function to perform DE analysis on CITE seq data
Usage

DEgenes(
 sce,
 altExp_name = "none",
 exprs_value = "logcounts",
 group = NULL,
 method = "wilcox",
 exprs_pct = 0.1,
 exprs_threshold = 0,
 return_all = FALSE,
 pval_adj = 0.05,
 mean_diff = 0,
 pct_diff = 0.1,
 topN = 10
)

Arguments

sce A SingleCellExperiment object
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
exprs_value A character indicates which expression value in assayNames is used.
group A vector indicates the grouping of the data
method A character indicates the method used in DE analysis
exprs_pct A numeric indicates the threshold expression percentage of a gene to be considered in DE analysis
exprs_threshold A numeric indicates the threshold of expression. By default is 0.
return_all Whether return full list of DE genes
pval_adj A numeric indicates the threshold of adjusted p-value.
mean_diff A numeric indicates the threshold of difference of average expression.
pct_diff A numeric indicates the threshold of difference of percentage expression.
topN A numeric indicates the top number of genes will be included in the list.

Value

A SingleCellExeperiment with DE results stored in meta data DE_res

Examples

data(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
 group = sce_control_subset$SNF_W_louvain,
 return_all = TRUE,
 exprs_pct = 0.5)
DEgenesCross

```r
sce_control_subset <- selectDEgenes(sce_control_subset)
```

<table>
<thead>
<tr>
<th>Description</th>
<th>A function to perform DE analysis on a list of CITE seq data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>DEgenesCross(sce_list, altExp_name = "none", exprs_value = "logcounts", method = "wilcox", colData_name = NULL, group_to_test = NULL, exprs_pct = 0.1, exprs_threshold = 0, return_all = FALSE, pval_adj = 0.05, mean_diff = 0, pct_diff = 0.1, topN = 10)</td>
</tr>
<tr>
<td>Arguments</td>
<td>A Slist of ingleCellExperiment object</td>
</tr>
<tr>
<td></td>
<td>A character indicates which expression matrix is used. by default is none (i.e. RNA).</td>
</tr>
<tr>
<td></td>
<td>A character indicates which expression value in assayNames is used.</td>
</tr>
<tr>
<td></td>
<td>A character indicates the method used in DE analysis</td>
</tr>
<tr>
<td></td>
<td>A vector of character indicates the colData that stored the group information of each sce of the sce_list</td>
</tr>
<tr>
<td></td>
<td>A vector of character indicates which group in each sce is used to compared across the sce list.</td>
</tr>
<tr>
<td></td>
<td>A numeric indicates the threshold expression percentage of a gene to be considered in DE analysis</td>
</tr>
<tr>
<td></td>
<td>A numeric indicates the threshold of expression. By default is 0.</td>
</tr>
<tr>
<td></td>
<td>Whether return full list of DE genes</td>
</tr>
<tr>
<td></td>
<td>A numeric indicates the threshold of adjusted p-value.</td>
</tr>
</tbody>
</table>
Description

A function to visualise the features distribution

Usage

```r
geneADTnetwork(
  sce,
  RNA_exprs_value = "logcounts",
  altExp_name = "ADT",
  altExp_exprs_value = "logcounts",
  RNA_feature_subset = NULL,
  ADT_feature_subset = NULL,
  cell_subset = NULL,
  cor_threshold = 0.5,
  cor_method = c("pearson", "kendall", "spearman"),
  RNA_exprs_pct = 0.1,
  ADT_exprs_pct = 0.1,
  RNA_exprs_threshold = 0,
  ADT_exprs_threshold = 0,
  network_layout = NULL,
  return_igraph = FALSE
)
```
Arguments

- `sce`: A singlecellexperiment object
- `RNA_exprs_value`: A character indicates which expression value for RNA in assayNames is used.
- `altExp_name`: A character indicates which expression matrix is used. by default is none (i.e. RNA).
- `altExp_exprs_value`: A character indicates which expression value in assayNames is used.
- `RNA_feature_subset`: A vector of characters indicates the subset of features of RNA that are used for visualisation.
- `ADT_feature_subset`: A vector of characters indicates the subset of features of ADT that are used for visualisation.
- `cell_subset`: A vector of characters indicates the subset of cells that are used for visualisation.
- `cor_threshold`: Thresholds of correlation.
- `cor_method`: A character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.
- `RNA_exprs_pct`: A numeric indicates the threshold expression percentage of a gene to be considered in correlation analysis.
- `ADT_exprs_pct`: A numeric indicates the threshold expression percentage of a gene to be considered in correlation analysis.
- `RNA_exprs_threshold`: A numeric indicates the threshold of RNA expression. By default is 0.
- `ADT_exprs_threshold`: A numeric indicates the threshold of ADT expression. By default is 0.
- `network_layout`: layout of the network.
- `return_igraph`: indicates whether return the igraph object.

Value

A igraph object of gene-ADT network

Examples

```r
library(SingleCellExperiment)
set.seed(2020)
data(sce_control_subset, package = "CiteFuse")
RNA_feature_subset <- sample(rownames(sce_control_subset), 50)
ADT_feature_subset <- rownames(altExp(sce_control_subset, "ADT"))
geneADTnetwork(sce_control_subset,
               RNA_feature_subset = RNA_feature_subset,
               ADT_feature_subset = ADT_feature_subset,
               cor_method = "pearson")
```
igraphClustering

network_layout = igraph::layout_with_fr

igraphClustering

Description

A function to perform igraph clustering

Usage

igraphClustering(
 sce,
 metadata = "SNF_W",
 method = c("louvain", "leiden", "walktrap", "spinglass", "optimal", "leading_eigen",
 "label_prop", "fast_greedy", "edge_betweenness"),
 ...
)

Arguments

sce A singlecellexperiment object
metadata indicates the meta data name of affinity matrix to visualise
method A character indicates the method for finding communities from igraph. Default is louvain clustering.
... Other inputs for the igraph functions

Value

A vector indicates the membership (clustering) results

Examples

data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
SNF_W_louvain <- igraphClustering(sce_control_subset, method = "louvain")
importanceADT

Description

A function to calculate the importance score of ADT

Usage

importanceADT(
 sce,
 altExp_name = "ADT",
 exprs_value = "logcounts",
 method = c("randomForest", "PCA"),
 group = NULL,
 subsample = TRUE,
 times = 10,
 prop = 0.8,
 k_pca = 5,
 remove_first_PC = TRUE,
 ...
)

Arguments

sce A singlecellexperiment object
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
exprs_value A character indicates which expression value in assayNames is used.
method A character indicates the method of ADT importance calculation, either randomForest or PCA
group A vector indicates the grouping of the data (for random forest)
subsample Whether perform subsampling (for random forest)
times A numeric indicates the times of subsampling is performed (for random forest)
prop A numeric indicates the proportion of cells are subsampled from the whole data (for random forest)
k_pca Number of principal component will be used to calculate the loading scores (for PCA)
remove_first_PC A logical input indicates whether the first component will be removed from calculation (for PCA).
... other arguments to ‘randomForest()’ or ‘prcomp()’ function
Details

For random forest, the importance scores are based on features importance. For PCA, it implements the method proposed in Levin et al (based on the loading of features).

Value

A SingleCellExperiment object

References

Examples

data("sce_control_subset", package = "CiteFuse")
sce_control_subset <- importanceADT(sce_control_subset,
group = sce_control_subset$SNF_W_louvain,
subsample = TRUE)

Description

A function to perform ligand receptor analysis

Usage

ligandReceptorTest(
sce,
sce_{ligandReceptor_list},
cluster,
RNA_{exprs_value} = "minMax",
use_{alt_exp} = TRUE,
altExp_{name} = "ADT",
altExp_{exprs_value} = "zi_minMax",
num_permute = 1000,
p_{sig} = 0.05
)
Arguments

sce A singlecellexperiment object
ligandReceptor_list A data.frame indicates the ligand receptor list
cluster A vector indicates the cluster results
RNA_exprs_value A character indicates which expression value for RNA in assayNames is used.
use_alt_exp A logical vector indicates whether receptors expression will use alternative expression matrix to quantify.
altExp_name A character indicates which expression matrix is used. by default is ADT.
altExp_exprs_value A character indicates which expression value in assayNames is used.
num_permute Number of permutation.
p_sig A numeric indicates threshold of the pvalue significance

Value

A SingleCellExperiment object with ligand receptor results

Examples

data(lr_pair_subset, package = "CiteFuse")
data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- normaliseExprs(sce = sce_control_subset,
altExp_name = "ADT",
transform = "zi_minMax")
sce_control_subset <- normaliseExprs(sce = sce_control_subset,
altExp_name = "none",
exprs_value = "logcounts",
transform = "minMax")
sce_control_subset <- ligandReceptorTest(sce = sce_control_subset,
ligandReceptor_list = lr_pair_subset,
cluster = sce_control_subset$SNF_W_louvain,
RNA_exprs_value = "minMax",
use_alt_exp = TRUE,
altExp_name = "ADT",
altExp_exprs_value = "zi_minMax",
num_permute = 100)
lr_pair_subset

A subset of Ligand Receptor Pairs

Description
A subset of Ligand Receptor Pairs

Usage
data(lr_pair_subset, package = 'CiteFuse')

Format
An object of class matrix (inherits from array) with 50 rows and 2 columns.

normaliseExprs

Description
A function that perform normalisation for alternative expression

Usage
normaliseExprs(
 sce,
 altExp_name = NULL,
 exprs_value = "counts",
 transform = c("log", "clr", "zi_minMax", "minMax"),
 log_offset = NULL
)

Arguments
 sce A SingleCellExperiment object
 altExp_name Name of alternative expression that will be used to perform normalisation
 exprs_value A character indicates which expression value in assayNames is used.
 transform type of transformation, either log or clr (Centered log ratio transform)
 log_offset Numeric scalar specifying the pseudo-count to add when log-transforming expression values. Default is 1

Value
 a SingleCellExperiment object
Examples

```r
data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
altExp_name = "ADT",
transform = "log")
```

Description

A function to plot HTO expression

Usage

```r
plotHTO(sce, which_idx = seq_len(2), altExp_name = NULL, ncol = 2)
```

Arguments

- `sce`: sce
- `which_idx`: which_idx
- `altExp_name`: altExp_name
- `ncol`: ncol

Value

A plot visualising the HTO expression

Examples

```r
data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
altExp_name = "HTO",
transform = "log")
plotHTO(sce_citeseq, 1:4)
```
plotHTOSingle

Description

A function to plot HTO expression

Usage

```r
plotHTOSingle(sce, which_idx = seq_len(2), altExp_name = NULL)
```

Arguments

- `sce`
- `which_idx`
- `altExp_name`

Value

A plot visualising the HTO expression

preprocessing

Description

A function to preprocess the list of expression matrix

Usage

```r
preprocessing(
    exprsMat = NULL,
    return_sce = TRUE,
    assay_matrix = 1,
    filter_features = TRUE,
    rowData = NULL,
    colData = NULL
)
```

Description

This function will keep the samples that are common across the list of expression matrix, and filter the features that are all zeros across samples, and finally construct a `SingleCellExperiment` object
Arguments

- `exprsMat`: A list or a matrix indicates the expression matrices of the testing datasets (each matrix must be `matrix` or `dgCMatrix` class)
- `return_sce`: A logical input indicates whether a `SingleCellExperiment` object will be returned
- `assay_matrix`: An integer indicates which list will be used as ‘assay’ input of ‘SingleCellExperiment’
- `filter_features`: A logical input indicates whether the features with all zeros will be removed
- `rowData`: A DataFrame indicates the rowData to be stored in the sce object
- `colData`: A DataFrame indicates the colData to be stored in the sce object

Value

Either a `SingleCellExperiment` object or a preprocessed expression matrix

Examples

```r
data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
```

Description

A function to read the data from 10X

Usage

```r
readFrom10X(
  dir,
  type = c("auto", "sparse", "HDF5"),
  feature_named_by = c("gene_id", "gene_symbol"),
  filter_features = TRUE
)
```

Arguments

- `dir`: A character indicates the directory of the 10X files
- `type`: A character indicates the format of the data, sparse or HDF5
- `feature_named_by`: A character indicates whether the genes will be named by gene_id or gene_symbol
- `filter_features`: A logical input indicates whether the features with all zeros will be removed
Value

A SingleCellExperiment object

Examples

```r
## Not run:
tmpdir <- tempdir()
tenXdata <- "http://cf.10xgenomics.com/samples/cell-exp/3.1.0/connect_5k_pbmc_NGSC3_ch1/
file <- "connect_5k_pbmc_NGSC3_ch1_filtered_feature_bc_matrix.tar.gz"
download.file(paste0(tenXdata, file), file.path(tmpdir, file))
untar(file.path(tmpdir, file),
    exdir = tmpdir)
sce_citeseq_10X <- readFrom10X(file.path(tmpdir, "filtered_feature_bc_matrix/"))
sce_citeseq_10X

## End(Not run)
```

Description

A function to reduce the dimension of the similarity matrix

Usage

```r
reducedDimSNF(sce, metadata = "SNF_W", method = "UMAP", dimNames = NULL, ...)
```

Arguments

- `sce`: A singlecellexperiment object
- `metadata`: indicates the meta data name of affinity matrix to visualise
- `method`: the method of visualisation, which can be UMAP, tSNE and diffusion map
- `dimNames`: indicates the name of the reduced dimension results.
- `...`: other parameters for tsne(), umap()

Value

A SingleCellExperiment object
Examples

data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
sce_control_subset <- reducedDimSNF(sce_control_subset,
 method = "tSNE",
 dimNames = "tSNE_joint")

sce_control_subset A SingleCellExperiment of ECCITE-seq data

Description

Data from Mimitou et al. ECCITE-seq PBMC Control sample data

Usage

data(sce_control_subset, package = 'CiteFuse')

Format

An object of class SingleCellExperiment with 1508 rows and 128 columns.

Source

Gene Expression Omnibus with the accession code GSE126310.

References

sce_ctcl_subset A SingleCellExperiment of ECCITE-seq data

Description

Data from Mimitou et al. ECCITE-seq PBMC CTCL sample data

Usage

data(sce_ctcl_subset, package = 'CiteFuse')

Format

An object of class SingleCellExperiment with 1450 rows and 173 columns.
Source

Gene Expression Omnibus with the accession code GSE126310.

References

Description

A function to select DE genes

Usage

```r
selectDEgenes(
  sce = NULL,
  de_res = NULL,
  altExp_name = "none",
  pval_adj = 0.05,
  mean_diff = 0,
  pct_diff = 0.1,
  topN = 10
)
```

Arguments

- `sce`: A SingleCellExperiment object with DE results stored in meta data DE_res list.
- `de_res`: DE_res returned by DEgenesCross().
- `altExp_name`: A character indicates which expression matrix is used. by default is none (i.e. RNA).
- `pval_adj`: A numeric indicates the threshold of adjusted p-value.
- `mean_diff`: A numeric indicates the threshold of difference of average expression.
- `pct_diff`: A numeric indicates the threshold of difference of percentage expression.
- `topN`: A numeric indicates the top number of genes will be included in the list.

Value

A SingleCellExperiment With filtered DE results in DE_res_filter list of metadata
spectralClustering

Examples

data(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset)

Description

A function to perform spectral clustering

Usage

spectralClustering(affinity, K = 20, delta = 1e-05)

Arguments

affinity An affinity matrix
K number of clusters
delta delta

Value

A list indicates the spectral clustering results

Examples

data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
SNF_W <- S4Vectors::metadata(sce_control_subset)[["SNF_W"]]
SNF_W_clust <- spectralClustering(SNF_W, K = 5)
Description

A function to visualise the features distribution.

Usage

```r
visImportance(
  sce,
  plot = c("boxplot", "heatmap"),
  altExp_name = "ADT",
  exprs_value = "logcounts"
)
```

Arguments

- **sce**: A singlecellexperiment object.
- **plot**: A string indicates the type of the plot (either boxplot or heatmap).
- **altExp_name**: A character indicates which expression matrix is used. By default is none (i.e. RNA).
- **exprs_value**: A character indicates which expression value in assayNames is used.

Value

A plot (either ggplot or pheatmap) to visualise the ADT importance results.

Examples

```r
data("sce_control_subset", package = "CiteFuse")
sce_control_subset <- importanceADT(sce_control_subset,
  group = sce_control_subset$SNF_W_louvain,
  subsample = TRUE)
visImportance(sce_control_subset, plot = "boxplot")
```
Description

A function to visualise ligand receptor analysis

Usage

visLigandReceptor(
 sce,
 type = c("pval_heatmap", "pval_dotplot", "group_network", "group_heatmap",
 "lr_network"),
 receptor_type = NULL
)

Arguments

sce A singlecellexperiment object

type A character indicates the type of the plot for ligand receptor restuls visualisation, option includes "pval_heatmap", "pval_dotplot", "group_network", "group_heatmap", and "lr_network"

receptor_type A character indicates which receptor expression’s ligand receptor results are used to generate the figures.

Value

A plot visualise the ligand receptor results

Examples

data(lr_pair_subset, package = "CiteFuse")
data(sce_control_subset, package = "CiteFuse")

sce_control_subset <- normaliseExprs(sce = sce_control_subset,
 altExp_name = "ADT",
 transform = "zi_minMax")

sce_control_subset <- normaliseExprs(sce = sce_control_subset,
 altExp_name = "none",
 exprs_value = "logcounts",
 transform = "minMax")

sce_control_subset <- ligandReceptorTest(sce = sce_control_subset,
 ligandReceptor_list = lr_pair_subset,
 cluster = sce_control_subset$SNF_W_louvain,
 RNA_exprs_value = "minMax",
 use_alt_exp = TRUE,
altExp_name = "ADT",
altExp_exprs_value = "zi_minMax",
num_permute = 100)
visLigandReceptor(sce_control_subset,
type = "pval_heatmap",
receptor_type = "ADT")

visualiseDim

Description
A function to visualise the reduced dimension

Usage
visualiseDim(
 sce,
 dimNames = NULL,
 colour_by = NULL,
 shape_by = NULL,
 data_from = c("colData", "assay", "altExp"),
 assay_name = NULL,
 altExp_name = NULL,
 altExp_assay_name = NULL,
 dim = seq_len(2)
)

Arguments
sce A singlecellexperiment object
dimNames indicates the name of the reduced dimension results.
colour_by A character indicates how the cells coloured by. The information either stored in colData, assay, or altExp.
shape_by A character indicates how the cells shaped by. The information either stored in colData, assay, or altExp.
data_from A character indicates where the colour by data stored
assay_name A character indicates the assay name of the expression
altExp_name A character indicates the name of alternative expression
altExp_assay_name A character indicates the assay name of alternative expression
dim a vector of numeric with length of 2 indicates which component is being plot

Value
A ggplot of the reduced dimension visualisation
Examples

data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
sce_control_subset <- reducedDimSNF(sce_control_subset,
 method = "tSNE",
 dimNames = "tSNE_joint")
visualiseDim(sce_control_subset, dimNames = "tSNE_joint",
 colour_by = "SNF_W_clust")

visualiseExprs

Description

A function to visualise the features distribution

Usage

visualiseExprs(
 sce,
 plot = c("boxplot", "violin", "jitter", "density", "pairwise"),
 altExp_name = c("none"),
 exprs_value = "logcounts",
 group_by = NULL,
 facet_by = NULL,
 feature_subset = NULL,
 cell_subset = NULL,
 n = NULL,
 threshold = NULL
)

Arguments

sce A singlecellexperiment object
plot Type of plot, includes boxplot, violin, jitter, density, and pairwise. By default is boxplot
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
exprs_value A character indicates which expression value in assayNames is used.
group_by A character indicates how is the expression will be group in the plots (stored in colData).
facet_by A character indicates how is the expression will be lay out panels in a grid in the plots (stored in colData).
feature_subset A vector of characters indicates the subset of features that are used for visualisation
cell_subset A vector of characters indicates the subset of cells that are used for visualisation
n A numeric indicates the top expressed features to show.
threshold Thresholds of high expression for features (only is used for pairwise plot).

Value
A ggplot to visualise the features distribution

Examples

data(sce_control_subset)
visualiseExprs(sce_control_subset,
plot = "boxplot",
group_by = "SNF_W_louvain",
feature_subset = c("hg19_CD8A"))

visualiseExprs(sce_control_subset,
plot = "density",
altExp_name = "ADT",
group_by = "SNF_W_louvain",
feature_subset = c("CD8", "CD4"))
visualiseKNN

Arguments

sce_list A list of SingleCellExperiment object
plot Type of plot, includes boxplot, violin, jitter, density, and pairwise. By default is boxplot
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
exprs_value A character indicates which expression value in assayNames is used.
group_by A character indicates how is the expression will be group in the plots (stored in colData).
feature_subset A vector of characters indicates the subset of features that are used for visualisation
cell_subset A vector of characters indicates the subset of cells that are used for visualisation
n A numeric indicates the top expressed features to show.

Value

A ggplot to visualise te features distribution

Examples

data(sce_control_subset, package = "CiteFuse")
data(sce_ctcl_subset, package = "CiteFuse")
visualiseExprsList(sce_list = list(control = sce_control_subset,
ctcl = sce_ctcl_subset),
plot = "boxplot",
altExp_name = "none",
exprs_value = "logcounts",
feature_subset = c("hg19_CD8A"),
group_by = c("SNF_W_louvain", "SNF_W_louvain"))

data(sce_control_subset, package = "CiteFuse")
data(sce_ctcl_subset, package = "CiteFuse")
visualiseKNN(sce, colour_by = NULL, metadata = "SNF_W")

Description

A function to perform louvain clustering

Usage

visualiseKNN(sce, colour_by = NULL, metadata = "SNF_W")
withinSampleDoublets

Arguments

sce A singlecellexperiment object
colour_by the name of coldata that is used to colour the node
metadata indicates the meta data name of affinity matrix to visualise

Value

A igraph plot

Examples

data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
SNF_W_louvain <- igraphClustering(sce_control_subset, method = "louvain")
visualiseKNN(sce_control_subset, colour_by = "SNF_W_louvain")

withinSampleDoublets

Description

doublet identification within batch

Usage

withinSampleDoublets(sce, altExp_name = NULL, eps = 200, minPts = 50)

Arguments

sce a SingleCellExperiment
altExp_name expression name of HTO matrix
eps eps of DBSCAN
minPts minPts of DBSCAN

Value

A SingleCellExperiment object
Examples

data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
 altExp_name = "HTO",
 transform = "log")
sce_citeseq <- crossSampleDoublets(sce_citeseq)
sce_citeseq <- withinSampleDoublets(sce_citeseq,
 minPts = 10)
Index

datasets
- CITeseq_example, 4
- lr_pair_subset, 16
- sce_control_subset, 21
- sce_ctcl_subset, 21

- CiteFuse, 2
- CITeseq_example, 4
- crossSampleDoublets, 4

- DEbubblePlot, 5
- DEcomparisonPlot, 6
- DEgenes, 7
- DEgenesCross, 9

- geneADTnetwork, 10

- igraphClustering, 12
- importanceADT, 13

- ligandReceptorTest, 14
- lr_pair_subset, 16

- normaliseExprs, 16

- plotHTO, 17
- plotHTOSingle, 18
- preprocessing, 18

- readFrom10X, 19
- reducedDimSNF, 20

- sce_control_subset, 21
- sce_ctcl_subset, 21

- selectDEgenes, 22
- spectralClustering, 23

- visImportance, 24
- visLigandReceptor, 25
- visualiseDim, 26
- visualiseExprs, 27

- visualiseExprsList, 28
- visualiseKNN, 29

- withinSampleDoublets, 30