Package ‘CiteFuse’

February 18, 2024

Type Package
Title CiteFuse: multi-modal analysis of CITE-seq data
Version 1.14.0
Description CiteFuse package implements a suite of methods and tools for CITE-seq data from pre-
processing to integrative analytics, including doublet detection, network-based modality integra-
tion, cell type clustering, differential RNA and protein expression analysis, ADT evaluation, lig-
and-receptor interaction analysis, and interactive web-based visualisation of the analyses.
License GPL-3
Encoding UTF-8
Depends R (>= 4.0)
Imports SingleCellExperiment (>= 1.8.0), SummarizedExperiment (>=
 1.16.0), Matrix, mixtools, cowplot, ggplot2, gridExtra, grid,
dbscan, uwot, Rtsne, S4Vectors (>= 0.24.0), igraph, scales,
scran (>= 1.14.6), graphics, methods, stats, utils, reshape2,
ggridges, randomForest, pheatmap, ggraph, grDevices, rhdf5,
rlang, Rcpp, compositions
LinkingTo Rcpp
RoxygenNote 7.2.3
Suggests knitr, rmarkdown, DT, mclust, scater, ExPosition, BiocStyle,
pkgdown
VignetteBuilder knitr
LazyData false
biocViews SingleCell, GeneExpression

BugReports https://github.com/SydneyBioX/CiteFuse/issues
git_url https://git.bioconductor.org/packages/CiteFuse
git_branch RELEASE_3_18
git_last_commit 154770f
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-02-18
Description

A function to runSNF for CITE seq data
Usage

```r
CiteFuse(
  sce,
  altExp_name = "ADT",
  W_list = NULL,
  gene_select = TRUE,
  dist_cal_RNA = "correlation",
  dist_cal_ADT = "propr",
  ADT_subset = NULL,
  K_knn = 20,
  K_knn_Aff = 30,
  sigma = 0.45,
  t = 10,
  metadata_names = NULL,
  verbose = TRUE,
  topN = 2000
)
```

Arguments

- `sce` a SingleCellExperiment
- `altExp_name` expression name of ADT matrix
- `W_list` affinity list, if it is NULL, the function will calculate it.
- `gene_select` whether highly variable genes will be selected for RNA-seq to calculate similarity matrix using 'scran' package
- `dist_cal_RNA` similarity metrics used for RNA matrix
- `dist_cal_ADT` similarity metrics used for ADT matrix
- `ADT_subset` A vector indicates the subset that will be used.
- `K_knn` Number of nearest neighbours
- `K_knn_Aff` Number of nearest neighbors for computing affinity matrix
- `sigma` Variance for local model for computing affinity matrix
- `t` Number of iterations for the diffusion process.
- `metadata_names` A vector indicates the names of metadata returned
- `verbose` whether print out the process
- `topN` top highly variable genes are used variable gene selection (see ‘modelGeneVar’ in ‘scran’ package for more details)

Value

A SingleCellExperiment object with fused matrix results stored

References

Examples

data("sce_ctcl_subset", package = "CiteFuse")
sce_ctcl_subset <- CiteFuse(sce_ctcl_subset)

CITEseq_example

A subset of ECCITE-seq data (control)

Description

Data from Mimitou et al. ECCITE-seq PBMC control sample data, which is a list of three matrices of RNA, ADT and HTO

Usage

data(CITEseq_example, package = 'CiteFuse')

Format

An object of class `list` of length 3.

Source

Gene Expression Omnibus with the accession code GSE126310.

References

crossSampleDoublets

Description

A function that perform normalisation for alternative expression

Usage

crossSampleDoublets(sce, altExp_name = NULL, totalExp_threshold = 10)
Arguments

sce A SingleCellExperiment object
altExp_name Name of alternative expression that will be used to perform normalisation. If it is NULL, it will set to HTO.
totalExp_threshold the threshold indicates for the HTO less than this threshold will be filtered from the analysis

Value

A SingleCellExperiment Object

Examples

data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
altExp_name = "HTO",
transform = "log")
sce_citeseq <- crossSampleDoublets(sce_citeseq)

DEbubblePlot

Description

A function to generate circlepack plot to visualise the marker for each cluster

Usage

DEbubblePlot(de_list)

Arguments

de_list A list of results from 'DE genes ()'

Value

A ggplot to visualise the DE results via bubble plot
Examples

```r
library(S4Vectors)
data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- DEgenes(sce_control_subset,
altExp_name = "none",
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset,
altExp_name = "none")

sce_control_subset <- DEgenes(sce_control_subset,
altExp_name = "ADT",
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset,
altExp_name = "ADT")

rna_DEgenes <- metadata(sce_control_subset)[["DE_res_RNA_filter"]]
adt_DEgenes <- metadata(sce_control_subset)[["DE_res_ADT_filter"]]

rna_DEgenes <- lapply(rna_DEgenes, function(x){
  x$name <- gsub("hg19_", "", x$name)
  x})
DEbubblePlot(list(RNA = rna_DEgenes, ADT = adt_DEgenes))
```

DEcomparisonPlot

A function to visualise the pairwise comparison of pvalue in different data modality.

Usage

```r
DEcomparisonPlot(de_list, feature_list)
```

Arguments

- **de_list** A list including two lists results from `DEgenes()`.
- **feature_list** A list including two lists features indicating the selected subset of features will be visualised.
DEgenes

Value
A ggplot2 to visualise the comparison plot of DE.

Examples

```r
library(S4Vectors)
data(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
altExp_name = "ADT",
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset,
altExp_name = "ADT")
rna_list <- c("hg19_CD4",
"hg19_CD8A",
"hg19_HLA-DRB1",
"hg19_ITGAX",
"hg19_NCAM1",
"hg19_CD27",
"hg19_CD19")

adt_list <- c("CD4", "CD8", "MHCII (HLA-DR)", "CD11c", "CD56", "CD27", "CD19")

rna_DEgenes_all <- S4Vectors::metadata(sce_control_subset)[["DE_res_RNA"]]
adt_DEgenes_all <- S4Vectors::metadata(sce_control_subset)[["DE_res_ADT"]]

feature_list <- list(RNA = rna_list, ADT = adt_list)
de_list <- list(RNA = rna_DEgenes_all, ADT = adt_DEgenes_all)
DEcomparisonPlot(de_list = de_list,
feature_list = feature_list)
```

DEgenes

Description
A function to perform DE analysis on CITE seq data
Usage

DEgenes(
 sce,
 altExp_name = "none",
 exprs_value = "logcounts",
 group = NULL,
 method = "wilcox",
 exprs_pct = 0.1,
 exprs_threshold = 0,
 return_all = FALSE,
 pval_adj = 0.05,
 mean_diff = 0,
 pct_diff = 0.1,
 topN = 10
)

Arguments

sce A SingleCellExperiment object
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
eprs_value A character indicates which expression value in assayNames is used.
group A vector indicates the grouping of the data
method A character indicates the method used in DE analysis
eprs_pct A numeric indicates the threshold expression percentage of a gene to be considered in DE analysis
eprs_threshold A numeric indicates the threshold of expression. By default is 0.
return_all Whether return full list of DE genes
pval_adj A numeric indicates the threshold of adjusted p-value.
mean_diff A numeric indicates the threshold of difference of average expression.
pct_diff A numeric indicates the threshold of difference of percentage expression.
topN A numeric indicates the top number of genes will be included in the list.

Value

A SingleCellExeperiment with DE results stored in meta data DE_res

Examples

data(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
 group = sce_control_subset$SNF_W_louvain,
 return_all = TRUE,
 exprs_pct = 0.5)
sce_control_subset <- selectDEgenes(sce_control_subset)

DEgenesCross <- DEgenesCross

Description
A function to perform DE analysis on a list of CITE seq data

Usage
DEgenesCross(
 sce_list,
 altExp_name = "none",
 exprs_value = "logcounts",
 method = "wilcox",
 colData_name = NULL,
 group_to_test = NULL,
 exprs_pct = 0.1,
 exprs_threshold = 0,
 return_all = FALSE,
 pval_adj = 0.05,
 mean_diff = 0,
 pct_diff = 0.1,
 topN = 10
)

Arguments
sce_list A Slist of ingleCellExperiment object
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
exprs_value A character indicates which expression value in assayNames is used.
method A character indicates the method used in DE analysis
colData_name A vector of character indicates the colData that stored the group information of each sce of the sce_list
group_to_test A vector of character indicates which group in each sce is used to compared across the sce list.
exprs_pct A numeric indicates the threshold expression percentage of a gene to be considered in DE analysis
exprs_threshold A numeric indicates the threshold of expression. By default is 0.
return_all Whether return full list of DE genes
pval_adj A numeric indicates the threshold of adjusted p-value.
mean_diff A numeric indicates the threshold of difference of average expression.
pct_diff A numeric indicates the threshold of difference of percentage expression.
topN A numeric indicates the top number of genes will be included in the list.

Value
A SingleCellExeperiment with DE results stored in meta data DE_res

Examples

data("sce_control_subset", package = "CiteFuse")
data("sce_ctcl_subset", package = "CiteFuse")

de_res <- DEgenesCross(sce_list = list(control = sce_control_subset,
cctl = sce_ctcl_subset),
colData_name = c("SNF_W_louvain", "SNF_W_louvain"),
group_to_test = c("2", "6"))

geneADTnetwork

geneADTnetwork

Description
A function to visualise the features distribution

Usage
geneADTnetwork(
 sce,
 RNA_exprs_value = "logcounts",
 altExp_name = "ADT",
 altExp_exprs_value = "logcounts",
 RNA_feature_subset = NULL,
 ADT_feature_subset = NULL,
 cell_subset = NULL,
 cor_threshold = 0.5,
 cor_method = c("pearson", "kendall", "spearman"),
 RNA_exprs_pct = 0.1,
 ADT_exprs_pct = 0.1,
 RNA_exprs_threshold = 0,
 ADT_exprs_threshold = 0,
 network_layout = NULL,
 return_igraph = FALSE
)
geneADTnetwork

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sce</td>
<td>A singlecellexperiment object</td>
</tr>
<tr>
<td>RNA_exprs_value</td>
<td>A character indicates which expression value for RNA in assayNames is used.</td>
</tr>
<tr>
<td>altExp.name</td>
<td>A character indicates which expression matrix is used. by default is none (i.e. RNA).</td>
</tr>
<tr>
<td>altExp_exprs_value</td>
<td>A character indicates which expression value in assayNames is used.</td>
</tr>
<tr>
<td>RNA_feature_subset</td>
<td>A vector of characters indicates the subset of features of RNA that are used for visualisation</td>
</tr>
<tr>
<td>ADT_feature_subset</td>
<td>A vector of characters indicates the subset of features of ADT that are used for visualisation</td>
</tr>
<tr>
<td>cell_subset</td>
<td>A vector of characters indicates the subset of cells that are used for visualisation</td>
</tr>
<tr>
<td>cor_threshold</td>
<td>Thresholds of correlation.</td>
</tr>
<tr>
<td>cor_method</td>
<td>A character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.</td>
</tr>
<tr>
<td>RNA_exprs_pct</td>
<td>A numeric indicates the threshold expression percentage of a gene to be considered in correlation analysis</td>
</tr>
<tr>
<td>ADT_exprs_pct</td>
<td>A numeric indicates the threshold expression percentage of a gene to be considered in correlation analysis</td>
</tr>
<tr>
<td>RNA_exprs_threshold</td>
<td>A numeric indicates the threshold of RNA expression. By default is 0.</td>
</tr>
<tr>
<td>ADT_exprs_threshold</td>
<td>A numeric indicates the threshold of ADT expression. By default is 0.</td>
</tr>
<tr>
<td>network_layout</td>
<td>layout of the network</td>
</tr>
<tr>
<td>return_igraph</td>
<td>indicates whether return the igraph object</td>
</tr>
</tbody>
</table>

Value

A igraph object of gene-ADT network

Examples

library(SingleCellExperiment)
set.seed(2020)
data(sce_control_subset, package = "CiteFuse")
RNA_feature_subset <- sample(rownames(sce_control_subset), 50)
ADT_feature_subset <- rownames(altExp(sce_control_subset, "ADT"))
geneADTnetwork(sce_control_subset,
RNA_feature_subset = RNA_feature_subset,
ADT_feature_subset = ADT_feature_subset,
cor_method = "pearson",
return_igraph = TRUE)
igraphClustering

Description

A function to perform igraph clustering

Usage

igraphClustering(
 sce,
 metadata = "SNF_W",
 method = c("louvain", "leiden", "walktrap", "spinglass", "optimal", "leading_eigen",
 "label_prop", "fast_greedy", "edge_betweenness"),
 ...
)

Arguments

sce A singlecellexperiment object
metadata indicates the meta data name of affinity matrix to visualise
method A character indicates the method for finding communities from igraph. Default is louvain clustering.
... Other inputs for the igraph functions

Value

A vector indicates the membership (clustering) results

Examples

data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
SNF_W_louvain <- igraphClustering(sce_control_subset, method = "louvain")
importanceADT

Description

A function to calculate the importance score of ADT

Usage

importanceADT(
 sce,
 altExp_name = "ADT",
 exprs_value = "logcounts",
 method = c("randomForest", "PCA"),
 group = NULL,
 subsample = TRUE,
 times = 10,
 prop = 0.8,
 k_pca = 5,
 remove_first_PC = TRUE,
 ...
)

Arguments

sce A singlecellexperiment object
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
exprs_value A character indicates which expression value in assayNames is used.
method A character indicates the method of ADT importance calculation, either randomForest or PCA
group A vector indicates the grouping of the data (for random forest)
subsample Whether perform subsampling (for random forest)
times A numeric indicates the times of subsampling is performed (for random forest)
prop A numeric indicates the proportion of cells are subsampled from the whole data (for random forest)
k_pca Number of principal component will be used to calculate the loading scores (for PCA)
remove_first_PC A logical input indicates whether the first component will be removed from calculation (for PCA).
... other arguments to ‘randomForest()‘ or ‘prcomp()‘ function
ligandReceptorTest

Details
For random forest, the importance scores are based on features importance. For PCA, it implements the method proposed in Levin et al (based on the loading of features).

Value
A SingleCellExperiment object

References

Examples
data("sce_control_subset", package = "CiteFuse")
sce_control_subset <- importanceADT(sce_control_subset,
group = sce_control_subset$SNF_W_louvain,
subsample = TRUE)

Description
A function to perform ligand receptor analysis

Usage
ligandReceptorTest(
sce,
ligandReceptor_list,
cluster,
RNA_exprs_value = "minMax",
use_alt_exp = TRUE,
altExp_name = "ADT",
altExp_exprs_value = "zi_minMax",
num_permute = 1000,
p_sig = 0.05
)

ligandReceptorTest

Arguments

sce A singlecellexperiment object

ligandReceptor_list A data.frame indicates the ligand receptor list

cluster A vector indicates the cluster results

RNA_exprs_value A character indicates which expression value for RNA in assayNames is used.

use_alt_exp A logical vector indicates whether receptors expression will use alternative expression matrix to quantify.

altExp_name A character indicates which expression matrix is used. by default is ADT.

altExp_exprs_value A character indicates which expression value in assayNames is used.

num_permute Number of permutation.

p_sig A numeric indicates threshold of the pvalue significance

Value

A SingleCellExperiment object with ligand receptor results

Examples

data(lr_pair_subset, package = "CiteFuse")
data(sce_control_subset, package = "CiteFuse")

sce_control_subset <- normaliseExprs(sce = sce_control_subset,
altExp_name = "ADT",
transform = "zi_minMax")

sce_control_subset <- normaliseExprs(sce = sce_control_subset,
altExp_name = "none",
exprs_value = "logcounts",
transform = "minMax")

sce_control_subset <- ligandReceptorTest(sce = sce_control_subset,
ligandReceptor_list = lr_pair_subset,
cluster = sce_control_subset$SNF_W_louvain,
RNA_exprs_value = "minMax",
use_alt_exp = TRUE,
altExp_name = "ADT",
altExp_exprs_value = "zi_minMax",
um_permute = 100)
lr_pair_subset A subset of Ligand Receptor Pairs

Description
A subset of Ligand Receptor Pairs

Usage
data(lr_pair_subset, package = 'CiteFuse')

Format
An object of class matrix (inherits from array) with 50 rows and 2 columns.

normaliseExprs normaliseExprs

Description
A function that perform normalisation for alternative expression

Usage
normaliseExprs(
sce,
altExp_name = NULL,
exprs_value = "counts",
transform = c("log", "clr", "zi_minMax", "minMax"),
log_offset = NULL
)

Arguments
sce A SingleCellExperiment object
altExp_name Name of alternative expression that will be used to perform normalisation
exprs_value A character indicates which expression value in assayNames is used.
transform type of transformation, either log or clr (Centered log ratio transform)
log_offset Numeric scalar specifying the pseudo-count to add when log-transforming expression values. Default is 1

Value
a SingleCellExperiment object
Examples

data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
altExp_name = "ADT",
transform = "log")

plotHTO(sce_citeseq, 1:4)

Description

A function to plot HTO expression

Usage

plotHTO(sce, which_idx = seq_len(2), altExp_name = NULL, ncol = 2)

Arguments

sce sce
which_idx which_idx
altExp_name altExp_name
ncol ncol

Value

A plot visualising the HTO expression

Examples

data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
altExp_name = "HTO",
transform = "log")
plotHTO(sce_citeseq, 1:4)
plotHTOSingle

Description

A function to plot HTO expression

Usage

```r
plotHTOSingle(sce, which_idx = seq_len(2), altExp_name = NULL)
```

Arguments

- `sce`: sce
- `which_idx`: which_idx
- `altExp_name`: altExp_name

Value

A plot visualising the HTO expression

preprocessing

A function to preprocess the list of expression matrix

Description

This function will keep the samples that are common across the list of expression matrix, and filter the features that are all zeros across samples, and finally construct a `SingleCellExperiment` object

Usage

```r
preprocessing(
  exprsMat = NULL,
  return_sce = TRUE,
  assay_matrix = 1,
  filter_features = TRUE,
  rowData = NULL,
  colData = NULL
)
```
Arguments

- `exprsMat` A list or a matrix indicates the expression matrices of the testing datasets (each matrix must be matrix or dgCMatrix class)
- `return_sce` A logical input indicates whether a SingleCellExperiment object will be returned
- `assay_matrix` A integer indicates which list will be used as ‘assay’ input of ‘SingleCellExperiment’
- `filter_features` A logical input indicates whether the features with all zeros will be removed
- `rowData` A DataFrame indicates the rowData to be stored in the sce object
- `colData` A DataFrame indicates the colData to be stored in the sce object

Value

either a SingleCellExperiment object or a preprocessed expression matrix

Examples

data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)

Description

A function to read the data from 10X

Usage

```r
readFrom10X(
  dir,
  type = c("auto", "sparse", "HDF5"),
  feature_named_by = c("gene_id", "gene_symbol"),
  filter_features = TRUE
)
```

Arguments

- `dir` A character indicates the directory of the 10X files
- `type` A character indicates the format of the data, sparse or HDF5
- `feature_named_by` A character indicates whehter the genes will be named by gene_id or gene_symbol
- `filter_features` A logical input indicates whether the features with all zeros will be removed
reducedDimSNF

Value

A SingleCellExperiment object

Examples

Not run:
```r
tmpdir <- tempdir()
tenXdata <- "http://cf.10xgenomics.com/samples/cell-exp/3.1.0/connect_5k_pbmc_NGSC3_ch1/
file <- "connect_5k_pbmc_NGSC3_ch1_filtered_feature_bc_matrix.tar.gz"
download.file(paste0(tenXdata, file), file.path(tmpdir, file))
untar(file.path(tmpdir, file),
    exdir = tmpdir)
sce_citeseq_10X <- readFrom10X(file.path(tmpdir,  
    "filtered_feature_bc_matrix/"))
sce_citeseq_10X

## End(Not run)
```

reducedDimSNF

Description

A function to reduce the dimension of the similarity matrix

Usage

reducedDimSNF(sce, metadata = "SNF_W", method = "UMAP", dimNames = NULL, ...)

Arguments

- **sce**: A singlecellExperiment object
- **metadata**: indicates the meta data name of affinity matrix to visualise
- **method**: the method of visualisation, which can be UMAP, tSNE and diffusion map
- **dimNames**: indicates the name of the reduced dimension results.
- **...**: other parameters for tsne(), umap()

Value

A SingleCellExperiment object
Examples

```r
data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
sce_control_subset <- reducedDimSNF(sce_control_subset,
  method = "tSNE",
  dimNames = "tSNE_joint")
```

sce_control_subset
A SingleCellExperiment of ECCITE-seq data

Description

Data from Mimitou et al. ECCITE-seq PBMC Control sample data

Usage

```r
data(sce_control_subset, package = 'CiteFuse')
```

Format

An object of class `SingleCellExperiment` with 1508 rows and 128 columns.

Source

Gene Expression Omnibus with the accession code GSE126310.

References

sce_ctcl_subset
A SingleCellExperiment of ECCITE-seq data

Description

Data from Mimitou et al. ECCITE-seq PBMC CTCL sample data

Usage

```r
data(sce_ctcl_subset, package = 'CiteFuse')
```

Format

An object of class `SingleCellExperiment` with 1450 rows and 173 columns.
Source

Gene Expression Omnibus with the accession code GSE126310.

References

Description

A function to select DE genes

Usage

```r
selectDEgenes(
  sce = NULL,
  de_res = NULL,
  altExp_name = "none",
  pval_adj = 0.05,
  mean_diff = 0,
  pct_diff = 0.1,
  topN = 10
)
```

Arguments

- `sce`: A SingleCellExperiment object with DE results stored in meta data DE_res list.
- `de_res`: DE_res returned by DEgenesCross().
- `altExp_name`: A character indicates which expression matrix is used. by default is none (i.e. RNA).
- `pval_adj`: A numeric indicates the threshold of adjusted p-value.
- `mean_diff`: A numeric indicates the threshold of difference of average expression.
- `pct_diff`: A numeric indicates the threshold of difference of percentage expression.
- `topN`: A numeric indicates the top number of genes will be included in the list.

Value

A SingleCellExperiment With filtered DE results in DE_res_filter list of metadata
spectralClustering

Examples

```r
data(sce_control_subset)
sce_control_subset <- DEgenes(sce_control_subset,
group = sce_control_subset$SNF_W_louvain,
return_all = TRUE,
exprs_pct = 0.5)

sce_control_subset <- selectDEgenes(sce_control_subset)
```

spectralClustering spectralClustering

Description

A function to perform spectral clustering

Usage

```r
spectralClustering(affinity, K = 20, delta = 1e-05)
```

Arguments

- **affinity**: An affinity matrix
- **K**: number of clusters
- **delta**: delta

Value

A list indicates the spectral clustering results

Examples

```r
data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
SNF_W <- S4Vectors::metadata(sce_control_subset)[["SNF_W"]]
SNF_W_clust <- spectralClustering(SNF_W, K = 5)
```
Description

A function to visualise the features distribution

Usage

visImportance(
 sce,
 plot = c("boxplot", "heatmap"),
 altExp_name = "ADT",
 exprs_value = "logcounts"
)

Arguments

sce A singlecellexperiment object
plot A string indicates the type of the plot (either boxplot or heatmap)
altExp_name A character indicates which expression matrix is used. by default is none (i.e. RNA).
exprs_value A character indicates which expression value in assayNames is used.

Value

A plot (either ggplot or pheatmap) to visualise the ADT importance results

Examples

data("sce_control_subset", package = "CiteFuse")
sce_control_subset <- importanceADT(sce_control_subset,
group = sce_control_subset$SNF_W_louvain,
subsample = TRUE)
visImportance(sce_control_subset, plot = "boxplot")
visLigandReceptor

Description

A function to visualise ligand receptor analysis

Usage

visLigandReceptor(
 sce,
 type = c("pval_heatmap", "pval_dotplot", "group_network", "group_heatmap",
 "lr_network"),
 receptor_type = NULL
)

Arguments

sce A singlecellexperiment object

type A character indicates the type of the plot for ligand receptor result's visualisation, option includes "pval_heatmap", "pval_dotplot", "group_network", "group_heatmap", and "lr_network"

receptor_type A character indicates which receptor expression's ligand receptor results are used to generate the figures.

Value

A plot visualise the ligand receptor results

Examples

data(lr_pair_subset, package = "CiteFuse")
data(sce_control_subset, package = "CiteFuse")

sce_control_subset <- normaliseExprs(sce = sce_control_subset,
 altExp_name = "ADT",
 transform = "zi_minMax")

sce_control_subset <- normaliseExprs(sce = sce_control_subset,
 altExp_name = "none",
 exprs_value = "logcounts",
 transform = "minMax")

sce_control_subset <- ligandReceptorTest(sce = sce_control_subset,
 ligandReceptor_list = lr_pair_subset,
 cluster = sce_control_subset$SNF_W_louvain,
 RNA_exprs_value = "minMax",
 use_alt_exp = TRUE,
visualiseDim

```r
altExp_name = "ADT",
altExp_exprs_value = "zi_minMax",
num_permute = 100)
visLigandReceptor(sce_control_subset,
type = "pval_heatmap",
receptor_type = "ADT")
```

Description

A function to visualise the reduced dimension

Usage

```r
visualiseDim(
  sce,
  dimNames = NULL,
  colour_by = NULL,
  shape_by = NULL,
  data_from = c("colData", "assay", "altExp"),
  assay_name = NULL,
  altExp_name = NULL,
  altExp_assay_name = NULL,
  dim = seq_len(2)
)
```

Arguments

- **sce**
 - A singlecellexperiment object
- **dimNames**
 - indicates the name of the reduced dimension results.
- **colour_by**
 - A character indicates how the cells coloured by. The information either stored in colData, assay, or altExp.
- **shape_by**
 - A character indicates how the cells shaped by. The information either stored in colData, assay, or altExp.
- **data_from**
 - A character indicates where the colour by data stored
- **assay_name**
 - A character indicates the assay name of the expression
- **altExp_name**
 - A character indicates the name of alternative expression
- **altExp_assay_name**
 - A character indicates the assay name of alternative expression
- **dim**
 - a vector of numeric with length of 2 indicates which component is being plot

Value

A ggplot of the reduced dimension visualisation
Examples

```r
data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
sce_control_subset <- reducedDimSNF(sce_control_subset, 
    method = "tSNE",
    dimNames = "tSNE_joint")
visualiseDim(sce_control_subset, dimNames = "tSNE_joint",
    colour_by = "SNF_W_clust")
```

Description

A function to visualise the features distribution.

Usage

```r
visualiseExprs(
    sce, 
    plot = c("boxplot", "violin", "jitter", "density", "pairwise"),
    altExp_name = c("none"),
    exprs_value = "logcounts",
    group_by = NULL,
    facet_by = NULL,
    feature_subset = NULL,
    cell_subset = NULL,
    n = NULL,
    threshold = NULL
)
```

Arguments

- **sce** A singlecellexperiment object
- **plot** Type of plot, includes boxplot, violin, jitter, density, and pairwise. By default is boxplot
- **altExp_name** A character indicates which expression matrix is used. by default is none (i.e. RNA).
- **exprs_value** A character indicates which expression value in assayNames is used.
- **group_by** A character indicates how is the expression will be group in the plots (stored in colData).
- **facet_by** A character indicates how is the expression will be lay out panels in a grid in the plots (stored in colData).
- **feature_subset** A vector of characters indicates the subset of features that are used for visualisation
cell_subset A vector of characters indicates the subset of cells that are used for visualisation
n A numeric indicates the top expressed features to show.
threshold Thresholds of high expression for features (only is used for pairwise plot).

Value

A ggplot to visualise the features distribution

Examples

data(sce_control_subset)
visualiseExprs(sce_control_subset,
plot = "boxplot",
group_by = "SNF_W_louvain",
feature_subset = c("hg19_CD8A"))

visualiseExprs(sce_control_subset,
plot = "density",
altExp_name = "ADT",
group_by = "SNF_W_louvain",
feature_subset = c("CD8", "CD4"))
visualiseKNN

Arguments

- **sce_list**
 - A list of SingleCellExperiment object

- **plot**
 - Type of plot, includes boxplot, violin, jitter, density, and pairwise. By default is boxplot

- **altExp_name**
 - A character indicates which expression matrix is used. By default is none (i.e. RNA).

- **exprs_value**
 - A character indicates which expression value in assayNames is used.

- **group_by**
 - A character indicates how is the expression will be group in the plots (stored in colData).

- **feature_subset**
 - A vector of characters indicates the subset of features that are used for visualisation

- **cell_subset**
 - A vector of characters indicates the subset of cells that are used for visualisation

- **n**
 - A numeric indicates the top expressed features to show.

Value

A ggplot to visualise the features distribution

Examples

```r
data(sce_control_subset, package = "CiteFuse")
data(sce_ctcl_subset, package = "CiteFuse")
visualiseExprsList(sce_list = list(control = sce_control_subset,
                                   ctcl = sce_ctcl_subset),
                   plot = "boxplot",
                   altExp_name = "none",
                   exprs_value = "logcounts",
                   feature_subset = c("hg19_CD8A"),
                   group_by = c("SNF_W_louvain", "SNF_W_louvain"))
```

Description

A function to perform louvain clustering

Usage

```r
visualiseKNN(sce, colour_by = NULL, metadata = "SNF_W")
```
withinSampleDoublets

Arguments

- **sce**: A singlecellexperiment object
- **colour_by**: the name of coldata that is used to colour the node
- **metadata**: indicates the meta data name of affinity matrix to visualise

Value

A igraph plot

Examples

```r
data(sce_control_subset, package = "CiteFuse")
sce_control_subset <- CiteFuse(sce_control_subset)
SNF_W_louvain <- igraphClustering(sce_control_subset,
method = "louvain")
visualiseKNN(sce_control_subset, colour_by = "SNF_W_louvain")
```

withinSampleDoublets

Description

doublet identification within batch

Usage

```r
withinSampleDoublets(sce, altExp_name = NULL, eps = 200, minPts = 50)
```

Arguments

- **sce**: a SingleCellExperiment
- **altExp_name**: expression name of HTO matrix
- **eps**: eps of DBSCAN
- **minPts**: minPts of DBSCAN

Value

A SingleCellExperiment object
withinSampleDoublets

Examples

```r
data(CITEseq_example, package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
sce_citeseq <- normaliseExprs(sce = sce_citeseq,
altExp_name = "HTO",
transform = "log")
sce_citeseq <- crossSampleDoublets(sce_citeseq)
sce_citeseq <- withinSampleDoublets(sce_citeseq,
minPts = 10)
```
Index

* datasets
 CITEseq_example, 4
 lr_pair_subset, 16
 sce_control_subset, 21
 sce_ctcl_subset, 21

 CiteFuse, 2
 CITEseq_example, 4
 crossSampleDoublets, 4

 DEbubblePlot, 5
 DEcomparisonPlot, 6
 DEgenes, 7
 DEgenesCross, 9

 geneADTnetwork, 10
 igraphClustering, 12
 importanceADT, 13

 ligandReceptorTest, 14
 lr_pair_subset, 16

 normaliseExprs, 16

 plotHTO, 17
 plotHTOSingle, 18
 preprocessing, 18

 readFrom10X, 19
 reducedDimSNF, 20

 sce_control_subset, 21
 sce_ctcl_subset, 21
 selectDEgenes, 22
 spectralClustering, 23

 visImportance, 24
 visLigandReceptor, 25
 visualiseDim, 26
 visualiseExprs, 27
 visualiseExprsList, 28
 visualiseKNN, 29
 withinSampleDoublets, 30