Package ‘ClusterJudge’

March 27, 2024

Type Package

Title Judging Quality of Clustering Methods using Mutual Information

Version 1.24.0

Date 2022-02-06

Author Adrian Pasculescu

Maintainer Adrian Pasculescu <a.pasculescu@gmail.com>

Description ClusterJudge implements the functions, examples and other software published as an algorithm by Gibbons, FD and Roth FP. The article is called "Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation" and it appeared in Genome Research, vol. 12, pp1574-1581 (2002). See package?ClusterJudge for an overview.

Depends R (>= 3.6), stats, utils, graphics, infotheo, lattice, latticeExtra, htr, jsonlite

Suggests yeastExpData, knitr, rmarkdown, devtools, testthat, biomaRt

License Artistic-2.0

biocViews Software, StatisticalMethod, Clustering, GeneExpression, GO

LazyLoad yes

LazyData yes

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ClusterJudge

git_branch RELEASE_3_18

git_last_commit 7f8d8e9

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-27
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterJudge-package</td>
<td>2</td>
</tr>
<tr>
<td>attribute_mut_inf</td>
<td>3</td>
</tr>
<tr>
<td>clusterJudge</td>
<td>4</td>
</tr>
<tr>
<td>clusterJudge_z_score</td>
<td>6</td>
</tr>
<tr>
<td>consolidate_entity_attribute</td>
<td>8</td>
</tr>
<tr>
<td>convert_Yeast_SGDId_2_systematic</td>
<td>9</td>
</tr>
<tr>
<td>download_Yeast_GO_mapping</td>
<td>10</td>
</tr>
<tr>
<td>download_Yeast_Go_terms</td>
<td>12</td>
</tr>
<tr>
<td>entities_attribute_stats</td>
<td>13</td>
</tr>
<tr>
<td>mi.GO.Yeast</td>
<td>14</td>
</tr>
<tr>
<td>validate_association</td>
<td>15</td>
</tr>
<tr>
<td>Yeast.GO.assocs</td>
<td>16</td>
</tr>
</tbody>
</table>

Index 17

ClusterJudge-package
Judging Quality of Clustering Methods using Mutual Information

Description

ClusterJudge implements the functions, examples and other software published as an algorithm by Gibbons, FD and Roth FP. The article is called "Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation" and it appeared in Genome Research, vol. 12, pp1574-1581 (2002). See package?ClusterJudge for an overview.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

ClusterJudge is a way to judge the quality of clustering performed elsewhere on some entities. This judgement is based on some additional entity-attribute information. For example, using Gene Ontology annotated attributes offered by Saccharomyces Genome Database (SGD), it can judge the clusters of Yeast genes (i.e. entities) resulted from experiments related to the mitotic Yeast cell cycle. This is done by evaluating the mutual information between a gene membership in a cluster, and the attributes it possesses.

Author(s)

Adrian Pasculescu

Maintainer: Adrian Pasculescu <a.pasculescu@gmail.com>
attribute_mut_inf

calculates the mutual information between each attribute of the entity.attribute pairs

Description
calculates the mutual information based on the entropy. The mutual information of the pair of attributes A,B is $mi(A,b) = H(A) + H(B) - H(cbind(A,B))$ where H is the entropy.

Usage

```
attribute_mut_inf(entity.attribute, show.progress = FALSE, alternative.calc = FALSE)
```

Arguments

- `entity.attribute` data frame or matrix with 2 columns. The assumption is that first column represents some 'entities' like gene names or gene ids. And the second column represents 'attributes' of entities (for example Gene Ontology ID 'GO:0007260' which is 'tyrosine phosphorylation of STAT protein')

- `show.progress` if set to TRUE will try to show periodically the estimated percentage of completion. Note that calculation of mutual information between Gene Ontology (GO) attributes takes a long time. We already have precalculated the GO mutual information for Yeast

- `alternative.calc` logical that if set to TRUE will try to use a direct calculation of the entropy from its definition and bypass the functions defined in the infotheo R package

Value
a matrix having as rownames and columnnames the attribute names from the input entity.attribute structure. The values are the mutual informations between the attributes in the region above the main diagonal. All the values below the diagonal are NA or zero.

References

Warning
Calculation of mutual information can be time consuming when many attributes are present for
many entities

Author(s)
Adrian Pasculescu

References
Gibbons, F.D. and Roth F.P., (2002) Judging the Quality of Gene Expression-Based Clustering
Interscience,New York.

See Also
mi.GO.Yeast consolidate_entity_attribute

Examples
data(mi.GO.Yeast) ### is a precalculated example of mutual information for the Yeast genes
and their Gene Ontollogy (GO) attributes
str(mi.GO.Yeast)

the following example will generate the mutual information
of 100 sampled pairs of Yeast , GO associations
(otherwise it might take take minutes or hours to calculate the mutual information)
data(Yeast.GO.assocs) ###
entity.attribute.sampled <- Yeast.GO.assocs[sample(1:nrow(Yeast.GO.assocs),100),]
mi.GO.Yeast.sampled <- attribute_mut_inf(entity.attribute.sampled, show.progress=TRUE)

clusterJudge judges clustering using an entity.attribute table

Description
calculates the sum of mutual information between clusters and each of the attributes For example
if we note mutual information between Clusters and each Attribute i as: MI(C,Ai) (where C is the
variable that has the cluster ids) then, for all attributes (assuming independence) it records the sum:
MI(C,A) = Sum(MI(C,Ai)) = n*E(C)+sum(E(Ai))-sum(E(C,Ai))

Then swapping elements between a random pair of clusters and repeats the above calculations. The
swapping is repeated 2 times, 4 times, 8 times ... up to 2^12 times Finally a complete shuffle
of clustering is applied. The resulting variation of the total mutual information as a fraction of
the initial value is plotted against the increasing number of swaps (and the final sufling) A god
clustering should have a pronounced decrease of the total mutual information when the of number
of swaps is increased.
clusterJudge

Usage

clusterJudge(clusters, entity.attribute, plot.notes = "", plot.saveRDS.file=NULL)

Arguments

clusters a named vectors of integers (or a factor). The names (or the levels of the factor) must match some (as many as possible) of the entities of the entity.attribute structure.

entity.attribute data frame or matrix with 2 columns The assumption is that first column represents some ‘entities’ like gene names or gene ids. And the second column represents ‘attributes’ of entities (for example Gene Ontology ID ‘GO:0007260’ which is ‘tyrosine phosphorylation of STAT protein’) Usually this is a consolidated entity.attribute where the attributes with very low number of entities or with very low mutual information have been removed (see consolidate_entity_attribute and the definition of Uncertainty on attributes mutual information)

plot.notes a string that will be added to the plot as explanation of what clustering represents.

plot.saveRDS.file if not NULL must be a string represented a file location where the plot will be saved as an RDS object. The plot can be then retrieved at any time using readRDS function.

Value

a data.frame with the number of swaps between clusters used for randomization and the total mutual information calculated after each of the sets of swaps The last value is for the full shuffle of the clusters. Since the shuffle is using the base sample function without setting a random seed, the last value will vary.

Note

a dot is printed on the console after each of the 12 sets of swaps

Author(s)

Adrian Pasculescu

References

See Also

consolidate_entity_attribute help
Examples

```r
library('yeastExpData')
data(ccyclered)

clusters <- ccyclered$Cluster
### convert from Gene names to the new standard of Saccharomyces Genome Database (SGD) gene ids
ccyclered$SGID <- sub('^S', 'S00', ccyclered$SGID)
names(clusters) <- ccyclered$SGID
str(clusters)

data(Yeast.GO.assocs)
str(Yeast.GO.assocs)

### get the pre-calculated mutual information between all pairs of Gene Ontology (GO) attributes of Yeast genes
data(mi.GO.Yeast)
str(mi.GO.Yeast)

### consolidate (reduce) the number of attributes by removing attributes with very few entities
### and removing ones very corelated (i.e. with high mutual information)
Yeast.GO.assocs.cons <- consolidate_entity_attribute(entity.attribute = Yeast.GO.assocs
 , min.entities.per.attr =3
 , mut.inf=mi.GO.Yeast
 , U.limit = c(0.8, 0.1, 0.001))

### apply clusterJudge for entity attributes having a very low uncertainty (0.001)
mi.by.swaps<-clusterJudge(clusters, entity.attribute=Yeast.GO.assocs.cons[["0.001"]]
 , plot.notes='Yeast clusters judged at uncertainty level 0.001 - Ref: Tavazoie S,& all
 , plot.saveRDS.file = 'cj.rds') ### save the plot for later use

p <- readRDS('cj.rds') ### retrieve the previous plot
pdf('cj.pdf'); plot(p); dev.off() ### plot on another device
```

clusterJudge_z_score *calculates the ‘cluster judge’ z-score*

Description

`clusterJudge_z_score` calculates the ‘cluster judge’ z-score as defined in the reference. The z-score is based on shuffling the clusters at random and calculating the total mutual information relative to the entity.attribute table. After the selected number of randomizations the mean MR and standard deviation SDR of the mutual information is used in the definition of the z.score = (MI- MIR)/SDR where MI is the mutual information of the original clustering. The higher the z.score the better the clustering. A box-and-wisker plot is generated that shows how far is the clustering versus random clustering based on the mutual information to the selected entity.attribute.
Usage

clusterJudge_z_score(clusters, entity.attribute, nmb.randomizations = 30, plot.saveRDS.file=NULL)

Arguments

clusters a named vectors of integers (or a factor). The names (or the levels of the factor) must match some (as many as possible) of the rownames of the entity.attribute table.

entity.attribute data frame or matrix with 2 columns The assumption is that first column represents some ‘entities’ like gene names or gene ids. And the second column represents ‘attributes’ of entities (for example Gene Ontology ID ‘GO:0007260’ which is ‘tyrosine phosphorylation of STAT protein’) Usually this is a consolidated entity.attribute where the attributes with very low number of entities or with very low mutual information have been removed (see consolidate_entity_attribute and the definition of Uncertainty on attributes mutual information)

nmb.randomizations number of randomization iterations

plot.saveRDS.file if not NULL must be a string represented a file location where the plot will be saved as an RDS object. The plot can be then retrieved at any time using readRDS function.

Value

a data.frame with the number of randomization shuffles and the total mutual information calculated after each of the shuffles

Note

a dot is printed on the console after each randomization (shuffling) step

Author(s)

Adrian Pasculescu

References

Examples

library('yeastExpData')
data(ccyclered)

clusters <- ccyclered$Cluster
convert from Gene names to the new standard of Saccharomyces Genome Database (SGD) gene ids
ccyclered$SGID <- sub('^S','S00',ccyclered$SGID)
names(clusters) <- ccyclered$SGID

data(Yeast.GO.assocs) #### obtain associations and consolidate them at uncertainty level 0.001
Yeast.GO.assocs.cons <- consolidate_entity_attribute(entity.attribute = Yeast.GO.assocs
, min.entities.per.attr = 3
, mut.inf = mi.GO.Yeast
, U.limit = c(0.001))

calculate z.scores for the associations consolidated at 0.001 Uncertainty level
z.scores <- clusterJudge_z_score(clusters
, entity.attribute = Yeast.GO.assocs.cons[['0.001']]
, nmb.randomizations = 30)

consolidate_entity_attribute

removes the redundant attributes based on the mutual information between attributes

Description

Calculates the mutual information between every pair of attributes and the uncertainty level (as defined in the reference ...) Plots the distribution of the uncertainty and the selected levels of uncertainty that are used as filters.

Usage

```r
consolidate_entity_attribute(entity.attribute, min.entities.per.attr, mut.inf=NULL
, U.limit = c(0.8, 0.6, 0.4, 0.2, 0.1, 0.01, 0.001)
, plot.saveRDS.file=NULL)
```

Arguments

- `entity.attribute` data frame or matrix with 2 columns The assumption is that first column represents some ‘entities’ like gene names or gene ids. And the second column represents ‘attributes’ of entities (for example Gene Ontology ID ‘GO:0007260’ which is ‘tyrosine phosphorylation of STAT protein’) Usually this is a consolidated entity.attribute where the attributes with very low number of entities or with very low mutual information have been removed (see consolidate_entity_attribute and the definition of Uncertainty on attributes mutual information).

- `min.entities.per.attr` a number or NULL

- `mut.inf` the mutual information square matrix before applying any filters based on the uncertainty or NULL

- `U.limit` a numerical vector

- `plot.saveRDS.file` if not NULL must be a string represented a file location where the plot will be saved as an RDS object. The plot can be then retrieved at any time using readRDS function.
Value

A data frame (if mut.inf argument is null) or a list of data frames. The data frames are the 'consolidated' entity.attribute structures. Where the consolidation of attributes is based on a minimum number of entities per attribute or on the mutual information between attributes.

Author(s)

Adrian Pasculescu

References

Examples

```r
data(Yeast.GO.assocs)
data(mi.GO.Yeast)

Yeast.GO.assocs.cons <- consolidate_entity_attribute(entity.attribute = Yeast.GO.assocs, min.entities.per.attr = 3, mut.inf = mi.GO.Yeast, U.limit = c(0.01, 0.001), plot.saveRDS.file = 'this_plot.rds') ## save also the plot

str(Yeast.GO.assocs.cons)
pdf('my_plot.pdf') ## place the plot saved by consolidate_entity_attribute into a pdf file
plot(readRDS('this_plot.rds')) ##
dev.off()
```

convert_Yeast_SGDId_2_systematic

converts the SGD Gene Id into the systematic name of the gene

Description

Converts the Saccharomyces Genome Database (SGD) Gene Id into the systematic name of the gene.

Usage

```r
convert_Yeast_SGDId_2_systematic(SGD.Ids = c("S000007287", "S000007287", "S000007287"))
```

Arguments

- `SGD.Ids` a vector of characters. Each element is a string representing a gene.
Value

A matrix of characters containing the input SGD gene IDs as first column and the corresponding Yeast systematic gene names as second column.

Note

It requires online access to http://llama.mshri.on.ca/cgi/synergizer/serv where the conversion is performed.

It uses the httr and jsonlite R packages.

Author(s)

Adrian Pasculescu

References

Yeast - Systematic Names Assignment in http://www.yeastgenome.org/help/community

Examples

converted.genes <- convert_Yeast_SGDId_2_systematic(
 SGD.Ids = c("S000007287", "S000007287", "S000007287"))

str(converted.genes)

download_Yeast_GO_mapping

Downloads the Gene Ontology attributes mapped to Yeast genes

Description

The Gene Ontology attributes are provided for example by the Saccharomyces Genome Database (SGD) as a zipped file with a wealth of information. The function filters from the file only the minimal information necessary: The Gene Ontology attribute ID (GOID) and the Yeast Gene ID (SGDID) for which the attribute applies.

Usage

download_Yeast_GO_mapping(
 yeast.GO.url = "http://downloads.yeastgenome.org/curation/literature/gene_association.sgd.gaf.gz"
)

Arguments

yeast.GO.url The web site address where the Yeast genes and their Gene Ontology attribute files is located.
Details

Only the unique associations between genes and their attributes are kept. In the original downloaded file there might be redundancies due to the different types of evidences used in the associations.

The downloaded file is expected to be in a tab delimited format with comment lines that start with the exclamation (!) character. The commented lines are ignored. The expected column names can be obtained by looking at the function code.

Value

a data.frame with two columns: SGDID - the ids of the Yeast gene names (these are the 'entities')
GOID - the ids of the Gene Ontology attributes corresponding to the above genes

Note

since the download is time consuming, this package provides also as a dataset called Yeast.GO.assocs containing the associations already downloaded as of on February 2017.

For other species one can use specialized R and Bioconductor packages such as biomaRt (see the commented part in the example section).

Author(s)

Adrian Pasculescu

References

See Also

Yeast.GO.assocs help.

Examples

Yeast.GO.assocs <- download_Yeast_GO_mapping()

For other species one can use specialized R and Bioconductor packages such as biomaRt
as in the following 'toy' commented example:
#library(biomaRt)
#rn <- useDataset("rnorvegicus_gene_ensembl", mart=useMart("ensembl"))
exemplify for a limited set of genes
#rgd.symbol=c("As3mt", "Borcs7", "Cyp17a1", "Wbp1l", "Sfxn2", "Arl3")
#entity.attr=getBM(attributes=c(rgd_symbol, 'go_id'), filters='rgd_symbol', values=rgd.symbol, mart=rn)
download_Yeast_Go_terms

downloads the description of Gene Ontology attributes

Description

The full description of Gene Ontology attributes are provided for example by the Saccharomyces Genome Database (SGD).

Usage

```r
download_Yeast_Go_terms(
  url.GO.terms = "http://downloads.yeastgenome.org/curation/literature/go_terms.tab")
```

Arguments

- `url.GO.terms` The web site address where the description of Gene Ontology attribute files is located.

Details

The file is expected to be in tab delimited format having the following columns: 'GOID', 'GO_Term', 'GO_Aspect', 'GO_Term_Definition'

Value

A data.frame containing the information provided by the Gene Ontology consortium

Note

The function is optional. It only helps user in understanding what is the meaning of the GO attributes for the Yeast examples.

Author(s)

Adrian Pasculescu

References

See Also

`download_Yeast.GO_mapping`

Examples

```r
GO.terms <- download_Yeast_Go_terms()
str(GO.terms)
```
entities_attribute_stats

present basic statistics on the number of entities per attribute

Description

Plots the density distribution of the number of entities per attribute and shows what is the number of attributes proposed to be ignored (and the number of attributes that will be kept).

Usage

```r
entities_attribute_stats(entity.attribute
, min.entities.per.attr = NULL
, entity.space.name = "Yeast genes"
, attribute.space.name = "Gene Ontology"
, plot.saveRDS.file=NULL)
```

Arguments

- `entity.attribute` : data frame or matrix with 2 columns. The assumption is that first column represents some ‘entities’ like gene names or gene ids. And the second column represents ‘attributes’ of entities (for example Gene Ontology ID ‘GO:0007260’ which is ‘tyrosine phosphorylation of STAT protein’)
- `min.entities.per.attr` : a number : the minimum number of entities per attribute accepted
- `entity.space.name` : a string that will be presented on the plot representing the meaning of the entities
- `attribute.space.name` : a string that will be presented on the plot representing the meaning of the attributes
- `plot.saveRDS.file` : if not NULL must be a string represented a file location where the plot will be saved as an RDS object. The plot can be then retrieved at any time using `readRDS` function.

Details

The attributes that appear only once or just a in very few entities do not bring additional information. In general there are many such ‘non-informative’ attributes. Thus it’s good to know the proportion of attributes that will be still kept if we impose a minimum number of entities per attribute.
Value

A number, which is either the input value of the min.entities.per.attr or, in case min.entities.per.attr is null, a proposed min.entities.per.attr threshold. The assumption is that attributes characterizing just one entity are the most frequent. The proposed threshold is the minimum number of entities per attribute whose frequency matches 1/3 of the above maximum frequency.

Author(s)

Adrian Pasculescu

References

Examples

data(Yeast.GO.assocs)
min.entities.per.attr <- entities_attribute_stats(entity.attribute= Yeast.GO.assocs, min.entities.per.attr=NULL, entity.space.name='Yeast genes', attribute.space.name='Gene Ontology')

mi.GO.Yeast

Precalculated mutual information between Gene Ontology attributes of Yeast genes

Description

Precalculated mutual information between Gene Ontology attributes of Yeast genes

Usage

data("mi.GO.Yeast")

Format

The format is: num [1:2266, 1:2266] NA ... - attr(*, "dimnames")=List of 2 ..$: chr [1:2266] "GO:0000001" "GO:0000002" "GO:0000009" "GO:0000011"$: chr [1:2266] "GO:0000001" "GO:0000002" "GO:0000009" "GO:0000011" ...

Details

For convenience this data set was pre-generated using attribute_mut_inf from this package
validate_association

Value

This data loads a symetric matrix of mutual information values calculated between pairs of Gene Ontology attributes of Yeast genes.

References

See Also

attribute_mut_inf

Examples

data(mi.GO.Yeast)
str(mi.GO.Yeast)

Description

verifies if the input structure has two columns, if there are no NAs or NULLs and if there are no duplicated associations

Usage

validate_association(entity.attribute, message = TRUE)

Arguments

entity.attribute

data frame or matrix with 2 columns. The assumption is that first column represents some 'entities' like gene names or gene ids. And the second column represents 'attributes' of entities (for example Gene Ontology ID 'GO:0007260' which is 'tyrosine phosphorylation of STAT protein').

message

a logical. If set to TRUE will print a message in case of successful validation.

Value

Returns TRUE and print "Validation OK!" message in case of success. Otherwise stops with an explanatory message.

Author(s)

Adrian Pasculescu
Yeast.GO.assocs

References

Examples
data(Yeast.GO.assocs)

validate_association(Yeast.GO.assocs)

Yeast.GO.assocs
Gene Ontology attributes associated to Yeast Gene entities

Description
Gene Ontology attributes associated to Yeast Gene entities

Usage
data("Yeast.GO.assocs")

Format
A data frame with 70487 observations on the following 2 variables.

SGID a character vector
GOID a character vector

Value
This data loads a data frame with two columns: Yeast gene ids and their Gene Ontology ids

References

Examples
data(Yeast.GO.assocs)
str(Yeast.GO.assocs)
Index

* Yeast.GO.assocs
 attribute_mut_inf, 3
 clusterJudge_z_score, 6
* attribute_mut_inf
 clusterJudge, 4
 consolidate_entity_attribute, 8
* clusterJudge
 clusterJudge_z_score, 6
* consolidate_entity_attribute
 clusterJudge, 4
* datasets
 mi.GO.Yeast, 14
 Yeast.GO.assocs, 16
* mi.GO.Yeast
 attribute_mut_inf, 3
* package
 ClusterJudge-package, 2
* validate_association
 attribute_mut_inf, 3

attribute_mut_inf, 3, 15

ClusterJudge (ClusterJudge-package), 2
clusterJudge, 4
ClusterJudge-package, 2
clusterJudge_z_score, 6
consolidate_entity_attribute, 4, 5, 8
convert_Yeast_SGDId_2_systematic, 9
download_Yeast_GO_mapping, 10, 12
download_Yeast_Go_terms, 12

tentities_attribute_stats, 13

help, 5, 11

mi.GO.Yeast, 4, 14

validate_association, 15

Yeast.GO.assocs, 11, 16