Package ‘CyTOFpower’

May 29, 2024

Type Package
Title Power analysis for CyTOF experiments
Version 1.10.0
Description This package is a tool to predict the power of CyTOF experiments in the context of differential state analyses. The package provides a shiny app with two options to predict the power of an experiment: i. generation of in-silico CyTOF data, using users input ii. browsing in a grid of parameters for which the power was already precomputed.

biocViews FlowCytometry, SingleCell, CellBiology, StatisticalMethod, Software
License LGPL-3
Encoding UTF-8
Depends R (>= 4.1)
Imports CytoGLMM, diffcyt, DT, dplyr, ggplot2, magrittr, methods, rlang, stats, shiny, shinyFeedback, shinyjs, shinyMatrix, SummarizedExperiment, tibble, tidyr
RoxygenNote 7.1.2
VignetteBuilder knitr
Suggests testthat (>= 3.0.0), BiocStyle, knitr

Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/CyTOFpower
git_branch RELEASE_3_19
git_last_commit 5ec8e4f
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29

Author Anne-Maud Ferreira [cre, aut] (<https://orcid.org/0000-0002-4749-746X>), Catherine Blish [aut], Susan Holmes [aut]

Maintainer Anne-Maud Ferreira <anne-maud.ferreira@stanford.edu>
Contents

compute_effectsize .. 2
compute_pwr ... 3
compute_variance .. 3
CyTOFpower ... 4
function_apply_modelcomputations_modelchoice 4
function_apply_onesimulation_withmarkerinfo 5
function_check_nbDEmarkers .. 6
function_check_nbmarkers ... 6
function_compute_diffcyt_features 7
function_create_mock_dataset_withmarkerinfo 7
function_DEmarkers_sup_nbmarkers 8
function_desigmat_contrast_diffcytDSLMM_fixedeffect 9
function_desigmat_contrast_diffcytDSLMM_randomeffect 9
function_extract_marker_names .. 10
function_formula_contrast_diffcytDSLMM_randomeffect 10
function_is_data_paired .. 11
function_names_DE_markers .. 12
function_run_bootstrapcytGLMM 12
function_run_cytGLMM .. 13
function_run_diffcytDSLMM ... 13
function_run_diffcytDSLMM ... 14
function_run_diffcyt_full_pipeline 15
function_summary_results_models 15
function_to_compute_model_computation_onesimulation_modelchoice . 16
function_to_transform_data ... 17
function_value_onemarker ... 17

Index 19

compute_effectsize Compute effect size

Description

Compute effect size

Usage

compute_effectsize(raw_data_lg)

Arguments

 raw_data_lg data.frame, cells values in long format.

Details

Compute observed Cohen’s effect size and observed fold change.
Value
data.frame, Cohen’s effect size and fold change that were observed in the data for each marker.

compute_pwr Compute power

Description
Compute power

Usage
compute_pwr(model_values, alpha = 0.05)

Arguments
 model_values data.frame, output of run_models().
 alpha numeric, significance level.

Details
Compute the power based on the model values.

Value
numeric, power.

compute_variance Compute variance

Description
Compute variance

Usage
compute_variance(raw_data_lg)

Arguments
 raw_data_lg data.frame, cells values in long format.

Details
Compute the observed variance in the data.

Value
numeric, observed variance mean.
CyTOFpower

CyTOFpower: R-package to predict the power of a CyTOF experiment

Description

This package provides functions and a shiny app to predict the power of a CyTOF experiment. Interactive shiny app to predict the power of a CyTOF experiment.

Usage

```r
CyTOFpower()
```

Value

Interactive shiny app.

Examples

```r
# Launch the shiny app
if (interactive()) {
  CyTOFpower()
}
```

function_apply_modelcomputations_modelchoice

Run DS tests for one simulation.

Description

Run DS tests for one simulation.

Usage

```r
function_apply_modelcomputations_modelchoice(
  list_combined_output,
  model = c("cytoglm", "cytoglm", "testDS_limma_random", "testDS_limma_fixed", "testDS_lmm")
)
```

Arguments

- `list_combined_output` list, of simulated data (output of the `function_apply_onesimulation_withmarkerinfo` function).
- `model` vector, name(s) of models to test.
Details

Wrapper to run the models through the different simulations.

Value

data.frame of results for each simulation.

Description

One simulation with markers NB information.

Usage

`function_apply_onesimulation_withmarkerinfo(variation)`

Arguments

- `variation` list, list of list containing the different input parameter variations @describeIn function `create_mock_dataset_withmarkerinfo`.

Details

Apply one simulation for a given parameter combination number times (iterations), when we have prior information about the markers distribution parameters (mean and dispersion of the negative binomial).

Value

list of simulated data. Each list member contains 5 slots: - `variation`: the variation of input parameters which has been used in input; - `df_info`: experimental information (donor IDs, group IDs, samples IDs); - `DE_markers_names`: name of the differentially expressed markers; - `ls_mock_data`: list of data.frames, each data.frame being one simulation of the cell values using the input parameters provided (list is length `nb_sim`).
function_check_nbDEmarkers

Number of DE markers greater than 1.

Description

Number of DE markers greater than 1.

Usage

`function_check_nbDEmarkers(nb_DEmarker)`

Arguments

- `nb_DEmarker`: numeric, number of differentially expressed markers.

Details

Function to check that the number of DE markers is greater than 1.

Value

error message

function_check_nbmarkers

Number of markers greater than 2.

Description

Number of markers greater than 2.

Usage

`function_check_nbmarkers(nb_marker)`

Arguments

- `nb_marker`: numeric, total number of markers.

Details

Function to check that the number of markers is greater than 2.

Value

error message if the total number of markers is lower than 3.
function_compute_diffcyt_features

Compute cells counts and medians.

Description
Compute cells counts and medians.

Usage
function_compute_diffcyt_features(mock_flowset)

Arguments
mock_flowset data.frame, cell values for each marker.

Details
Function to calculate features for diffcyt package models.

Value
list with cell counts and medians for each markers.

function_create_mock_dataset_withmarkerinfo

Compute simulated cell values for one simulation with markers NB information.

Description
Compute simulated cell values for one simulation with markers NB information.

Usage
function_create_mock_dataset_withmarkerinfo(variation)

Arguments
variation list, list of data.frames containing the different variable input parameters to generate the data: - marker_name: name of the marker (character); - nb_donor: number of donors; - rho: fold change; - subject_effect: standard deviation for the normal distribution from which the donor’s means will be drawn; - mu0: mean of the negative binomial for the gamma distribution from which the means of the different donor will be drawn; - dispersion: dispersion of the negative binomial from which the DE marker’s cell values will be drawn; - nb_cell_per_sample: number of cells per sample.
function_DEmarkers_sup_nbmarkers

Details
Function to compute the simulated cell values using a combination of variable parameters, when we have prior information about the markers distribution parameters (mean and dispersion of the negative binomial).

Value
list with 4 slots: - df_info: data.frame of experimental information; - DEmarkers_names: vector of DE marker names; - raw_data: data.frame of raw cell values; - data: data.frame of transformed cell values.

function_DEmarkers_sup_nbmarkers

Check on the number of DE markers.

Description
Check on the number of DE markers.

Usage
function_DEmarkers_sup_nbmarkers(nb_markers, nb_DEmarker)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nb_markers</td>
<td>numeric, total number of markers.</td>
</tr>
<tr>
<td>nb_DEmarker</td>
<td>numeric, number of differentially expressed markers.</td>
</tr>
</tbody>
</table>

Details
Function to check that number of DE markers greater than number of markers.

Value
error message if the number of DE markers is greater than the total number of markers.
Design and contrast matrices for diffcyt-DS-limma with fixed effect.

Description

Design and contrast matrices for diffcyt-DS-limma with fixed effect.

Usage

```r
function_desigmat_contrast_diffcytDSlimma_fixedeffect(df_experiment_info)
```

Arguments

- `df_experiment_info`: data.frame, information about the experiment (donor IDs, group IDs and sample IDs).

Details

Function to create the design matrix and contrast for the diffcyt-DS-limma model with fixed effect.

Value

list with 3 slots: - design_matrix: the design matrix; - contrast: the contrast matrix; - effect: the specification of the "fixed" effect.

Design and contrast matrices for diffcyt-DS-limma with random effect.

Description

Design and contrast matrices for diffcyt-DS-limma with random effect.

Usage

```r
function_desigmat_contrast_diffcytDSlimma_randomeffect(df_experiment_info)
```

Arguments

- `df_experiment_info`: data.frame, information about the experiment (donor IDs, group IDs and sample IDs).
Details

Function to create the design matrix and contrast for the diffcyt-DS-limma model with random effect from the diffcyt package.

Value

list with 3 slots: - design_matrix: the design matrix; - contrast: the contrast matrix; - effect: the specification of the "random" effect.

function_extract_marker_names

Extract marker names.

Description

Extract marker names.

Usage

function_extract_marker_names(mock_dataset)

Arguments

mock_dataset data.frame, containing the cell values for each marker.

Details

Function to extract the marker names.

Value

vector of marker names.

function_formula_contrast_diffcytDSLMM_randomeffect

Formula and contrast matrix for diffcyt-DS-LMM with random effect.

Description

Formula and contrast matrix for diffcyt-DS-LMM with random effect.

Usage

function_formula_contrast_diffcytDSLMM_randomeffect(df_experiment_info)
function_is_data_paired

Arguments

- `df_experiment_info`: data.frame, information about the experiment (donor IDs, group IDs and sample IDs).

Details

Function to create formula and contrast for diffcyt-DS-LMM with random effect.

Value

list with 3 slots: - formula: the formula for the model; - contrast: the contrast matrix.

Description

Data paired.

Usage

```r
function_is_data_paired(data)
```

Arguments

- `data`: data.frame, experimental information containing (sample IDs, donor IDs).

Details

Function to check if the data is paired.

Value

logical, TRUE is the data are paired - FALSE if the data are not paired.
function_names_DE_markers

Generate name of the DE markers.

Description
Generate name of the DE markers.

Usage
function_names_DE_markers(total_nb_marker, nb_DE_marker)

Arguments
- total_nb_marker: numeric, total number of markers.
- nb_DE_marker: numeric, number of DE markers.

Details
Function to generate the name of the DE markers.

Value
vector of marker names.

function_run_bootstrapcytoGLMM

Run cytoglm.

Description
Run cytoglm.

Usage
function_run_bootstrapcytoGLMM(mock_dataset, nb_bootstrap = 500)

Arguments
- mock_dataset: data.frame, cell values for each marker.
- nb_bootstrap: numeric, number of bootstrap (by defaults nb_bootstrap = 1000).

Details
Function to run the Generalized Linear Model with Bootstrap, from the CytoGLMM package.
function_run_cytoGLMM

Value
list of 3 slots: - model_fit: fit of the model; - plot: plot of the effects; - results_summary: data.frame containing the results of the models for each marker.

Description
Run cytoglmm

Usage
function_run_cytoGLMM(mock_dataset)

Arguments
mock_dataset data.frame, cell values for each marker.

Details
Function to run GLMM model from CytoGLMM package.

Value
list of 3 slots: - model_fit: fit of the model; - plot: plot of the effects; - results_summary: data.frame containing the results of the models for each marker.

function_run_diffcytDSlimma Run diffcyt-DS-limma model.

Description
Run diffcyt-DS-limma model.

Usage
function_run_diffcytDSlimma(
 ls_desigmat_contrast,
 df_experiment_info,
 ls_features
)
function_run_diffcytDSLMM

Arguments

ls_desigmat_contrast
list, with design and contrast matrices.

df_experiment_info
data.frame, information about the experiment (donor IDs, group IDs and sample IDs).

ls_features
list, with cell counts and medians for each markers.

Details

Function to run diffcyt-DS-limma model from the diffcyt package.

Value

list with 2 slots: - model_fit: the model fit; - result_summary: results of the model for each marker.

function_run_diffcytDSLMM

Run diffcyt-DS-LMM model.

Description

Run diffcyt-DS-LMM model.

Usage

function_run_diffcytDSLMM(ls_form_contrast, df_experiment_info, ls_features)

Arguments

ls_form_contrast
list, with formula and contrast matrix.

df_experiment_info
data.frame, information about the experiment (donor IDs, group IDs and sample IDs).

ls_features
list, with cell counts and medians for each markers.

Details

Function to run diffcyt-DS-LMM model from the diffcyt package.

Value

list with 2 slots: - model_fit: the model fit; - result_summary: results of the model for each marker.
function_run_diffcyt_full_pipeline

Run diffcyt pipeline

Description

Run diffcyt pipeline

Usage

```r
function_run_diffcyt_full_pipeline(
  onevariation,
  model = c("limma", "LMM"),
  effect = c("random", "fixed")
)
```

Arguments

- `onevariation`: list, of simulated data (output of the `function_wrapper_apply_simulation_nbtimes` function).
- `model`: character, model to run: "limma" or "LMM".
- `effect`: character, effect: "random" or "fixed".

Details

Function to run diffcyt pipeline. We do not used the diffcyt function directly because of the limma model run differently with the effects.

Value

list with 2 slots: - `model_fit`: the model fit; - `result_summary`: results of the model for each marker.

function_summary_results_models

Summarize data and results.

Description

Summarize data and results.

Usage

```r
function_summary_results_models(summary_from_model, package)
```
function_to_compute_model_computation_onesimulation_modelchoice

Arguments

summary_from_model
list, output from the functions running the models.

package
character, package used to run the test: "CytoGLMM" or "diffcyt".

Details

Function to do a summary of the tested data and model’s results for the CytoGLMM and diffcyt packages.

Value

data.frame of results for each simulation.

function_to_compute_model_computation_onesimulation_modelchoice

Run DS tests for one simulation.

Description

Run DS tests for one simulation.

Usage

function_to_compute_model_computation_onesimulation_modelchoice(
 onevariation,
 model
)

Arguments

onevariation
list, of simulated data (output of the function_wrapper_apply_simulation_nbtimes function).

model
vector, name(s) of models to test.

Details

Function to run the DS tests through the different models.

Value

data.frame of results for each simulation all models combined.
function_to_transform_data

arcsinh transformation.

Description

arcsinh transformation.

Usage

```r
function_to_transform_data(data, cofactor = 5)
```

Arguments

- `data`: data.frame, cell values to transform.
- `cofactor`: numeric, co-factor used in the arcsinh (by default cofactor = 5).

Details

Function to transform the data with the recommended transformation for cyTOF data: arcsinh with cofactor equals to 5.

Value

data.frame of transformed data.

function_value_onemarker

Compute simulated cell values for one marker with markers NB informations

Description

Compute simulated cell values for one marker with markers NB informations

Usage

```r
function_value_onemarker(
    marker_name,
    mu0,
    dispersion,
    subject_effect,
    nb_donor,
    nb_cell_per_sample,
    rho = 1
)
```
function_value_onemarker

Arguments

marker_name character, name of the marker.
mu0 numeric, general donor mean from which the individual mu0i will be drawn.
dispersion numeric, dispersion of the markers.
subject_effect numeric, standard deviation for the normal distribution from which the donor’s means will be drawn (by default subject_effect = 0.01).
nb_donor numeric, number of donors.
nb_cell_per_sample numeric, number of cells per sample (by default nb_cell_per_sample = 500).
rho numeric, fold change.

Details

Function to generate value for one marker with a mean and dispersion specified for the negative binomiale.

Value

data.frame of cell values.
Index

* internal

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>compute_effectsize</td>
<td>2</td>
</tr>
<tr>
<td>compute_pwr</td>
<td>3</td>
</tr>
<tr>
<td>compute_variance</td>
<td>3</td>
</tr>
<tr>
<td>function_apply_modelcomputations_modelchoice</td>
<td>4</td>
</tr>
<tr>
<td>function_apply_onesimulation_withmarkerinfo</td>
<td>5</td>
</tr>
<tr>
<td>function_check_nbDEmarkers</td>
<td>6</td>
</tr>
<tr>
<td>function_check_nbmarkers</td>
<td>6</td>
</tr>
<tr>
<td>function_compute_diffcyt_features</td>
<td>7</td>
</tr>
<tr>
<td>function_create_mock_dataset_withmarkerinfo</td>
<td>7</td>
</tr>
<tr>
<td>function_DEmarkers_sup_nbmarkers</td>
<td>8</td>
</tr>
<tr>
<td>function_desigmat_contrast_diffcytDSlimma_fixedeffect</td>
<td>9</td>
</tr>
<tr>
<td>function_desigmat_contrast_diffcytDSlimma_randomeffect</td>
<td>9</td>
</tr>
<tr>
<td>function_extract_marker_names</td>
<td>10</td>
</tr>
<tr>
<td>function_formula_contrast_diffcytDSLMM_randomeffect</td>
<td>10</td>
</tr>
<tr>
<td>function_is_data_paired</td>
<td>11</td>
</tr>
<tr>
<td>function_names_DE_markers</td>
<td>12</td>
</tr>
<tr>
<td>function_run_bootstrapcytGLMM</td>
<td>12</td>
</tr>
<tr>
<td>function_run_cytoGLMM</td>
<td>13</td>
</tr>
<tr>
<td>function_run_diffcyt_full_pipeline</td>
<td>15</td>
</tr>
<tr>
<td>function_run_diffcytDSLima</td>
<td>13</td>
</tr>
<tr>
<td>function_run_diffcytDSLMM</td>
<td>14</td>
</tr>
<tr>
<td>function_summary_results_models</td>
<td>15</td>
</tr>
<tr>
<td>function_to_compute_model_computation_onesimulation_modelchoice</td>
<td>16</td>
</tr>
<tr>
<td>function_to_transform_data</td>
<td>17</td>
</tr>
<tr>
<td>function_value_onemarker</td>
<td>17</td>
</tr>
</tbody>
</table>