Package ‘DExMA’

May 9, 2024

Type Package

Title Differential Expression Meta-Analysis

Version 1.12.0

Description performing all the steps of gene expression meta-analysis considering the possible existence of missing genes. It provides the necessary functions to be able to perform the different methods of gene expression meta-analysis. In addition, it contains functions to apply quality controls, download GEO datasets and show graphical representations of the results.

License GPL-2

Depends R (>= 4.1), DExMAdta

Suggests BiocStyle, qpdf, BiocGenerics, RUnit

Imports Biobase, GEOquery, impute, limma, pheatmap, plyr, scales, snpStats, sva, swamp, stats, methods, utils, bnstruct, RColorBrewer, grDevices

biocViews DifferentialExpression, GeneExpression, StatisticalMethod, QualityControl

Encoding UTF-8

LazyData false

git_url https://git.bioconductor.org/packages/DExMA

git_branch RELEASE_3_19

git_last_commit 3ba624c

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-09

Author Juan Antonio Villatoro-García [aut, cre], Pedro Carmona-Sáez [aut]

Maintainer Juan Antonio Villatoro-García <juananontiovillatorogarcia@gmail.com>
Contents

allSameID ... 2
batchRemove ... 3
calculateES .. 4
createObjectMA ... 5
dataLog .. 6
downloadGEOData .. 7
elementObjectMA ... 8
heterogeneityTest .. 9
makeHeatmap .. 10
metaAnalysisDE ... 13
missGenesImput .. 15
pvalueIndAnalysis .. 16

Index .. 18

allSameID Set all datasets in the same ID

Description

Set all datasets in the same ID (Official Gene Symbol, Entrez or Ensembl)

Usage

allSameID(objectMA, finalID = "GeneSymbol",
 organism="Homo sapiens")

Arguments

objectMA A list of list. Each list contains two elements. The first element is the expression matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateobjectMA can be used too.

finalID A character that indicates the final ID all the different studies will have. To know the available ids, you can write availableIDs.

organism A character that indicates the organism of the data. To know the available organisms write availableOrganism

Value

The same list with all the datasets in the same selected gene ID.

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>
See Also

createObjectMA

Examples

data(DExMAExampleData)
sameData <- allSameID(objectMA = maObjectDif, finalID = "GeneSymbol",
organism = "Homo sapiens")
sameData

batchRemove

Elimination of covariates batch effect or bias

Description

It eliminates the effects of batch or bias of the covariates

Usage

batchRemove(expressionMatrix, pheno, formula, mainCov = NULL, nameGroup, ...)

Arguments

expressionMatrix
A matrix or data frame with genes in rows and samples in columns. An ExpressionSet object can be used too

pheno
A dataframe with samples in rows and covariates in columns.

formula
Formula of the covariates that are wanted to be corrected

mainCov
Name of the main covariate to be corrected

nameGroup
Name of the column of the Phenodata object in which the reference groups (cases and controls) are

...
other arguments are passed to lmFit function of limma package

Value

The Expression Matrix with the bias or batch effect corrected. Moreover a plot of the visualization of the association between principal components and covariates is shown.

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

References

calculateES

Description

This function uses the Hedges’g estimator to calculate the different Effects size and their variances for each genes and for each dataset.

Usage

```r
calculateES(objectMA, missAllow = 0.3)
```

Arguments

- `objectMA` A list of list. Each list contains two elements. The first element is the expression matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateobjectMA can be used too.

- `missAllow` a number that indicates the maximum proportion of missing values allowed in a sample. If the sample has more proportion of missing values the sample will be eliminated. In the other case the missing values will be imputed using the K-NN algorithm.

Value

A list formed by three elements:

- First element (ES) is a dataframe were columns are each of the studies (datasets) and rows are the genes. Each element of the dataframe represents the Effect Size.

- Second element (Var) is a dataframe were columns are each of the studies (datasets) and rows are the genes. Each element of the dataframe represents the variance of the Effect size.

- Third element (logFC) is a dataframe were columns are each of the studies (datasets) and rows are the genes. Each element of the dataframe represents the log Fold Changes.

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

See Also

`createObjectMA`, `metaAnalysisDE`
createObjectMA

Examples

```r
data(DExMAExampleData)

resultsEffects <- calculateES(objectMA = maObject, missAllow = 0.3)
resultsEffects
```

createObjectMA

Creation of the object to use in meta-analysis

Description

It allows the creation of an object to perform meta-analysis.

Usage

```r
createObjectMA(  
  listEX,  
  listPheno = NULL,  
  namePheno = c(rep(1, length(listEX))),  
  expGroups = c(rep(1, length(listEX))),  
  refGroups = c(rep(2, length(listEX)))
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listEX</td>
<td>A list of dataframes or matrix (genes in rows and sample in columns). A list of ExpressionSets can be used too</td>
</tr>
<tr>
<td>listPheno</td>
<td>A list of phenodatas (dataframes or matrix). If the object listEX is a list of ExpressionSets this element can be null.</td>
</tr>
<tr>
<td>namePheno</td>
<td>A list or vector of the different column names or positions from the phenodatas where the experimental and reference groups are identified. Each element of namePheno correspon to its equivalent element in the listPheno (default a vector of 1, all the first columns of each elements of listPheno are selected).</td>
</tr>
<tr>
<td>expGroups</td>
<td>A list of vectors or a vector containing the names or the positions with which we identify the elements of the experiment groups (cases) of the namePheno element (default a vector of 1, all the first groups are selected)</td>
</tr>
<tr>
<td>refGroups</td>
<td>A list of vectors or a vector containing the names or the positions with which we identify the elements of the reference groups (control) of the namePheno elements (default a vector of 1, all the first groups are selected)</td>
</tr>
</tbody>
</table>
Value

The object needed to perform meta-analysis. This object is list of nested lists. Each list contains two elements:

- The first element is the expression matrix (genes in rows and sample in columns)
- The second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents reference group (controls) and 1 represents experimental group (cases).

Author(s)

Juan Antonio Villatoro Garcia, <juanantonio.villatorogarcia@gmail.com>

See Also

elementObjectMA

Examples

data(DEXMAExampleData)

phenoGroups = c("condition", "condition", "state", "state")
phenoCases = list(Study1 = "Diseased", Study2 = c("Diseased", "ill"),
 Study3 = "Diseased", Study4 = "ill")
phenoControls = list(Study1 = "Healthy", Study2 = c("Healthy", "control"),
 Study3 = "Healthy", Study4 = "control")

newObjectMA <- createObjectMA(listEX=listMatrixEX, listPheno = listPhenodatas,
 namePheno=phenoGroups, expGroups=phenoCases,
 refGroups = phenoControls)

newObjectMA

dataLog

Auxiliary function to check if data are log transformed and transformed if it are not log-transformed

Description

Auxiliary function to check if data are log transformed and transformed if it are not log-transformed

Usage

dataLog(objectMA)
downloadGEOData

Arguments

objectMA A list of list. Each list contains two elements. The first element is the expression matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateobjectMA should be used.

Value

The same object with log-transformed expression matrix

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

See Also

createObjectMA

Examples

data(DExMAExampleData)
dataLog(maObject)

downloadGEOData(GEOobject, directory = getwd())

Description

Download different ExpressionSets objects from the GEO database

Usage

downloadGEOData(GEOobject, directory = getwd())

Arguments

GEOobject a vector of character where each element represents a GEO object for downloading.
directory The directory where the different downloaded GSE Series Matrix files from GEO will be stored. By default they are downloaded to the working directory

Details

This function internally uses getGEO function of GEOquery package. However, downloadGEO allows you to download multiple files at the same time.
elementObjectMA

Description

It allows the creation of a element of the object needed to perform meta-analysis

Usage

```r
elementObjectMA(
  expressionMatrix,
  pheno = NULL,
  groupPheno,
  expGroup = 1,
  refGroup = 2
)
```

Arguments

- **expressionMatrix**: A dataframe or matrix that containing genes in rows and samples if columns. An ExpressionSet object can be used too.
- **pheno**: A data frame or a matrix containing samples in rows and covariates in columns. If NULL (default), pheno is extracted from the ExpressionSet object
- **groupPheno**: The column name or position from pheno where experimental group (cases) and reference group (control) are identified

Examples

```r
## Not run:
GEOobjects<- c("GSE4588", "GSE10325")
dataGEO<-downloadGEOData(GEOobjects)
dataGEO

## End(Not run)
```
heterogeneityTest

expGroup | The group name or position from groupPheno variable used as experimental
group (cases). By default the first group (character) is taken
refGroup | The group name or position from groupPheno variable used as reference group
(control). By default the second group (character) is taken

Value
An element that can be included in meta-analysis object.

Author(s)
Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

See Also
createObjectMA

Examples
data(DExMAExampleData)

ExpressionSetStudy5
newElem <-elementObjectMA(expressionMatrix = ExpressionSetStudy5,
groupPheno = "condition",
expGroup = c("Diseased", "ill"),
refGroup = c("Healthy", "control"))

heterogeneityTest <-function(objectMA, probs = c(0, 0.25, 0.5, 0.75)) {
 # Implementation details
}

Description
Shows a QQ-plot of the Cochran’s test and the quantiles of I^2 statistic values to measure heterogeneity

Usage
heterogeneityTest(objectMA, probs = c(0, 0.25, 0.5, 0.75))

Arguments
objectMA | A list of list. Each list contains two elements. The first element is the expression matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateobjectMA can be used too.
probs | Numeric vector of probabilities with values between 0 and 1. It indicates the I^2 quantiles that will be returned
Details

If in the QQ-plot of the Cochran’s test most of the values are close to the central line (most of the Cochran’s test values are close to the expected distribution), it can be said that there is homogeneity. In the case that these values deviate greatly from the expected distribution, it must be assumed that there is heterogeneity. I^2 measures the percentage of variation across studies due to heterogeneity. To assume homogeneity in the gene expression meta-analysis, almost all I^2 values (quantiles) must be 0 or at least less than 0.25.

Value

Quantiles of the I^2 values

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

References

See Also

createObjectMA

Examples

data(DExMAExampleData)

heterogeneityTest(maObject)
makeHeatmap

Usage

makeHeatmap(
 objectMA,
 resMA,
 scaling=c("zscor","rscale","swr","none"),
 regulation=c("all","up","down"),
 breaks=c(-2,2),
 fdrSig = 0.05,
 logFCSig = 1.5,
 numSig = "all",
 color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100),
 na_col = "darkgrey",
 legend = TRUE,
 cluster_cols = FALSE,
 cluster_rows = FALSE,
 show_rownames = TRUE,
 show_colnames = FALSE)

Arguments

objectMA A list of list. Each list contains two elements. The first element is the expression matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateobjectMA can be used too.

resMA Output generated by the different functions that performs meta-analysis (metaES, metaPvalue, metaRank or metaAnalysisDE)

scaling Character variable to choose between different scaling approaches. See "Details" for more information.

regulation Character variable that indicates whether we want the heatmap to show all significant genes ("all"), only the up-regulated genes ("up") or only the down-regulated genes("down")

breaks Numeric vector of length 2 that contains the extreme values (minimum and maximum) of the range of values in which the heatmap color scale will be distributed. Default a vector By default a vector of -2 and 2 as extreme values.

fdrSig Adjusted p-value from which a gene is considered significant. Default 0.05

logFCSig In absolute value. Log Fold Change threshold from which genes are considered in the heatmap.

numSig The number of most significant genes to be represented. If numSig = "all", all significant genes that meet the selected parameters will be represented.

color Vector of colors used in heatmap

na_col Color of the NA cell in the heatmap

legend Logical to determine if legend should be drawn or not

cluster_cols boolean values determining if columns should be clustered.

cluster_rows boolean values determining if rows should be clustered.
show_rownames boolean specifying if row names are be shown.
show_colnames boolean specifying if column names are be shown.

Details
Scaling approaches that can be used are:

• "rscale": it applies rescale function of scales package. Values will be between -1 and 1)
• "zscor": It calculates a z-score value for each gene, that is, the mean gene expression from each gene is subtracted from each gene expression value and then it is divided by the standard deviation
• "swr": it applys scaling relative to reference dataset approach
• "none": any scaling approach it is applied.

Value
The matrix represented in the heatmap

Author(s)
Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

References

See Also
createObjectMA, metaAnalysisDE

Examples
data(DEXMAExampleData)
resultsMA <- metaAnalysisDE(maObject, typeMethod="REM")
makeHeatmap(objectMA=maObject, resMA=resultsMA,
scaling = "zscor", regulation = "all", breaks=c(-2,2),
fdrSig = 0.05, logFCSig = 1.5, numSig=40)
Performing Meta-analysis

Description

It performs meta-analysis using seven different methods.

Usage

```r
metaAnalysisDE(
  objectMA = NULL,
  effectS = NULL,
  pvalues = NULL,
  weight = NULL,
  typeMethod = c("FEM", "REM", "maxP", "minP", "Fisher",
                 "Stouffer", "ACAT"),
  missAllow = 0.3,
  proportionData = 0.5
)
```

Arguments

- **objectMA**
 A list of list. Each list contains two elements. The first element is the expression matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateobjectMA can be used too.

- **effectS**
 A list of two elements. The first element is a dataframe with genes in rows and studies in columns. Each component of the dataframe is the effect of a gene in a study. The second element of the list is also a dataframe with the same structure, but in this case each component of the dataframe represent the variance of the effect of a gene in a study. The third element of the list is also a dataframe with the same structure, but in this case each component of the dataframe represent the log fold change of a gene in a study. This argument should be only used in the case that objectMA argument is null.

- **pvalues**
 A list of two elements. The first element is a dataframe with genes in rows and studies in columns. Each component of the dataframe is the p-value of a gene in a study. The second element of the list is also a dataframe with the same structure, but in this case each component of the dataframe represent the log fold change of a gene in a study. This argument should be only used in the case that objectMA argument is null.

- **weight**
 A vector of the weights of each dataset. This argument should only be included in case objectMA is null and you want to use "Stouffer" or "ACAT" method.

- **typeMethod**
 A character that indicates the method to be performed. See "Details" for more information.
missAllow A number that indicates the maximum proportion of missing values allowed in a sample. If the sample has more proportion of missing values the sample will be eliminated. In the other case the missing values will be imputed using the K-NN algorithm. In case the objectMA has been previously imputed, this element is not necessary.

proportionData The minimum proportion of datasets in which a gene must be contained to be included. By default, the gene must be contained in at least half of the datasets. In case the objectMA has been previously imputed, this element is not necessary.

Details

The different meta-analysis methods that can be applied are:

1. Effects sizes methods:
 - "FEM": Fixed Effects model
 - "REM": Random Effects model

2. P-value combination methods
 - "Fisher": Fisher’s methods
 - "Stouffer": Stouffer’s method
 - "maxP": maximum p-value method (Wilkinson’s method)
 - "minP": minimum p-value method (Tippett’s method)
 - "ACAT": Aggregated Cauchy Association Test method

Value

A dataframe with the meta-analysis results. Depending on the applied method, a different dataframe is obtained. For more information see the package vignette.

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

References

Examples

```r
data(DExMAExampleData)
ResultsMA <- metaAnalysisDE(objectMA=maObject, typeMethod="REM",
                            missAllow=0.3, proportionData=0.5)
ResultsMA
```

Description

missGenesImput uses k-nearest neighbors in the space of samples to impute the unmeasured genes of the different datasets.

Usage

```r
missGenesImput(objectMA, k = 7)
```

Arguments

- **objectMA**: A list of list. Each list contains two elements. The first element is the expression matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateobjectMA can be used too.
- **k**: Number of neighbors to be used in the imputation (default=7).

Value

A list formed by two elements:

- First element (objectMA) the same objectMA with missign genes imputed
- Second element (imputIndicators) a list with 4 different objects:
 - imputValuesSample: Number of missing values imputed per sample
 - imputPercentageSample: Percentage of missing values imputed per sample
 - imputValuesGene: Number of missing values imputed per gene
 - imputPercentageGene: Percentage of missing values imputed per gene

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>
pvalueIndAnalysis

References

See Also

createObjectMA, metaAnalysisDE

Examples

data(DExMAExampleData)
missGenesImput(maObject)

Calculation p-value for each gene and study

Description

This function uses t-test based on limma package in other to obtain the individual p-values for each study and gene

Usage

pvalueIndAnalysis(objectMA, missAllow = 0.3)

Arguments

objectMA A list of list. Each list contains two elements. The first element is the expres-sion matrix (genes in rows and sample in columns) and the second element is a vector of zeros and ones that represents the state of the different samples of the expression matrix. 0 represents one group (controls) and 1 represents the other group (cases). The result of the CreateObjectMA can be used too.

missAllow a number that indicates the maximum proportion of missing values allowed in a sample. If the sample has more proportion of missing values the sample will be eliminated. In the other case the missing values will be imputed using the K-NN algorithm.
pvalueIndAnalysis

Value

A list formed by two elements:

- First element (p) is a dataframe were columns are each of the studies (datasets) and rows are the genes. Each element of the dataframe represents the p-value.
- Second element (logFC) is a dataframe were columns are each of the studies (datasets) and rows are the genes. Each element of the dataframe is the logFC.
- Third element (weights_z) is a dataframe were columns are each of the studies (datasets) and rows are the genes. Each element of the dataframe represents the necessary weights for Stouffer’s method.

Author(s)

Juan Antonio Villatoro Garcia, <juanantoniovillatorogarcia@gmail.com>

See Also

`createObjectMA`, `metaAnalysisDE`

Examples

```r
data(DExMAExampleData)
pvalues <- pvalueIndAnalysis(objectMA=maObject, missAllow=0.3)
pvalues```

Index

allSameID, 2
batchRemove, 3

calculateES, 4
createObjectMA, 3, 4, 5, 7, 9, 10, 12, 16, 17

dataLog, 6
downloadGEOData, 7

elelementObjectMA, 6, 8
heterogeneityTest, 9

makeHeatmap, 10
metaAnalysisDE, 4, 12, 13, 16, 17
missGenesImput, 15

pvalueIndAnalysis, 16