Package ‘DMCFB’

May 29, 2024

Type Package

Title Differentially Methylated Cytosines via a Bayesian Functional Approach

Version 1.18.0

Description DMCFB is a pipeline for identifying differentially methylated cytosines using a Bayesian functional regression model in bisulfite sequencing data. By using a functional regression data model, it tries to capture position-specific, group-specific and other covariates-specific methylation patterns as well as spatial correlation patterns and unknown underlying models of methylation data. It is robust and flexible with respect to the true underlying models and inclusion of any covariates, and the missing values are imputed using spatial correlation between positions and samples. A Bayesian approach is adopted for estimation and inference in the proposed method.

Depends R (>= 4.0.0), SummarizedExperiment, methods, S4Vectors, BiocParallel, GenomicRanges, IRanges

Imports utils, stats, speedglm, MASS, data.table, splines, arm, rtracklayer, benchmarkme, tibble, matrixStats, fastDummies, graphics

Suggests testthat, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

biocViews DifferentialMethylation, Sequencing, Coverage, Bayesian, Regression

License GPL-3

Encoding UTF-8

LazyData true

BugReports https://github.com/shokoohi/DMCFB/issues

RoxygenNote 7.3.0

git_url https://git.bioconductor.org/packages/DMCFB

git_branch RELEASE_3_19

git_last_commit 4ffb609
DMCFB-package

Differentially Methylated cytosines using functional Bayesian regression models

Description

DMCFB is a profiling tool for identifying differentially methylated cytosines using Functional Bayesian Model in bisulfite sequencing data.

DMCFB methods

findDMCFB, plotDMCFB, cBSDMC, readBismark.

BSDMC objects

BSDMC-class
Description

The BSDMC object is an S4 class that represents differentially methylated CpG sites (DMCs) in BS-Seq Data.

Arguments

- **methReads**: The matrix `methReads` contains the number of methylated reads spanning a CpG-site. The rows represent the CpG sites in `rowRanges` and the columns represent the samples in `colData`.
- **totalReads**: The matrix `totalReads` contains the number of reads spanning a CpG-site. The rows represent the CpG sites in `rowRanges` and the columns represent the samples in `colData`.
- **methLevels**: The matrix `methLevels` contains the predicted methylation level spanning a CpG-site using Bayesian functional regression models. The rows represent the CpG sites in `rowRanges` and the columns represent the samples in `colData`.

Value

A BSDMC-class object

Slots

- `methReads`: An integer matrix
- `totalReads`: An integer matrix
- `methLevels`: A numeric matrix

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

See Also

- RangedSummarizedExperiment-class
- GRanges-class

Examples

```r
nr <- 500
cn <- 16
metht <- matrix(as.integer(runif(nr * nc, 0, nr)), nr)
methc <- matrix(rbinom(n = nr * nc, c(metht), prob = runif(nr * nc)), nr, nc)
meths <- matrix(as.integer(runif(nr * nc, 0, 10)), nr)
methl <- methc / metht
methv <- matrix((runif(nr * nc, 0.1, 0.5)), nr)
```
cBSDMC-method

r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "*")
names(r1) <- 1:nr
cd1 <- DataFrame(Group = rep(c("G1", "G2"), each = nc / 2),
 row.names = LETTERS[1:nc])
OBJ2 <- cBSDMC(
 rowRanges = r1, methReads = methc, totalReads = metht,
 methLevels = methl, methStates = meths, methVars = methv, colData = cd1
)
OBJ2

cBSDMC-method cBSDMC method

Description

Creates a BSDMC-class object

Usage

cBSDMC(
 methReads,
 totalReads,
 methLevels,
 rowRanges,
 colData = DataFrame(row.names = colnames(methReads)),
 metadata = list(),
 ...
)

S4 method for signature 'matrix,matrix,matrix,GRanges'
cBSDMC(
 methReads,
 totalReads,
 methLevels,
 rowRanges,
 colData = DataFrame(row.names = colnames(methReads)),
 metadata = list(),
 ...
)

Arguments

methReads The matrix methReads contains the number of methylated reads spanning a CpG-site. The rows represent the CpG sites in rowRanges and the columns represent the samples in colData.

totalReads The matrix totalReads contains the number of reads spanning a CpG-site. The rows represent the CpG sites in rowRanges and the columns represent the samples in colData.
methLevels
The matrix methLevels contains the predicted methylation level spanning a CpG-site using Bayesian functional regression models. The rows represent the CpG sites in rowRanges and the columns represent the samples in colData.

rowRanges
A GRanges or GRangesList object describing the ranges of interest. Names, if present, become the row names of the SummarizedExperiment object. The length of the GRanges or GRangesList must equal the number of rows of the matrices in assays. If rowRanges is missing, a SummarizedExperiment instance is returned.

colData
Object of class 'DataFrame' containing information on variable values of the samples

metadata
A list of storing MCMC samples or DMCs
...
other possible parameters

Details

The rows of a BSDMC object represent ranges (in genomic coordinates) of interest. The ranges of interest are described by a GRanges or a GRangesList object, accessible using the rowRanges function. The GRanges and GRangesList classes contains sequence (e.g., chromosome) name, genomic coordinates, and strand information. Each range can be annotated with additional data; this data might be used to describe the range or to summarize results (e.g., statistics of differential abundance) relevant to the range. Rows may or may not have row names; they often will not.

Value

A BSDMC-class

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

```r
set.seed(1980)
nr <- 150
nc <- 8
meth <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n = nr * nc, c(meth), prob = runif(nr * nc)), nr, nc)
meths <- matrix(as.integer(runif(nr * nc, 0, 10)), nr)
methl <- methc / meth
methv <- matrix((runif(nr * nc, 0.1, 0.5)), nr)
r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "x")
names(r1) <- 1:nr
cd1 <- DataFrame(  
  Group = rep(c("G1", "G2"), each = nc / 2),  
  row.names = LETTERS[1:nc]
)
OBJ2 <- cBSDMC(  
  rowRanges = r1, methReads = methc, totalReads = meth,  
  methLevels = methl, methStates = meths, methVars = methv, colData = cd1
)```
Description

combine two \texttt{BSDMC-class} or two \texttt{BSDMC-class}

Usage

\begin{verbatim}
\texttt{combine(obj1, obj2)}
\end{verbatim}

## S4 method for signature 'BSDMC,BSDMC'

\begin{verbatim}
\texttt{combine(obj1, obj2)}
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{obj1} A \texttt{BSDMC-class}
\item \texttt{obj2} A \texttt{BSDMC-class}
\end{itemize}

Value

A \texttt{BSDMC-class} or \texttt{BSDMC-class}

Author(s)

Farhad Shokoohi \texttt{<shokoohi@icloud.com>}

Examples

\begin{verbatim}
set.seed(1980)
nr <- 150
nc <- 8
metht <- matrix(as.integer(runif(nr * nc * 2, 0, nr)), nr)
methc <- matrix(
  rbinom(n = nr * nc, c(metht), prob = runif(nr * nc * 2)),
  nr, nc * 2
)
methl <- methc / metht
r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "x")
names(r1) <- 1:nr
cd1 <- DataFrame(Group = rep("G1", each = nc), row.names = LETTERS[1:nc])
OBJ1 <- cBSDMC(
  rowRanges = r1, methReads = methc[, 1:nc], totalReads = metht[, 1:nc],
  methLevels = methl[, 1:nc], colData = cd1
)

cd2 <- DataFrame(
  Group = rep("G2", each = nc),

```
findDMCFB-method

 row.names = LETTERS[nc + 1:nc]
)
OBJ2 <- cBSDMC(
 rowRanges = r1, methReads = methc[, nc + 1:nc], totalReads =
 metht[, nc + 1:nc], methLevels = methl[, nc + 1:nc], colData = cd2
)
OBJ3 <- combine(OBJ1, OBJ2)
OBJ3

findDMCFB-method findDMCFB method

Description

DMC identification via Bayesian functional regression models

Usage

findDMCFB(
 object,
 bwa,
 bwb,
 nBurn,
 nMC,
 nThin,
 alpha,
 sdv,
 nCores,
 pSize,
 sfiles
)

S4 method for signature 'BSDMC'
findDMCFB(
 object,
 bwa,
 bwb,
 nBurn,
 nMC,
 nThin,
 alpha,
 sdv,
 nCores,
 pSize,
 sfiles
)
findDMCFB-method

Arguments

- **object**: A BSDMC-class object
- **bwa**: An integer value specifying the band-width size of B-spline basis matrix for a natural cubic spline for the group-specific effects of the Bayesian functional regression model
- **bwb**: An integer value specifying the band-width size of B-spline basis matrix for a natural cubic spline for the individual-specific effects of the Bayesian functional regression model
- **nBurn**: An integer value specifying the number of burn-in samples
- **nMC**: An integer value specifying the number of MCMC samples after burn-in
- **nThin**: An integer value specifying the thinning number in MCMC
- **alpha**: A numeric value specifying the level of α in credible interval $(1 - \alpha)\%$
- **sdv**: An double value specifying the standard deviation of priors
- **nCores**: An integer value specifying the number of machine cores for parallel computing
- **pSize**: An integer value specifying the number of cytosines in a region to be used in a Bayesian functional regression model for DMC detection
- **sfiles**: A logical value indicating whether files to be saved or not.

Value

BSDMC-class object

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

```r
set.seed(1980)
nr <- 1000
nc <- 4
metht <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n = nr * nc, c(metht), prob = runif(nr * nc)), nr, nc)
methl <- methc / metht
r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "*")
names(r1) <- 1:nr
cd1 <- DataFrame(
    Group = rep(c("G1", "G2"), each = nc / 2),
    row.names = LETTERS[1:nc]
)
OBJ1 <- cBSDMC(
    rowRanges = r1, methReads = methc, totalReads = metht,
    methLevels = methl, colData = cd1
)
OBJ2 <- findDMCFB(OBJ1,
    bwa = 10, bwb = 10, nBurn = 50, nMC = 50, nThin = 1,
    alpha = 0.05, nCores = 2, pSize = 500, sfiles = FALSE
)
```
methLevels-method

methLevels-method

Description

Returns methLevels stored in BSDMC-class
Assigns methLevels to BSDMC-class

Usage

methLevels(object)

methLevels(object) <- value

S4 method for signature 'BSDMC'
methLevels(object)

S4 replacement method for signature 'BSDMC,matrix'
methLevels(object) <- value

Arguments

object A BSDMC-class object
value An integer matrix

Value

A matrix
A BSDMC-class object

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

nr <- 150
cn <- 8
meth <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n = nr * nc, c(meth), prob = runif(nr * nc)), nr, nc)
methl <- methc / meth
r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "*")
names(r1) <- 1:nr
cdl <- DataFrame(
 Group = rep(c("G1", "G2"), each = nc / 2),
methReads-method

Description

Returns methReads stored in BSDMC-class

Assigns methReads to BSDMC-class

Usage

methReads(object)

methReads(object) <- value

S4 method for signature 'BSDMC'
methReads(object)

S4 replacement method for signature 'BSDMC,matrix'
methReads(object) <- value

Arguments

object A BSDMC-class object

value An integer matrix

Value

A matrix

A BSDMC-class object

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>
Examples

```r	nr <- 150	nc <- 8
metht <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n = nr * nc, c(metht), prob = runif(nr * nc)), nr, nc)
methl <- methc / metht
r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "*")
names(r1) <- 1:nr
cd1 <- DataFrame(
  Group = rep(c("G1", "G2"), each = nc / 2),
  row.names = LETTERS[1:nc]
)
OBJ1 <- cBSDMC(
  rowRanges = r1, methReads = methc, totalReads = metht,
  methLevels = methl, colData = cd1
)
methReads(OBJ1)
methReads(OBJ1) <- methc
```

Description

parameters name and their descriptions

Arguments

- **methReads**
 The matrix methReads contains the number of methylated reads spanning a CpG-site. The rows represent the CpG sites in rowRanges and the columns represent the samples in colData.

- **totalReads**
 The matrix totalReads contains the number of reads spanning a CpG-site. The rows represent the CpG sites in rowRanges and the columns represent the samples in colData.

- **methLevels**
 The matrix methLevels contains the predicted methylation level spanning a CpG-site using Bayesian functional regression models. The rows represent the CpG sites in rowRanges and the columns represent the samples in colData.

- **rowRanges**
 A GRanges or GRangesList object describing the ranges of interest. Names, if present, become the row names of the SummarizedExperiment object. The length of the GRanges or GRangesList must equal the number of rows of the matrices in assays. If rowRanges is missing, a SummarizedExperiment instance is returned.

- **colData**
 Object of class 'DataFrame' containing information on variable values of the samples

- **metadata**
 A list of storing MCMC samples or DMCs

- **object**
 A BSDMC-class object
value An integer matrix
name A character list
obj1 A BSDMC-class
obj2 A BSDMC-class
files A character list
file A character
nCores An integer value specifying the number of machine cores for parallel computing
mc.cores An integer greater than 0
pSize An integer value specifying the number of cytosines in a region to be used in a
 Bayesian functional regression model for DMC detection
bwa An integer value specifying the band-width size of B-spline basis matrix for a
 natural cubic spline for the group-specific effects of the Bayesian functional
 regression model
bwb An integer value specifying the band-width size of B-spline basis matrix for a
 natural cubic spline for the individual-specific effects of the Bayesian functional
 regression model
nBurn An integer value specifying the number of burn-in samples
nThin An integer value specifying the thinning number in MCMC
nMC An integer value specifying the number of MCMC samples after burn-in
sdv An double value specifying the standard deviation of priors
alpha A numeric value specifying the level of \(\alpha \) in credible interval \((1 - \alpha)\% \)
col A character vector indicating which colors to alternate.
sfiles A logical value indicating whether files to be saved or not.
region An integer vector of length two specifying which subset of the object to be
 plotted
nSplit A integer value specifying the number of subsets must be done for plotting the
 results of DMC identification
parList A list specifying plots parameters, see par
... other possible parameters

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>
Description

Plotting the results of DMC identification stored in a BSDMC-class object.

Usage

plotDMCFB(object, region, nSplit, parList)

S4 method for signature 'BSDMC'
plotDMCFB(object, region, nSplit, parList)

Arguments

- **object**: A BSDMC-class object
- **region**: An integer vector of length two specifying which subset of the object to be plotted
- **nSplit**: A integer value specifying the number of subsets must be done for plotting the results of DMC identification
- **parList**: A list specifying plots parameters, see par

Value

Plot

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

```r
set.seed(1980)
nr <- 1000
nc <- 4
methl <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n = nr * nc, c(methl), prob = runif(nr * nc)), nr, nc)
methl <- methc / methl
r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "x")
names(r1) <- 1:nr
cd1 <- DataFrame(
    Group = rep(c("G1", "G2"), each = nc / 2),
    row.names = LETTERS[1:nc]
)
OBJ1 <- cBSDMC(
    rowRanges = r1, methReads = methc, totalReads = methl,
    methLevels = methl, colData = cd1
)```
OBJ2 <- findDMCFB(OBJ1,
  bwa = 10, bwb = 10, nBurn = 50, nMC = 50, nThin = 1,
  alpha = 0.05, nCores = 2, pSize = 500, sfiles = FALSE
) plotDMCFB(OBJ2)

readBismark-method  readBismark method

Description
reads BS-Seq data

Usage
readBismark(files, colData, mc.cores)

## S4 method for signature 'character,DataFrame,numeric'
readBismark(files, colData, mc.cores)

## S4 method for signature 'character,character,numeric'
readBismark(files, colData, mc.cores)

Arguments

files A character list
colData Object of class 'DataFrame' containing information on variable values of the samples
mc.cores An integer greater than 0

Value
A BSDMC-class object

Author(s)
Farhad Shokoohi <shokoohi@icloud.com>
Examples

```r
fn <- list.files(system.file("extdata", package = "DMCFB"))
fn.f <- list.files(system.file("extdata", package = "DMCFB"),
 full.names = TRUE)
OBJ <- readBismark(fn.f, fn, mc.cores=1)

cdOBJ <- DataFrame(Cell = factor(c("BC", "TC", "Mono"),
 labels = c("BC", "TC", "Mono"))
), row.names = c("BCU1568", "BCU173", "BCU551"))
colData(OBJ) <- cdOBJ
OBJ
```

Description

Returns totalReads stored in BSDMC-class
Assigns totalReads to BSDMC-class

Usage

```r
totalReads(object)
totalReads(object) <- value
```

## S4 method for signature 'BSDMC'
```r
totalReads(object)
```

## S4 replacement method for signature 'BSDMC,matrix'
```r
totalReads(object) <- value
```

Arguments

- **object**
  - A BSDMC-class object

- **value**
  - An integer matrix

Value

A matrix
A BSDMC-class object

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>
Examples

nr <- 150
nc <- 8
metht <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n = nr * nc, c(metht), prob = runif(nr * nc)), nr, nc)
methl <- methc / metht
r1 <- GRanges(rep("chr1", nr), IRanges(1:nr, width = 1), strand = "*")
names(r1) <- 1:nr
cd1 <- DataFrame(
  Group = rep(c("G1", "G2"), each = nc / 2),
  row.names = LETTERS[1:nc]
)
OBJ1 <- cBSDMC(
  rowRanges = r1, methReads = methc, totalReads = metht,
  methLevels = methl, colData = cd1
)
totalReads(OBJ1)
totalReads(OBJ1) <- metht
Index

* object
  BSDMC-class, 3
BSDMC (BSDMC-class), 3
BSDMC-class, 3
  cBSDMC, 2
  cBSDMC (cBSDMC-method), 4
cBSDMC, matrix, matrix, matrix, GRanges-method
  (cBSDMC-method), 4
cBSDMC-method, 4
  combine (combine-method), 6
  combine, BSDMC, BSDMC-method
    (combine-method), 6
  combine-method, 6
DMCFB (DMCFB-package), 2
  DMCFB-package, 2
  findDMCFB, 2
  findDMCFB (findDMCFB-method), 7
  findDMCFB, BSDMC-method
    (findDMCFB-method), 7
  findDMCFB-method, 7
GRanges, 5, 11
  GRangesList, 5, 11
  methLevels (methLevels-method), 9
  methLevels, BSDMC-method
    (methLevels-method), 9
  methLevels-method, 9
  methLevels<-(methLevels-method), 9
  methLevels<-, BSDMC, matrix-method
    (methLevels-method), 9
  methReads (methReads-method), 10
  methReads, BSDMC-method
    (methReads-method), 10
  methReads-method, 10
  methReads<-(methReads-method), 10
methReads<-, BSDMC, matrix-method
  (methReads-method), 10
par, 12, 13
params, 11
plotDMCFB, 2
  plotDMCFB (plotDMCFB-method), 13
  plotDMCFB, BSDMC-method
    (plotDMCFB-method), 13
  plotDMCFB-method, 13
readBismark, 2
  readBismark (readBismark-method), 14
  readBismark, character, character, numeric-method
    (readBismark-method), 14
  readBismark, character, data.frame, numeric-method
    (readBismark-method), 14
  readBismark, character, DataFrame, numeric-method
    (readBismark-method), 14
  readBismark-method, 14
SummarizedExperiment, 5, 11
  totalReads (totalReads-method), 15
  totalReads, BSDMC-method
    (totalReads-method), 15
  totalReads-method, 15
  totalReads<-(totalReads-method), 15
  totalReads<-, BSDMC, matrix-method
    (totalReads-method), 15