Package ‘DeepPINCS’

May 29, 2024

Type Package
Title Protein Interactions and Networks with Compounds based on Sequences using Deep Learning
Description The identification of novel compound-protein interaction (CPI) is important in drug discovery. Revealing unknown compound-protein interactions is useful to design a new drug for a target protein by screening candidate compounds. The accurate CPI prediction assists in effective drug discovery process. To identify potential CPI effectively, prediction methods based on machine learning and deep learning have been developed. Data for sequences are provided as discrete symbolic data. In the data, compounds are represented as SMILES (simplified molecular-input line-entry system) strings and proteins are sequences in which the characters are amino acids. The outcome is defined as a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them. In this package, a deep-learning based model that takes only sequence information of both compounds and proteins as input and the outcome as output is used to predict CPI. The model is implemented by using compound and protein encoders with useful features. The CPI model also supports other modeling tasks, including protein-protein interaction (PPI), chemical-chemical interaction (CCI), or single compounds and proteins. Although the model is designed for proteins, DNA and RNA can be used if they are represented as sequences.

Version 1.12.0
Date 2023-07-06
LazyData TRUE
LazyDataCompression xz
Depends keras, R (>= 4.1)
Imports tensorflow, CatEncoders, matlab, rcdk, stringdist, tokenizers, webchem, purrr, ttgsea, PRROC, reticulate, stats
Suggests knitr, testthat, rmarkdown
License Artistic-2.0
biocViews Software, Network, GraphAndNetwork, NeuralNetwork
NeedsCompilation no
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/DeepPINCS
antiviral_drug

List of antiviral drugs with SMILES strings

Description

81 antiviral drugs with SMILES strings

Usage

antiviral_drug
Value

SMILES string

Author(s)

Dongmin Jung

Source

Description

The model for compound-protein interactions (CPI) takes the pair of SMILES strings of compounds and amino acid sequences (one letter amino acid code) of proteins as input. They are fed into the compound and protein encoders, respectively, and then these encoders are concatenated. Due to the combination of compound and protein encoders, there are many kinds of CPI models. However, the graph neural network such as the graph convolutional network (GCN) is only available for compounds. We need to select one of types of compounds. For graph and fingerprint, the SMILES sequences are not used for encoders, because the information of graph or fingerprint is extracted from the SMILES sequences and then it is fed into encoders. For sequence, the unigram is used as default, but the n-gram is available only for proteins. Since the CPI model needs some arguments of encoders, we may have to match the names of such arguments.

Usage

```r
fit_cpi(smiles = NULL, AAseq = NULL, outcome,
convert_canonical_smiles = TRUE,
compound_type = NULL, compound_max_atoms,
compound_length_seq, protein_length_seq,
compound_embedding_dim, protein_embedding_dim,
protein_ngram_max = 1, protein_ngram_min = 1,
smiles_val = NULL, AAseq_val = NULL, outcome_val = NULL,
net_args = list(
  compound,
  compound_args,
  protein,
  protein_args,
  fc_units = c(1),
  fc_activation = c("linear"), ...),
net_names = list(
  name_compound_max_atoms = NULL,
```
name_compound_feature_dim = NULL,
name_compound_fingerprint_size = NULL,
name_compound_embedding_layer = NULL,
name_compound_length_seq = NULL,
name_compound_num_tokens = NULL,
name_compound_embedding_dim = NULL,
name_protein_length_seq = NULL,
name_protein_num_tokens = NULL,
name_protein_embedding_dim = NULL),
preprocessor_only = FALSE,
preprocessing = list(
 outcome = NULL,
 outcome_val = NULL,
 convert_canonical_smiles = NULL,
 canonical_smiles = NULL,
 compound_type = NULL,
 compound_max_atoms = NULL,
 compound_A_pad = NULL,
 compound_X_pad = NULL,
 compound_A_pad_val = NULL,
 compound_X_pad_val = NULL,
 compound_fingerprint = NULL,
 compound_fingerprint_val = NULL,
 smiles_encode_pad = NULL,
 smiles_val_encode_pad = NULL,
 smiles_length_seq = NULL,
 smiles_num_tokens = NULL,
 smiles_embedding_dim = NULL,
 AAseq_encode_pad = NULL,
 AAseq_val_encode_pad = NULL,
 compound_lenc = NULL,
 compound_length_seq = NULL,
 compound_num_tokens = NULL,
 compound_embedding_dim = NULL,
 AAseq_encode_dim = NULL,
 AAseq_val_encode_dim = NULL,
 protein_lenc = NULL,
 protein_length_seq = NULL,
 protein_num_tokens = NULL,
 protein_embedding_dim = NULL,
 protein_ngram_max = NULL,
 protein_ngram_min = NULL),
batch_size, use_generator = FALSE,
validation_split = 0, ...)

predict_cpi(modelRes, smiles = NULL, AAseq = NULL,
preprocessing = list(
 canonical_smiles = NULL,
 compound_A_pad = NULL,
 compound_X_pad = NULL,
 compound_fingerprint = NULL,
 smiles_encode_pad = NULL,
 AAseq_encode_pad = NULL),
 AAseq_val_encode_pad = NULL,
 AAseq_embedding_layer = NULL,
 AAseq_embedding_dim = NULL,
 AAseq_length_seq = NULL,
 AAseq_num_tokens = NULL,
 AAseq_embedding_layer = NULL,
 AAseq_embedding_dim = NULL,
 AAseq_length_seq = NULL,
 AAseq_num_tokens = NULL,
 protein_lenc = NULL,
 protein_length_seq = NULL,
 protein_num_tokens = NULL,
 protein_embedding_dim = NULL,
 protein_ngram_max = NULL,
 protein_ngram_min = NULL),
 batch_size, use_generator = FALSE,
 validation_split = 0, ...)
use_generator = FALSE,
batch_size = NULL)

Arguments

smiles
SMILES strings, each column for the element of a pair (default: NULL)

AAseq
amino acid sequences, each column for the element of a pair (default: NULL)

outcome
a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them

convert_canonical_smiles
SMILES strings are converted to canonical SMILES strings if TRUE (default: TRUE)

compound_type
"graph", "fingerprint" or "sequence"

compound_max_atoms
maximum number of atoms for compounds

compound_length_seq
length of compound sequence

protein_length_seq
length of protein sequence

compound_embedding_dim
dimension of the dense embedding for compounds

protein_embedding_dim
dimension of the dense embedding for proteins

protein_ngram_max
maximum size of an n-gram for protein sequences (default: 1)

protein_ngram_min
minimum size of an n-gram for protein sequences (default: 1)

smiles_val
SMILES strings for validation (default: NULL)

AAseq_val
amino acid sequences for validation (default: NULL)

outcome_val
outcome for validation (default: NULL)

net_args
list of arguments for compound and protein encoder networks and for fully connected layer

• compound : encoder network for compounds
• compound_args : arguments of compound encoder
• protein : encoder network for proteins
• protein_args : arguments of protein encoder
• fc_units : dimensionality of the output space in the fully connected layer (default: 1)
• fc_activation : activation of the fully connected layer (default: "linear")
• ... : arguments of "keras::compile" but for object

net_names
list of names of arguments used in both the CPI model and encoder networks, names are set to NULL as default

• name_compound_max_atoms : corresponding name for the maximum number of atoms in the compound encoder, "max_atoms" if NULL
• name_compound_feature_dim : corresponding name for the dimension of node features in the compound encoder, "feature_dim" if NULL
• name_compound_fingerprint_size : corresponding name for the length of a fingerprint in the compound encoder, "fingerprint_size" if NULL
• name_compound_embedding_layer : corresponding name for the use of the embedding layer in the compound encoder, "embedding_layer" if NULL
• name_compound_length_seq : corresponding name for the length of sequences in the compound encoder, "length_seq" if NULL
• name_compound_num_tokens : corresponding name for the total number of distinct strings in the compound encoder, "num_tokens" if NULL
• name_compound_embedding_dim : corresponding name for dimension of the dense embedding in the compound encoder, "embedding_dim" if NULL
• name_protein_length_seq : corresponding name for the length of sequences in the protein encoder, "length_seq" if NULL
• name_protein_num_tokens : corresponding name for the total number of distinct strings in the protein encoder, "num_tokens" if NULL
• name_protein_embedding_dim : corresponding name for dimension of the dense embedding in the protein encoder, "embedding_dim" if NULL

preprocessor_only
model is not fitted after preprocessing if TRUE (default: FALSE)

preprocessing
list of preprocessed results for "fit_cpi" or "predict_cpi", they are set to NULL as default
• outcome : outcome variable
• outcome_val : outcome variable for validation
• convert_canonical_smiles : canonical representation used for preprocessing if TRUE
• canonical_smiles : canonical representation of SMILES
• compound_type : "graph", "fingerprint" or "sequence"
• compound_max_atoms : maximum number of atoms for compounds
• compound_A_pad : padded or truncated adjacency matrix of compounds
• compound_X_pad : padded or truncated node features of compounds
• compound_A_pad_val : padded or truncated adjacency matrix for validation
• compound_X_pad_val : padded or truncated node features for validation
• compound_fingerprint : fingerprint of compounds
• compound_fingerprint_val : fingerprint for validation
• smiles_encode_pad : encoded SMILES sequence which is padded or truncated
• smiles_val_encode_pad : encoded SMILES sequence for validation
• compound_lenc : encoded labels for characters of SMILES strings
• compound_length_seq : length of compound sequence
• compound_num_tokens : total number of characters of compounds
• compound_embedding_dim : dimension of the dense embedding for compounds
cpi_model

• AAseq_encode_pad : encoded amino acid sequence which is padded or truncated
• AAseq_val_encode_pad : encoded amino acid sequence for validation
• protein_lenc : encoded labels for characters of amino acid sequences
• protein_length_seq : length of protein sequence
• protein_num_tokens : total number of characters of proteins
• protein_embedding_dim : dimension of the dense embedding for proteins
• protein_ngram_max : maximum size of an n-gram for protein sequences
• protein_ngram_min : minimum size of an n-gram for protein sequences
• removed_smiles : index for removed smiles while checking
• removed_AAseq : index for removed AAseq while checking
• removed_smiles_val : index for removed smiles of validation
• removed_AAseq_val : index for removed AAseq of validation

batch_size batch size
use_generator use data generator if TRUE (default: FALSE)
validation_split proportion of validation data, it is ignored when there is a validation set (default: 0)
modelRes result of the "fit_cpi"
... additional parameters for the "keras::fit" or "keras::fit_generator"

Value
model

Author(s)
Dongmin Jung

See Also
keras::compile, keras::fit, keras::fit_generator, keras::layer_dense, keras::keras_model, purrr::pluck, webchem::is.smiles

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
 compound_max_atoms <- 50
 protein_embedding_dim <- 16
 protein_length_seq <- 100
 gcn_cnn_cpi <- fit_cpi(
 smiles = example_cpi[1:100, 1],
 AAseq = example_cpi[1:100, 2],
 outcome = example_cpi[1:100, 3],
 compound_type = "graph",
 compound_max_atoms = compound_max_atoms,
 protein_length_seq = protein_length_seq,
protein_embedding_dim = protein_embedding_dim,
net_args = list(
 compound = "gcn_in_out",
 compound_args = list(
 gcn_units = c(128, 64),
 gcn_activation = c("relu", "relu"),
 fc_units = c(10),
 fc_activation = c("relu"),
),
 protein = "cnn_in_out",
 protein_args = list(
 cnn_filters = c(32),
 cnn_kernel_size = c(3),
 cnn_activation = c("relu"),
 fc_units = c(10),
 fc_activation = c("relu"),
),
 fc_units = c(1),
 fc_activation = c("sigmoid"),
 loss = "binary_crossentropy",
 optimizer = keras::optimizer_adam(),
 metrics = "accuracy",
 epochs = 2, batch_size = 16)
)

pred <- predict_cpi(gcn_cnn_cpi, example_cpi[101:110, 1], example_cpi[101:110, 2])
gcn_cnn_cpi2 <- fit_cpi(
 preprocessing = gcn_cnn_cpi$preprocessing,
 net_args = list(
 compound = "gcn_in_out",
 compound_args = list(
 gcn_units = c(128, 64),
 gcn_activation = c("relu", "relu"),
 fc_units = c(10),
 fc_activation = c("relu"),
),
 protein = "cnn_in_out",
 protein_args = list(
 cnn_filters = c(32),
 cnn_kernel_size = c(3),
 cnn_activation = c("relu"),
 fc_units = c(10),
 fc_activation = c("relu"),
),
 fc_units = c(1),
 fc_activation = c("sigmoid"),
 loss = "binary_crossentropy",
 optimizer = keras::optimizer_adam(),
 metrics = "accuracy",
 epochs = 2, batch_size = 16)
)
pred <- predict_cpi(gcn_cnn_cpi2, preprocessing = pred$preprocessing)

encoder_in_out

Input and output tensors of encoders
encoder_in_out

Description

The graph convolutional network (GCN), recurrent neural network (RNN), convolutional neural network (CNN), and multilayer perceptron (MLP) are used as encoders. The last layer of the encoders is the fully connected layer. The units and activation can be vectors and the length of the vectors represents the number of layers.

Usage

gcn_in_out(max_atoms, feature_dim, gcn_units, gcn_activation, fc_units, fc_activation)

rnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE, num_tokens, embedding_dim, rnn_type, rnn_bidirectional, rnn_units, rnn_activation, fc_units, fc_activation)

cnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE, num_tokens, embedding_dim, cnn_filters, cnn_kernel_size, cnn_activation, fc_units, fc_activation)

mlp_in_out(length_seq, fingerprint_size, embedding_layer = TRUE, num_tokens, embedding_dim, fc_units, fc_activation)

Arguments

max_atoms maximum number of atoms for gcn
feature_dim dimension of atom features for gcn
gcn_units dimensionality of the output space in the gcn layer
gcn_activation activation of the gcn layer
fingerprint_size the length of a fingerprint
embedding_layer use the embedding layer if TRUE (default: TRUE)
embedding_dim a non-negative integer for dimension of the dense embedding
length_seq length of input sequences
num_tokens total number of distinct strings
cnn_filters dimensionality of the output space in the cnn layer
cnn_kernel_size length of the 1D convolution window in the cnn layer
cnn_activation activation of the cnn layer
rnn_type "lstm" or "gru"
rnn_bidirectional use the bidirectional wrapper for rnn if TRUE
rnn_units dimensionality of the output space in the rnn layer
rnn_activation activation of the rnn layer
fc_units dimensionality of the output space in the fully connected layer
fc_activation activation of the fully connected layer
Example Data for PubChem AID1706 bioassay

Description
This is a compound-protein interaction data set retrieved from PubChem AID1706 bioassay. The data is balanced and a randomly selected subset of a dataset of size 5000. The label is 1 if the score is greater than or equal to 15, otherwise it is 0.

Usage

example_bioassay

Value

compound-protein interaction data

Author(s)

Dongmin Jung

Source

Example Data for Chemical-Chemical Interactions

Description
The data is a randomly selected subset with size 1000 for chemical-chemical interactions. The two SMILES strings are for compound pairs and the label is for their interactions.

Usage
example_cci

Value
chemical-chemical interaction data

Author(s)
Dongmin Jung

Source
Huang, K., Xiao, C., Hoang, T., Glass, L., & Sun, J. (2020). CASTER: Predicting drug interactions with chemical substructure representation. AAAI.

Example Data for Compounds

Description
Blood-Brain-Barrier (BBB) is a permeability barrier for maintaining homeostasis of Central Nervous System (CNS). The data is a curated compound dataset with known BBB permeability. Compounds are divided into two groups according to whether the brain to blood concentration ratio was greater or less than 0.1. The row name labels each row with the compound name.

Usage
example_chem

Value
compound data

Author(s)
Dongmin Jung
Source

Example Data for Compound-Protein Interactions

Description

The data consist of compound-protein pairs and their interactions of human. The SMILES and amino acid sequences are used for compounds and proteins, respectively. The binary outcome label is whether or not they interact each other.

Usage

example_cpi

Value

compound-protein interaction data

Author(s)

Dongmin Jung

Source

Example Data for Primer-Dimer

Description

This is a primer-primer interaction data set with size 319. The two sequences are for primer pairs and the label is for their interactions.

Usage

example_pd

Value

primer sequences and dimer formation data
Author(s)
Dongmin Jung

Source

Example Data for Protein-Protein Interactions

Description
The data is a randomly selected subset with size 5000 for protein-protein interactions of yeast. The two amino acid sequences are for protein pairs and the label is for their interactions.

Usage
example_ppi

Value
protein-protein interaction data

Author(s)
Dongmin Jung

Source

Example Data for Proteins

Description
This is a protein data set retrieved from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB). The data consist of amino acid sequences with three classes. The row name labels each row with the PDB identification code.

Usage
example_prot
get_canonical_smiles

Value

protein data

Author(s)

Dongmin Jung

Source

Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) and https://www.kaggle.com/shahir/protein-data-set

get_canonical_smiles
Convert SMILES strings to canonical SMILES strings

Description

There may be many different ways to construct the SMILES string for a given molecule. A canonical representation is a unique ordering of the atoms for a given molecular graph.

Usage

getCanonicalSmiles(smiles)

Arguments

- **smiles**
 SMILES strings

Value

canonical representation of SMILES

Author(s)

Dongmin Jung

References

See Also

rcdk::parse.smile, rcdk::get.smiles, rcdk::smiles.flavors

Examples

getCanonicalSmiles(example_cpi[1, 1])
Description

A molecular fingerprint is a way of encoding the structural features of a molecule. The most common type of fingerprint is a sequence of ones and zeros. Fingerprints are special kinds of descriptors that characterize a molecule and its properties as a binary bit vector that represents the presence or absence of particular substructure in the molecule. For such a fingerprint, the Chemistry Development Kit (CDK) is used as a cheminformatics tool.

Usage

get_fingerprint(smiles, ...)

Arguments

smiles SMILES strings
... arguments for "rcdk::get.fingerprint" but for molecule

Value

a fingerprint of a compound

Author(s)

Dongmin Jung

References

See Also

rcdk::get.fingerprint, rcdk::parse.smiles

Examples

get_fingerprint(example_cpi[1, 1])
get_graph_structure_node_feature

Graph structure and node features from SMILES strings

Description

In molecular graph representations, nodes represent atoms and edges represent bonds. For molecular features, the Chemistry Development Kit (CDK) is used as a cheminformatics tool. The degree of an atom in the graph representation and the atomic symbol and implicit hydrogen count for an atom are used as molecular features.

Usage

```
get_graph_structure_node_feature(smiles, max_atoms,
   element_list = c(
      "Br", "Mg", "Na", "Ca", "Fe", "Al", "I",
      "B", "K", "Se", "Zn", "H", "Cu", "Mn")
```

Arguments

- **smiles**: SMILES strings
- **max_atoms**: maximum number of atoms
- **element_list**: list of atom symbols

Value

- **A_pad**: a padded or truncated adjacency matrix for each SMILES string
- **X_pad**: a padded or truncated node features for each SMILES string
- **feature_dim**: dimension of node features
- **element_list**: list of atom symbols

Author(s)

Dongmin Jung

References

See Also

matlab::padarray, purrr::chuck, rcdk::get.adjacency.matrix, rcdk::get.atoms, rcdk::get.hydrogen.count, rcdk::get.symbol rcdk::parse.smiles
get_seq_encode_pad

Examples

get_graph_structure_node_feature(example_cpi[1, 1], 10)

get_seq_encode_pad
Vectorization of characters of strings

Description

A vectorization of characters of strings is necessary. Vectorized characters are padded or truncated.

Usage

```r
get_seq_encode_pad(sequences, length_seq, ngram_max = 1, ngram_min = 1,
                   lenc = NULL)
```

Arguments

- **sequences**: SMILE strings or amino acid sequences
- **length_seq**: length of input sequences
- **ngram_max**: maximum size of an n-gram (default: 1)
- **ngram_min**: minimum size of an n-gram (default: 1)
- **lenc**: encoded labels for characters, LableEncoder object fitted by "CatEncoders::LabelEncoder.fit" (default: NULL)

Value

- **sequences_encode_pad**: for each SMILES string, an encoded sequence which is padded or truncated
- **lenc**: encoded labels for characters
- **num_token**: total number of characters

Author(s)

Dongmin Jung

See Also

CatEncoders::LabelEncoder.fit, CatEncoders::transform, keras::pad_sequences, stringdist::qgrams, tokenizers::tokenize_ngrams

Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  get_seq_encode_pad(example_cpi[1, 2], 10)
}
```
Description

The concordance index or c-index can be seen as one of the model performance metrics. It represents a good fit of the model.

Author(s)

Dongmin Jung

References

See Also

keras::k_cast, keras::k_equal, keras::k_sum, tensorflow::tf

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
 compound_length_seq <- 50
 compound_embedding_dim <- 16
 protein_embedding_dim <- 16
 protein_length_seq <- 100

 mlp_cnn_cpi <- fit_cpi(
 smiles = example_cpi[1:100, 1],
 AAseq = example_cpi[1:100, 2],
 outcome = example_cpi[1:100, 3],
 compound_type = "sequence",
 compound_length_seq = compound_length_seq,
 compound_embedding_dim = compound_embedding_dim,
 protein_length_seq = protein_length_seq,
 protein_embedding_dim = protein_embedding_dim,
 net_args = list(
 compound = "mlp_in_out",
 compound_args = list(
 fc_units = c(10),
 fc_activation = c("relu"),
 protein = "cnn_in_out",
 protein_args = list(
 cnn_filters = c(32),
 cnn_kernel_size = c(3),
 cnn_activation = c("relu"),
 fc_units = c(10),
 fc_activation = c("relu"))))
)
metric_f1_score

fc_units = c(1),
fc_activation = c("sigmoid"),
loss = "binary_crossentropy",
optimizer = keras::optimizer_adam(),
metrics = custom_metric("concordance_index",
metric_concordance_index)),
epochs = 2,
batch_size = 16)
}

<table>
<thead>
<tr>
<th>metric_f1_score</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The F1-score is a metric combining precision and recall. It is typically used instead of accuracy in the case of severe class imbalance in the dataset. The higher the values of F1-score, the better the validation of the model.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Dongmin Jung</td>
</tr>
<tr>
<td>See Also</td>
<td>keras::k_equal, keras::k_sum, tensorflow::tf</td>
</tr>
</tbody>
</table>
| Examples | if (keras::is_keras_available() & reticulate::py_available()) {
compound_length_seq <- 50
compound_embedding_dim <- 16
protein_embedding_dim <- 16
protein_length_seq <- 100

mlp_cnn_cpi <- fit_cpi(
 smiles = example_cpi[1:100, 1],
 AAseq = example_cpi[1:100, 2],
 outcome = example_cpi[1:100, 3],
 compound_type = "sequence",
 compound_length_seq = compound_length_seq,
 compound_embedding_dim = compound_embedding_dim,
 protein_length_seq = protein_length_seq,}
multiple_sampling_generator

Generator function for multiple inputs

Description
This is a generator function that yields batches of data with multiple inputs.

Usage
multiple_sampling_generator(X_data, Y_data = NULL, batch_size, shuffle = TRUE)

Arguments

X_data
list of multiple inputs

Y_data
targets (default: NULL)

batch_size
batch size

shuffle
whether to shuffle the data or not (default: TRUE)

Value
generator for "keras::fit" or "keras::predict"
Author(s)

Dongmin Jung

Examples

```r
X_data <- c(list(matrix(rnorm(200), ncol = 2)),
            list(matrix(rnorm(200), ncol = 2)))
Y_data <- matrix(rnorm(100), ncol = 1)
multiple_sampling_generator(X_data, Y_data, 32)
```

Description

306 amino acid residues of the SARS coronavirus 3C-like Protease

Usage

SARS_CoV2_3CL_Protease

Value

amino acid sequence

Author(s)

Dongmin Jung

Source

seq_check

Check SMILES strings and amino acid sequences

Description

In real-world cases, most of the data are not complete and contain incorrect values, missing values, and so on. Thus, there may be invalid sequences in the data. This function can find such sequences and remove them from the data. For SMILES strings, the function "webchem::is.smiles" is used. A valid amino acid sequence means a string that only contains capital letters of an alphabet.

Usage

seq_check(smiles = NULL, AAseq = NULL, outcome = NULL)

Arguments

smiles SMILES strings (default: NULL)
AAseq amino acid sequences (default: NULL)
outcome a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them (default: NULL)

Value

valid sequences

Author(s)

Dongmin Jung

References

See Also

webchem::is.smiles

Examples

seq_check(smiles = example_cpi[1, 1], outcome = example_cpi[1, 3])
Preprocessing for SMILES strings and amino acid sequences

Description
Preprocessing helps make the data suitable for the model depending on the type of data the preprocessing works upon. Preprocessing is more time consuming for text data. The adjacency matrix and node feature, fingerprint, or string data are preprocessed from sequences.

Usage
seq_preprocessing(smiles = NULL, AAseq = NULL, type, convert_canonical_smiles, max_atoms, length_seq, lenc = NULL, ngram_max = 1, ngram_min = 1)

Arguments
- **smiles**: SMILES strings (default: NULL)
- **AAseq**: amino acid sequences (default: NULL)
- **type**: "graph", "fingerprint" or "sequence"
- **convert_canonical_smiles**: SMILES strings are converted to canonical SMILES strings if TRUE
- **max_atoms**: maximum number of atoms for compounds
- **length_seq**: length of compound or protein sequence
- **lenc**: encoded labels for characters of SMILES strings or amino acid sequences (default: NULL)
- **ngram_max**: maximum size of an n-gram for protein sequences (default: 1)
- **ngram_min**: minimum size of an n-gram for protein sequences (default: 1)

Value
- **canonical_smiles**: canonical representation of SMILES
- **convert_canonical_smiles**: canonical representation is used or not
- **A_pad**: padded or truncated adjacency matrix of compounds if type is "graph"
- **X_pad**: padded or truncated node features of compounds if type is "graph"
seq_preprocessing

- **fp**
 fingerprint of compounds if type is "fingerprint"

- **sequences_encode_pad**
 encoded sequences which are padded or truncated

- **lenc**
 encoded labels for characters of SMILES strings or amino acid sequences

- **length_seq**
 length of compound or protein sequence

- **num_tokens**
 total number of characters of compounds or proteins

Author(s)

Dongmin Jung

References

Examples

```r
seq_preprocessing(smiles = cbind(example_cpi[1, 1]),
  type = "fingerprint",
  convert_canonical_smiles = TRUE)
```
Index

antiviral_drug, 2

cnn_in_out (encoder_in_out), 8

cpi_model, 3

encoder_in_out, 8
eexample_bioassay, 10
eexample_cci, 11
eexample_chem, 11
eexample_cpi, 12
eexample_pd, 12
eexample_ppi, 13
eexample_prot, 13

fit_cpi (cpi_model), 3

gcn_in_out (encoder_in_out), 8
get_canonical_smiles, 14
get_fingerprint, 15
get_graph_structure_node_feature, 16
get_seq_encode_pad, 17

metric_concordance_index, 18
metric_f1_score, 19
mlp_in_out (encoder_in_out), 8
multiple_sampling_generator, 20

predict_cpi (cpi_model), 3

rnn_in_out (encoder_in_out), 8

SARS_CoV2_3CL_Protease, 21
seq_check, 22
seq_preprocessing, 23