Package ‘Doscheda’

March 18, 2024

Type Package

Title A DownStream Chemo-Proteomics Analysis Pipeline

Version 1.24.0

Author Bruno Contrino, Piero Ricchiuto

Maintainer Bruno Contrino <br1contrino@yahoo.co.uk>

Description Doscheda focuses on quantitative chemoproteomics used to determine protein interaction profiles of small molecules from whole cell or tissue lysates using Mass Spectrometry data. The package provides a shiny application to run the pipeline, several visualisations and a downloadable report of an experiment.

License GPL-3

Depends R (>= 3.4)

Imports methods, drc, stats, httr, jsonlite, reshape2, vsn, affy,
 limma, stringr, ggplot2, graphics, grDevices, calibrate,
 corrgram, gridExtra, DT, shiny, shinydashboard, readxl,
 prodlim, matrixStats

biocViews Proteomics, Normalization, Preprocessing, MassSpectrometry,
 QualityControl, DataImport, Regression

Suggests BiocStyle, knitr, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/Doscheda

git_branch RELEASE_3_18

git_last_commit a15eefb

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-18
Description

Description

Usage

S4 method for signature 'ChemoProtSet'
boxplot(x, ...)

Arguments

x
 object of class 'ChemoProtSet'

... other plotting options
ChemoProtSet-class

Value
boxplot for objects of class ChemoProtSet

ChemoProtSet-class
An S4 class to run the doscheda pipeline

Description
An S4 class to run the doscheda pipeline

Slots
input A data.frame containing the input data
normData A data.frame containing a processed and standardised version of the input data
finalData A data.frame containing the final data produced by the pipeline
parameters A list containing all the parameters required to make the pipeline run successfully
datasets A list containing other potentially useful datasets

corrPlot
Plot showing correlation between all channels across replicates

Description
Plot of the correlation between all the channels in the data.

Usage
corrPlot(x, ...)

S4 method for signature 'ChemoProtSet'
corrPlot(x, ...)

Arguments
x object of class 'ChemoProtSet'
... corrplot options

Value
correlation plot for objects of class ChemoProtSet
Examples

```r
ex <- processedExample
ex <- runNormalisation(ex)
ex <- fitModel(ex)
corrPlot(ex)
```

densityPlot

Density plot for objects of class ChemoProtSet

Description

Description

Usage

```r
densityPlot(x, rankProteins = FALSE, ...)
```

```
## S4 method for signature 'ChemoProtSet'
densityPlot(x, rankProteins = FALSE, ...)
```

Arguments

- `x` : object of class `ChemoProtSet`
- `rankProteins` : plot a the set of ranked proteins or plot the density of the channels
- `...` : other plot options

Value

density plot for objects of class ChemoProtSet

Examples

```r
ex <- processedExample
ex <- runNormalisation(ex)
ex <- fitModel(ex)
densityPlot(ex)
```
doscheda

Doscheda: A package for Down Stream Chemo-Proteomics Data Analysis

Description

The Doscheda package provides three categories of important functions: foo, bar and baz.

Foo functions

The foo functions ...

doschedaApp

Run shiny application for DOSCHEDA

Description

Run a version of the pipeline with some extra features and a simple user experience. The application is documented in detail at here.

Usage

```r
doschedaApp()
```

Value

Launches shiny application

doschedaData

Peptide Intensity data set for Doscheda

Description

A fabricated data set to run the Doscheda pipeline from peptide intensity.

Usage

```r
data(doschedaData)
```

Format

An object of class data.frame with 21140 rows and 15 columns.

Examples

```r
data(doschedaData)
head(doschedaData)
```
fitModel

Method to fit a model to an object of class ‘ChemoProtSet’

Description
Method to fit a model to an object of class ‘ChemoProtSet’

Usage
fitModel(x)

S4 method for signature 'ChemoProtSet'
fitModel(x)

Arguments
x object of class 'ChemoProtSet'

Value
object of class ChemoProtSet

See Also
DoschedaSet

Examples
channelNames <- c("Abundance..F1..126..Control..REP_1",
'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1",
'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1",
'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2",
'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2",
'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2",
'Abundance..F2..131..Sample..REP_2')
ex <- new('ChemoProtSet')
ex<- setParameters(x = ex, chansVal = 6, repsVal = 2, dataTypeStr = 'intensity',
modelTypeStr = 'linear', PDBool = FALSE, removePepsBool = FALSE,
incPDispPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H.sapiens',
pearsonThrshVal = 0.4)
ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames,
accessionChannel = 'Master.Protein.Accessions',
sequenceChannel = 'Sequence', qualityChannel = 'Qvality.PEP')
ex <- removePeptides(ex, removePeps = FALSE)
ex <- runNormalisation(ex)
ex <- fitModel(ex)
ex
ex <- processedExample
ex <- runNormalisation(ex)
getDatasets

```r
ex <- fitModel(ex)
ex
```

getDatasets

Accessor function for the datasets slot.

Description

Accessor function for the datasets slot of a ChemoProtSet object.

Usage

```r
getDatasets(x)
```

```r
## S4 method for signature 'ChemoProtSet'
getDatasets(x)
```

Arguments

- `x` object of class ChemoProtSet

Value

object of class ChemoProtSet

See Also

DoschedaSet

Examples

```r
ex <- new('ChemoProtSet')
getDatasets(ex)
```
getFinal

Accessor function for the finalData slot.

Description
Accessor function for the finalData slot of a ChemoProtSet object.

Usage
getFinal(x)

S4 method for signature 'ChemoProtSet'
getFinal(x)

Arguments
x object of class ChemoProtSet

Value
object of class ChemoProtSet

See Also
DoschedaSet

Examples
ex <- new('ChemoProtSet')
getParameters(ex)

getInput

Accessor function for the Input

Description
Accessor function for the Input slot of a ChemoProtSet object.

Usage
getInput(x)

S4 method for signature 'ChemoProtSet'
getInput(x)

Arguments
x object of class ChemoProtSet

Value
object of class ChemoProtSet

See Also
DoschedaSet

Examples
ex <- new('ChemoProtSet')
getParameters(ex)
getNorm

Arguments

x object of class ChemoProtSet

Value

object of class ChemoProtSet

See Also

DoschedaSet

Examples

ex <- new('ChemoProtSet')
getInput(ex)

getNorm

Accessor function for the normData

Description

Accessor function for the normData slot of a ChemoProtSet object.

Usage

getNorm(x)

S4 method for signature 'ChemoProtSet'
getNorm(x)

Arguments

x object of class ChemoProtSet

Value

object of class ChemoProtSet

See Also

DoschedaSet

Examples

ex <- new('ChemoProtSet')
getNorm(ex)
getParameters

Accessor function for the parameters slot of a ChemoProtSet object.

Usage

getParameters(x)

S4 method for signature 'ChemoProtSet'
getParameters(x)

Arguments

x object of class ChemoProtSet

Value

object of class ChemoProtSet

See Also

DoschedaSet

Examples

ex <- new('ChemoProtSet')
getParameters(ex)

makeReport

Create report from 'ChemProtSet' object

Description

Generate a report that includes several plots and descriptions for an experiment that has been
analyzed using Doscheda

Usage

makeReport(x)

Arguments

x Object of class 'ChemoProtSet'
meanSdPlot

Value

html report of processed `ChemoProtSet` object

Examples

```r
## Not run:
ex <- new('ChemoProtSet')
makeReport(ex)

## End(Not run)
```

meanSdPlot
MeanSd plot for objects of class ChemoProtSet

Description

Shows the ranked means with a running median calculated with a window size of 10

Usage

```r
meanSdPlot(x, ...)
```

```r
## S4 method for signature 'ChemoProtSet'
meanSdPlot(x, ...)
```

Arguments

- `x`
 object of class `ChemoProtSet`

- `...`
 other plot options

Value

meanSd plot for objects of class ChemoProtSet

Examples

```r
ex <- processedExample
ex <- runNormalisation(ex)
ex <- fitModel(ex)
meanSdPlot(ex)
```
Description

Plot of Principal Component Analysis for the first two principal components of the experimental data.

Usage

```r
pcaPlot(x, ...) 
```

S4 method for signature 'ChemoProtSet'

```r
pcaPlot(x, ...) 
```

Arguments

- `x` object of class 'ChemoProtSet'
- `...` other plot options

Value

PCA plot for objects of class ChemoProtSet

See Also

DoschedaSet

Examples

```r
ex <- processedExample 
ex <- runNormalisation(ex) 
ex <- fitModel(ex) 
pcaPlot(ex) 
ex <- processedExample 
ex <- runNormalisation(ex) 
ex <- fitModel(ex) 
pcaPlot(ex) 
```
plot.ChemoProtSet

Default plot for objects of class ChemoProtSet

Description

Description

Usage

S3 method for class 'ChemoProtSet'
plot(x, sigmoidCoef = "rb50", ...)

Arguments

x
 object of class 'ChemoProtSet'

sigmoidCoef
 the sigmoidal coefficient, one of ('difference', 'slope', 'rb50'). Obsolete if modelType is 'linear'

...
 other plotting options

Value

plot for objects of class ChemoProtSet

processedExample

Processed Peptide Intensity data set for Doscheda

Description

A processed fabricated data set to run the Doscheda pipeline from peptide intensity.

Usage

data(processedExample)

Format

An object of class ChemoProtSet of length 1.

Examples

data(processedExample)
str(processedExample)
removePeptides

Method to remove peptides from input data of an object of class 'ChemoProtSet'

Description
Method to remove peptides from input data of an object of class `ChemoProtSet`

Usage
removePeptides(x, changePearson = NA, removePeps = TRUE)

S4 method for signature `ChemoProtSet`
removePeptides(x, changePearson = NA, removePeps = TRUE)

Arguments

x object of class `ChemoProtSet`
changePearson option to change the pearson threshold cut-off parameter
removePeps boolean value indicating whether peptide removal should take place

Value
object of class ChemoProtSet

See Also

DoschedaSet

Examples

Not run:
channelNames <- c('Abundance..F1..126..Control..REP_1',
'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1',
'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1',
'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2',
'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2',
'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2',
'Abundance..F2..131..Sample..REP_2')
ex <- new('ChemoProtSet')
ex<- setParameters(x = ex,chansVal = 6, repsVal = 2,
dataTypeStr = 'intensity', modelTypeStr = 'linear',
PDBool = FALSE,removePepsBool = FALSE,incPDoFDBool = FALSE,
incGeneFileBool = FALSE,organismStr = 'H.sapiens',
pearsonThrshVal = 0.4)
ex<- setData(x = ex, dataFrame = doschedaData,
replicatePlot

```r
dataChannels = channelNames,
accessionChannel = 'Master.Protein.Accessions',
sequenceChannel = 'Sequence',
qualityChannel = 'Qvality.PEP'

ex <- removePeptides(ex, removePeps = FALSE)
ex
```

```
## End(Not run)
```

Description

Plot of Fold Change between replicate i and replicate j at a given concentration

Usage

```r
replicatePlot(x, conc, repIndex1, repIndex2, ...)
```

```r
## S4 method for signature 'ChemoProtSet'
replicatePlot(x, conc, repIndex1, repIndex2, ...)
```

Arguments

- `x` object of class `ChemoProtSet`
- `conc` concentration of channel
- `repIndex1` index of replicate on x axis
- `repIndex2` index of replicate on y axis
- `...` options

Value

Replicate plot for objects of class ChemoProtSet

Examples

```r
ex <- processedExample
ex <- runNormalisation(ex)
ex <- fitModel(ex)
replicatePlot(ex, 0, 1, 2)
```
runDoscheda

Wrapper Function to run the entire Doscheda pipeline

Description

A wrapper for the whole Doscheda pipeline, if users want to avoid using the separate steps.

Usage

runDoscheda(dataFrame, dataChannels, accessionChannel, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA, pearsonThrshVal = 0.4, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA, normType = "loess")

Arguments

dataFrame

data.frame of the input data set

dataChannels

column names of dataFrame that correspond to data channels. These should be ordered in the format: rep1_concentration_0, ..., rep1_concentration_n, rep2_concentration_0, ...

accessionChannel

string that is the same as the column name for the protein accessions in dataFrame

chansVal

number of channels / concentrations in experiment

repsVal

number of replicates in experiment

dataTypeStr

string describing the data type of input data set. This can be 'LFC' for log fold-changes, 'FC' for fold-changes and 'intensity' for peptide intensities

modelTypeStr

string describing the type of model applied. This can be 'linear' for a linear model or 'sigmoid' for a sigmoidal model

PDBool

boolean value indicating if the input data is from Proteome Discoverer 2.1 or not

removePepsBool

boolean value indicating if peptide removal will take place. Only valid if input data is peptide intensities

incPDofPDBool

boolean value indicating if the input data contains a pull-down of pull-down column

PDofPDname

string with the same name as column containing pull-down of pull-down data. NA if this is not applicable

incGeneFileBool

boolean value indicating if the data requires a protein accession to gene ID conversion file
organismStr string giving the name of organism. The options are: 'H.sapiens', 'D. melanogaster', 'C. elegans', 'R. norvegicus', 'M. musculus'. This is only needed if PDbool is FALSE

sigmoidConc vector of numerical values for concentrations of channels in the case of a sigmoidal fit

pearsonThrshVal numerical value between -1 and 1 which determines the cut-off used to discard peptides during peptide removal

uniquePeps string that is the same as the column name for the number of unique peptides in dataFrame

sequenceChannel string that is the same as the column name for the peptide sequences in dataFrame

qualityChannel string that is the same as the column name for the peptide quality score in dataFrame

pdofpdChannel string that is the same as the column name for the pull-down of pull-down data in dataFrame

incGeneID boolean value indicating if a protein accession to gene ID file is supplied

geneIDFile data.frame containing a protein accession to gene ID conversion file

normType string indicating the type of normalisation that should take place ('loess', 'median', 'none')

Value

object of class ChemoProtSet

See Also

DoschedaSet

Examples

channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2')

ex <- runDoscheda(dataFrame = doschedaData, dataChannels = channelNames, chansVal = 6, repsVal = 2, dataTypeStr = 'intensity', modelTypeStr = 'linear', PDBool = FALSE, removePepsBool = FALSE, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence', qualityChannel = 'Qvality.PEP', incPDofPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H.sapiens', pearsonThrshVal = 0.4)
runNormalisation Method to remove peptides from input data of an object of class 'ChemoProtSet'

Description
Method to remove peptides from input data of an object of class 'ChemoProtSet'

Usage
runNormalisation(x, normalise = "loess")

S4 method for signature 'ChemoProtSet'
runNormalisation(x, normalise = "loess")

Arguments
- x: object of class 'ChemoProtSet'
- normalise: string indicating the type of normalisation that should take place ('loess', 'median', 'none')

Value
object of class ChemoProtSet

See Also
DoschedaSet

Examples
ex <- processedExample
ex <- runNormalisation(ex)
ex

setData Method for attaching and standardising data for objects of class 'ChemoProtSet'

Description
This method will subset the orginal data set into the required columns, standardising column names in the process.
setData

Usage

setData(x, dataFrame, dataChannels, accessionChannel, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA)

S4 method for signature 'ChemoProtSet'

setData(x, dataFrame, dataChannels, accessionChannel, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA)

Arguments

x object of class 'ChemoProtSet'

dataFrame data.frame of the input data set
dataChannels column names of dataFrame that correspond to data channels. These should be ordered in the format: rep1_concentration_0, ..., rep1_concentration_n, rep2_concentration_0, ...

accessionChannel string that is the same as the column name for the protein accessions in dataFrame
uniquePeps string that is the same as the column name for the number of unique peptides in dataFrame
sequenceChannel string that is the same as the column name for the peptide sequences in dataFrame
qualityChannel string that is the same as the column name for the peptide quality score in dataFrame
pdofpdChannel string that is the same as the column name for the pull-down of pull-down data in dataFrame
incGeneID boolean value indicating if a protein accession to gene ID file is supplied
geneIDFile data.frame containing a protein accession to gene ID conversion file

Value

object of class ChemoProtSet

See Also

DoschedaSet

Examples

channelNames <- c('Abundance..F1..126..Control..REP_1',
 'Abundance..F1..127..Sample..REP_1',
 'Abundance..F1..128..Sample..REP_1',
 'Abundance..F1..129..Sample..REP_1',
 'Abundance..F1..130..Sample..REP_1',
 'Abundance..F1..131..Sample..REP_1',
 'Abundance..F2..126..Control..REP_2',
 'Abundance..F2..127..Sample..REP_2',
 'Abundance..F2..128..Sample..REP_2',
 'Abundance..F2..129..Sample..REP_2',
 'Abundance..F2..130..Sample..REP_2',
 'Abundance..F2..131..Sample..REP_2')
```r
ex <- new('ChemoProtSet')
ex<- setParameters(x = ex, chansVal = 6, repsVal = 2, dataTypeStr = 'intensity',
modelTypeStr = 'linear', PDBool = FALSE, removePepsBool = FALSE,
incPDofPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H.sapiens', pearsonThrshVal = 0.4)
ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames,
accessionChannel = 'Master.Protein.Accessions',
sequenceChannel = 'Sequence', qualityChannel = 'Qvality.PEP')
ex
```

setParameters

Method to set parameters for a ChemoProtSet

Description

Give the ChemoProtSet object the correct parameters for a given experiment in order to successfully run the pipeline.

Usage

```r
setParameters(x, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE,
removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA,
incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA,
pearsonThrshVal = 0.4)
```

```
## S4 method for signature 'ChemoProtSet'
setParameters(x, chansVal, repsVal, dataTypeStr,
modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE,
PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens",
sigmoidConc = NA, pearsonThrshVal = 0.4)
```

Arguments

- **x**
 - object of class 'ChemoProtSet'

- **chansVal**
 - number of channels / concentrations in experiment

- **repsVal**
 - number of replicates in experiment

- **dataTypeStr**
 - string describing the data type of input data set. This can be 'LFC' for log fold-changes, 'FC' for fold-changes and 'intensity' for peptide intensities

- **modelTypeStr**
 - string describing the type of model applied. This can be 'linear' for a linear model or 'sigmoid' for a sigmoidal model

- **PDBool**
 - boolean value indicating if the input data is from Proteome Discoverer 2.1 or not

- **removePepsBool**
 - boolean value indicating if peptide removal will take place. Only valid if input data is peptide intensities
incPDofPDBool boolean value indicating if the input data contains a pull-down of pull-down column
PDofPDname string with the same name as column containing pull-down of pull-down data. NA if this is not applicable
incGeneFileBool boolean value indicating if the data requires a protein accession to gene ID conversion file
organismStr string giving the name of organism. The options are: 'H. sapiens', 'D. melanogaster', 'C. elegans', 'R. norvegicus', 'M. musculus'. This is only needed if PDbool is FALSE
sigmoidConc vector of numerical values for concentrations of channels in the case of a sigmoidal fit
pearsonThrshVal numerical value between -1 and 1 which determines the cut-off used to discard peptides during peptide removal

Value

object of class ChemoProtSet

See Also

DoschedaSet

Examples

c <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2')
ex <- new('ChemoProtSet')
ex <- setParameters(x = ex, chansVal = 6, repsVal = 2, dataTypeStr = 'intensity', modelTypeStr = 'linear', PDbool = FALSE, removePepsBool = FALSE, incPDofPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H. sapiens', pearsonThrshVal = 0.4)
ex
volcanoPlot

Volcano plot for objects of class ChemoProtSet

Description
Volcano plots designed to be run on objects of class 'ChemoProtSet' when a linear model has been applied.

Usage
volcanoPlot(x, coefficient = "slope", avExprs = 0.2, pVal = 0.05, ...)

S4 method for signature 'ChemoProtSet'
volcanoPlot(x, coefficient = "slope",
 avExprs = 0.2, pVal = 0.05, ...)

Arguments
x object of class 'ChemoProtSet'
coefficient coefficient of linear model to be plotted ('slope','intercept','quadratic')
avExprs average expression cutoff
pVal p-value cut-off
... other plotting options

Value
volcano plot for objects of class ChemoProtSet

See Also
DoschedaSet

Examples
ex <- processedExample
ex <- runNormalisation(ex)
ex <- fitModel(ex)
volcanoPlot(ex)
Index

* datasets
 doschedaData, 5
 processedExample, 13
 boxplot, ChemoProtSet-method, 2
 ChemoProtSet-class, 3
 corrPlot, 3
 corrPlot, ANY, ANY-method (corrPlot), 3
 corrPlot, ChemoProtSet-method (corrPlot), 3
 densityPlot, 4
 densityPlot, ANY, ANY-method (densityPlot), 4
 densityPlot, ChemoProtSet-method (densityPlot), 4
 doscheda, 5
 doscheda-package (doscheda), 5
 doschedaApp, 5
 doschedaData, 5
 DoschedaSet, 6–10, 12, 14, 17–19, 21, 22
 DoschedaSet (ChemoProtSet-class), 3
 fitModel, 6
 fitModel, ANY, ANY-method (fitModel), 6
 fitModel, ChemoProtSet-method (fitModel), 6
 getDatasets, 7
 getDatasets, ANY, ANY-method (getDatasets), 7
 getDatasets, ChemoProtSet-method (getDatasets), 7
 getFinal, 8
 getFinal, ANY, ANY-method (getFinal), 8
 getFinal, ChemoProtSet-method (getFinal), 8
 getInput, ChemoProtSet-method (getInput), 8
 getNorm, 9
 getNorm, ANY, ANY-method (getNorm), 9
 getNorm, ChemoProtSet-method (getNorm), 9
 getParameters, 10
 getParameters, ANY, ANY-method (getParameters), 10
 getParameters, ChemoProtSet-method (getParameters), 10
 makeReport, 10
 meanSdPlot, 11
 meanSdPlot, ANY, ANY-method (meanSdPlot), 11
 meanSdPlot, ChemoProtSet-method (meanSdPlot), 11
 pcaPlot, 12
 pcaPlot, ANY, ANY-method (pcaPlot), 12
 pcaPlot, ChemoProtSet-method (pcaPlot), 12
 plot.ChemoProtSet, 13
 processedExample, 13
 removePeptides, 14
 removePeptides, ANY, ANY-method (removePeptides), 14
 removePeptides, ChemoProtSet-method (removePeptides), 14
 replicatePlot, 15
 replicatePlot, ANY, ANY-method (replicatePlot), 15
 replicatePlot, ChemoProtSet-method (replicatePlot), 15
 runDoscheda, 16
 runNormalisation, 18
 runNormalisation, ANY, ANY-method (runNormalisation), 18
runNormalisation, ChemoProtSet-method
(runNormalisation), 18

setData, 18
setData, ANY, ANY-method (setData), 18
setData, ChemoProtSet-method (setData), 18

setParameters, 20
setParameters, ANY, ANY-method
(setParameters), 20
setParameters, ChemoProtSet-method
(setParameters), 20

volcanoPlot, 22
volcanoPlot, ANY, ANY-method
(volcanoPlot), 22
volcanoPlot, ChemoProtSet-method
(volcanoPlot), 22