Package ‘EnMCB’

May 29, 2024

Type Package

Title Predicting Disease Progression Based on Methylation Correlated Blocks using Ensemble Models

Version 1.16.0

Date 2023-3-13

Author Xin Yu

Maintainer Xin Yu <whirlsyu@gmail.com>

Depends R (>= 4.0)

Encoding UTF-8

Imports survivalROC, glmnet, rms, mboost, Matrix, igraph, methods,
survivalsvm, ggplot2, boot, e1071, survival, BiocFileCache

VignetteBuilder knitr

Suggests SummarizedExperiment, testthat, Biobase, survminer,
affycoretools, knitr, plotROC, limma, rmarkdown

Description Creation of the correlated blocks using DNA methylation profiles. Machine learning models can be constructed to predict differentially methylated blocks and disease progression.

License GPL-2

BugReports https://github.com/whirlsyu/EnMCB/issues

biocViews Normalization, DNAMethylation, MethylationArray, SupportVectorMachine

LazyData FALSE

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/EnMCB

git_branch RELEASE_3_19

git_last_commit d9ee2d5

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29
anno_matrix

Contents

anno_matrix ... 2
as.data.frame.ridgemat .. 3
as.ridgemat ... 3
CompareMCB ... 4
create_demo ... 5
demo_data ... 6
demo_MCBinformation .. 6
demo_survival_data ... 7
DiffMCB ... 7
draw_survival_curve ... 9
ensemble_model .. 10
ensemble_prediction .. 11
fast_roc_calculation .. 12
IdentifyMCB ... 13
IdentifyMCB_parallel ... 14
metricMCB ... 16
metricMCB.cv .. 18
multi_coxph ... 20
predict.mcb.coxph.penal .. 21
pre_process_methylation ... 21
univ_coxph ... 22

Index 24

anno_matrix

IlluminaHumanMethylation450kanno

Description
IlluminaHumanMethylation450kanno

Usage
data(anno_matrix)

Format
IlluminaHumanMethylation450kanno.ilmn12.hg19 annotation file. This data have several columns
as.data.frame.ridgemat

data frame ridge matrix

Description

data frame ridge matrix

Usage

S3 method for class 'ridgemat'
as.data.frame(x, ...)

Arguments

x data vector
... other parameters pass to as.data.frame.model.matrix()

as.ridgemat

ridge matrix

Description

as.matrix attempts to turn its argument

Usage

as.ridgemat(x)

Arguments

x data vector
CompareMCB

Compare multiple methylation correlated blocks lists

Description

This function is used to find the Methylation correlated blocks that differentially expressed between groups. This function calculates attractors of all the MCBs among the groups and find the attractor MCBs.

Usage

```r
CompareMCB(
  MCBs,
  method = c("attractors")[1],
  p_value = 0.05,
  min_CpGs = 5,
  platform = "Illumina Methylation 450K"
)
```

Arguments

- **MCBs**: Methylation correlated blocks list.
- **method**: method used for calculation of differential expression, should be one of "attractors","t-test". Default is "attractors".
- **p_value**: p value threshold for the test.
- **min_CpGs**: threshold for minimum CpGs must included in the individual MCBs.
- **platform**: This parameter indicates the platform used to produce the methylation profile.

Details

Currently, only illumina 450k platform is supported, the methylation profile need to convert into matrix format.

Value

Object of class list with elements:

- **MCBsites**: Character set contains all CpG sites in MCBs.
- **MCBinformation**: Matrix contains the information of results.

Author(s)

Xin Yu
create_demo

References

Xin Yu, De-Xin Kong, EnMCB: an R/bioconductor package for predicting disease progression based on methylation correlated blocks using ensemble models, Bioinformatics, 2021, btab415

Examples

data('demo_data', package = "EnMCB")

demo_set <- create_demo()

create_demo create demo matrix

Description

Demo matrix for methylation matrix.

Usage

create_demo(model = c("all", "short")[[1]])

Arguments

model Two options, ‘all’ or ‘short’ for creating full dataset or very brief demo.

Value

This function will generate a demo data.

Author(s)

Xin Yu

Examples

demo_set <- create_demo()
demo_data

Expression matrix of demo dataset.

Description
A Expression matrix containing the 10020 CpGs beta value of 455 samples in TCGA lung Adenocarcinoma dataset. This will call from create_demo() function.

Usage
data(demo_data)

Format
ExpressionSet:

rownames rownames of 10020 CpG features
colnames colnames of 455 samples
realdatal Real data matrix for demo.

demo_MCBinformation

MCB information.

Description
A dataset containing the number and other attributes of 94 MCBs; This results was created by the identification function IdentifyMCB. This data used for metricMCB function.

Usage
data(demo_MCBinformation)

Format
A data frame with 94 rows and 8 variables:

MCB_no MCB code
start Start point of this MCB in the chromosome.
end End point of this MCB in the chromosome.
CpGs All the CpGs probe names in the MCB.
location Start, end point and the chromosome number of this MCB.
chromosomes the chromosome number of this MCB.
length the length of bps of this MCB in the chromosome.
CpGs_num number of CpG probes of this MCB.
demo_survival_data

Survival data of demo dataset.

Description

A Surv containing survival value of 455 samples in TCGA lung Adenocarcinoma dataset.

Usage

```r
data(demo_survival_data)
```

Format

Surv data created by Surv() function in survival package. This data have two unnamed arguments, they will match time and event.

DiffMCB

Differential expressed methylation correlated blocks

Description

This function is used to find the Methylation correlated blocks that differentially expressed between groups based on the attractor framework. This function calculates attractors of all the MCBs among the groups and find the attractor MCBs.

Usage

```r
DiffMCB(
  methylation_matrix,
  class_vector,
  mcb_matrix = NULL,
  min.cpgsize = 5,
  pVals_num = 0.05,
  base_method = c("Fstat", "Tstat", "eBayes")[1],
  sec_method = c("ttest", "kstest")[1],
  ...
)
```

Arguments

- `methylation_matrix`
 methylation profile matrix.
- `class_vector`
 class vectors that indicated the groups.
- `mcb_matrix`
 dataframe or matrix results returned by IdentifyMCB function.
DiffMCB

min.cpgsize threshold for minimum CpGs must included in the individual MCBs.
pVals_num p value threshold for the test.
base_method base method used for calculation of differentially methylated regions, should be one of 'Fstat','Tstat','eBayes'. Default is Fstat.
sec_method secondly method in attractor framework, should be one of 'ktest','ttest'. Default is ttest.
...
other parameters pass to the function.

Details
Currently, only illumina 450k platform is supported.
If you want to use other platform, please provide the annotation file with CpG’s chromosome and loci.
The methylation profile need to convert into matrix format.

Value
Object of class list with elements:

 global Character set contains statistical value for all CpG sites in MCBs.
tab Matrix contains the information of results.

Author(s)
Xin Yu

References
Xin Yu, De-Xin Kong. EnMCB: an R/bioconductor package for predicting disease progression based on methylation correlated blocks using ensemble models, Bioinformatics, 2021, btab415

Examples
data('demo_data', package = "EnMCB")
data('demo_survival_data', package = "EnMCB")
data('demo_MCBinformation', package = "EnMCB")
#Using survival censoring as group label just for demo,
#this may replace with disease and control group in real use.
diffMCB_results <- DiffMCB(demo_data$realdata,demo_survival_data[,2],
 demo_MCBinformation,
pVals_num = 1)
draw_survival_curve

draw_survival_curve draw survival curve

Description

Draw a survival curve based on survminer package. This is a wrapper function of ggsurvplot.

Usage

draw_survival_curve(
 exp,
 living_days,
 living_events,
 write_name,
 title_name = "",
 threshold = NA,
 file = FALSE
)

Arguments

 exp expression level for variable.
 living_days The survival time (days) for each individual.
 living_events The survival event for each individual, 0 indicates alive and 1 indicates death. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
 write_name The name for pdf file which contains the result figure.
 title_name The title for the result figure.
 threshold Threshold used to indicate the high risk or low risk.
 file If True, function will automatic generate a result pdf, otherwise it will return a ggplot object. Default is FALSE.

Value

This function will generate a pdf file with 300dpi which compare survival curves using the Kaplan-Meier (KM) test.

Author(s)

Xin Yu
Examples

data(demo_survival_data)
library(survival)
demo_set<-create_demo()
draw_survival_curve(demo_set[,1],
 living_days = demo_survival_data[,1],
 living_events =demo_survival_data[,2],
 write_name = "demo_data")

ensemble_model

Training stacking ensemble model for Methylation Correlation Block

Description

Method for training a stacking ensemble model for Methylation Correlation Block.

Usage

ensemble_model(single_res,training_set,Surv_training,testing_set,
Surv_testing,ensemble_type)

Arguments

single_res Methylation Correlation Block information returned by the IndentifyMCB function.
training_set methylation matrix used for training the model in the analysis.
Surv_training Survival function contain the survival information for training.
testing_set methylation matrix used for testing the model in the analysis.
Surv_testing Survival function contain the survival information for testing.
ensemble_type Secondary model use for ensemble, one of "Cox", "C-index" and "feature weighted linear regression". "feature weighted linear regression" only uses two meta-features namely kurtosis and S.D.

Value

Object of class list with elements (XXX repesents the model you choose):

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cox</td>
<td>Model object for the cox model at first level.</td>
</tr>
<tr>
<td>svm</td>
<td>Model object for the svm model at first level.</td>
</tr>
<tr>
<td>enet</td>
<td>Model object for the enet model at first level.</td>
</tr>
<tr>
<td>mboost</td>
<td>Model object for the mboost model at first level.</td>
</tr>
<tr>
<td>stacking</td>
<td>Model object for the stacking model.</td>
</tr>
</tbody>
</table>
Author(s)

Xin Yu

References

Xin Yu et al. 2019 Predicting disease progression in lung adenocarcinoma patients based on methylation correlated blocks using ensemble machine learning classifiers (under review)

Examples

```r
#import datasets
library(survival)
data(demo_survival_data)
data(demo_MCBinformation)
#select MCB with at least 3 CpGs.
demo_MCBinformation<-demo_MCBinformation[,"CpGs_num">2,]
trainingset<-colnames(datamatrix) %in% sample(colnames(datamatrix),0.6*length(colnames(datamatrix)))
select_single_one=1
em<-ensemble_model(t(demo_MCBinformation[select_single_one,]),
                 training_set=datamatrix[,trainingset],
                 Surv_training=demo_survival_data[trainingset])
```

ensemble_prediction fitting function using stacking ensemble model for Methylation Correlation Block

Description

`predict` is a generic function for predictions from the results of stacking ensemble model fitting functions. The function invokes particular methods which is the ensemble model described in the reference.

Usage

```r
ensemble_prediction(ensemble_model, prediction_data, multiple_results = FALSE)
```

Arguments

- `ensemble_model` ensemble model which built by `ensemble_model()` function
- `prediction_data` A vector, matrix, list, or data frame containing the predictions (input).
- `multiple_results` Boolean vector, True for including the single model results.
Value

Object of numeric class double

References

Xin Yu et al. 2019 Predicting disease progression in lung adenocarcinoma patients based on methylation correlated blocks using ensemble machine learning classifiers (under review)

Examples

```r
library(survival)
# import datasets
data(demo_survival_data)
datamatrix<-create_demo()
data(demo_MCBinformation)
# select MCB with at least 3 CpGs.
demo_MCBinformation<-demo_MCBinformation[demo_MCBinformation[,"CpGs_num"]>2,]
trainingset<-colnames(datamatrix) %in% sample(colnames(datamatrix),0.6*length(colnames(datamatrix)))
testingset<-!trainingset
# select one MCB
select_single_one=1
em<-ensemble_model(t(demo_MCBinformation[select_single_one,]), training_set=datamatrix[,trainingset], Surv_training=demo_survival_data[trainingset])
em_prediction_results<-ensemble_prediction(ensemble_model = em, prediction_data = datamatrix[,testingset])
```

fast_roc_calculation
Fast calculation of AUC for ROC using parallel strategy

Description

This function is used to create time-dependent ROC curve from censored survival data using the Kaplan-Meier (KM) or Nearest Neighbor Estimation (NNE) method of Heagerty, Lumley and Pepe, 2000.

Usage

```r
fast_roc_calculation(test_matrix, y_surv, predict_time = 5, roc_method = "NNE")
```

Arguments

- `test_matrix`: Test matrix used in the analysis. Columns are samples, rows are markers.
- `y_surv`: Survival information created by Surv function in survival package.
- `predict_time`: Time point of the ROC curve, default is 5 year.
- `roc_method`: Method for fitting joint distribution of (marker,t), either of KM or NNE, the default method is NNE.
IdentifyMCB

Identification of methylation correlated blocks

Description

This function is used to partition the genome into blocks of tightly co-methylated CpG sites,
methylation correlated blocks. This function calculates Pearson correlation coefficients between the beta values of any two CpGs < CorrelationThreshold was used to identify boundaries between any two adjacent markers indicating uncorrelated methylation. Markers not separated by a boundary were combined into MCB. Pearson correlation coefficients between two adjacent CpGs were calculated.

Usage

```r
IdentifyMCB(
  MethylationProfile,
  method = c("pearson", "spearman", "kendall")[1],
  CorrelationThreshold = 0.8,
  PositionGap = 1000,
  platform = "Illumina Methylation 450K",
  verbose = T
)
```

Arguments

- **MethylationProfile**
 - Methylation matrix is used in the analysis.
- **method**
 - Method used for calculation of correlation, should be one of "pearson", "spearman", "kendall". Default is "pearson".
- **CorrelationThreshold**
 - Coef correlation threshold is used for define boundaries.
PositionGap
CpG Gap between any two CpGs positioned CpG sites less than 1000 bp (default) will be calculated.

platform
This parameter indicates the platform used to produce the methylation profile. You can use your own annotation file.

verbose
True as default, which will print the block information for each chromosome.

Details
Currently, only illumina 450k platform is supported, the methylation profile need to convert into matrix format.

Value
Object of class list with elements:

- MCBsites
 Character set contains all CpG sites in MCBs.
- MCBinformation
 Matrix contains the information of results.

Author(s)
Xin Yu

References
Xin Yu, De-Xin Kong. EnMCB: an R/bioconductor package for predicting disease progression based on methylation correlated blocks using ensemble models, Bioinformatics, 2021, btab415

Examples

```r
#data('demo_data',package = "EnMCB")
#import the demo TCGA data with 10000+ CpGs site and 455 samples
#remove # to run
res<-IdentifyMCB(demo_data$realdata)
demo_MCBinformation<-res$MCBinformation
```
Description

This function is used to partition the genome into blocks of tightly co-methylated CpG sites. Methylation correlated blocks parallelly. This function calculates Pearson correlation coefficients between the beta values of any two CpGs < CorrelationThreshold was used to identify boundaries between any two adjacent markers indicating uncorrelated methylation. Markers not separated by a boundary were combined into MCB. Pearson correlation coefficients between two adjacent CpGs were calculated.

Usage

IdentifyMCB_parallel(
 MethylationProfile, # Methylation matrix is used in the analysis.
 method = c("pearson", "spearman", "kendall")[[1]], # method used for calculation of correlation, should be one of "pearson", "spearman", "kendall". Default is "pearson".
 CorrelationThreshold = 0.8, # correlation threshold is used for define boundaries.
 PositionGap = 1000, # CpG Gap between any two CpGs positioned CpG sites less than 1000 bp (default) will be calculated.
 platform = "Illumina Methylation 450K", # This parameter indicates the platform used to produce the methylation profile. You can use your own annotation file.
 verbose = T # True as default, which will print the block information for each chromosome.
)

Arguments

MethylationProfile
 Methylation matrix is used in the analysis.
method
 method used for calculation of correlation, should be one of "pearson", "spearman", "kendall". Default is "pearson".
CorrelationThreshold
 coef correlation threshold is used for define boundaries.
PositionGap
 CpG Gap between any two CpGs positioned CpG sites less than 1000 bp (default) will be calculated.
platform
 This parameter indicates the platform used to produce the methylation profile. You can use your own annotation file.
verbose
 True as default, which will print the block information for each chromosome.

Details

Currently, only illumina 450k platform is supported, the methylation profile need to convert into matrix format.

Value

Object of class list with elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCBsites</td>
<td>Character set contains all CpG sites in MCBs.</td>
</tr>
<tr>
<td>MCBinformation</td>
<td>Matrix contains the information of results.</td>
</tr>
</tbody>
</table>
Author(s)
Xin Yu

References
Xin Yu, De-Xin Kong, EnMCB: an R/bioconductor package for predicting disease progression based on methylation correlated blocks using ensemble models, Bioinformatics, 2021, btab415

Examples

data('demo_data',package = "EnMCB")

import the demo TCGA data with 10000+ CpGs site and 455 samples
remove # to run
res<-IdentifyMCB_parallel(demo_data$realdata)
demo_MCBinformation<-res$MCBinformation

metricMCB

Calculation of the metric matrix for Methylation Correlation Block

Description
To enable quantitative analysis of the methylation patterns within individual Methylation Correlation Blocks across many samples, a single metric to define the methylated pattern of multiple CpG sites within each block. Compound scores which calculated all CpGs within individual Methylation Correlation Blocks by linear, SVM or elastic-net model. Predict values were used as the compound methylation values of Methylation Correlation Blocks.

Usage

metricMCB(MCBset,training_set,Surv,testing_set,
Surv.new,Method,predict_time,ci,silent,alpha,n_mstop,n_nu,theta)

Arguments

MCBset Methylation Correlation Block information returned by the IndentifyMCB function.
training_set methylation matrix used for training the model in the analysis.
Surv Survival function contain the survival information for training.
testing_set methylation matrix used in the analysis. This can be missing then training set itself will be used as testing set.
Surv.new Survival function contain the survival information for testing.
Method
model used to calculate the compound values for multiple Methylation correlation blocks.
Options include "svm" "cox" "mboost" and "enet". The default option is SVM method.

predict_time
time point of the ROC curve used in the AUC calculations, default is 5 years.

ci
if True, the confidence intervals for AUC under area under the receiver operating characteristic curve will be calculated. This will be time consuming. default is False.

silent
True indicates that processing information and progress bar will be shown.

alpha
The elasticnet mixing parameter, with 0 <= alpha <= 1. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.
It works only when "enet" Method is selected.

n_mstop
an integer giving the number of initial boosting iterations. If mstop = 0, the offset model is returned.
It works only when "mboost" Method is selected.

n_nu
a double (between 0 and 1) defining the step size or shrinkage parameter in mboost model.
It works only when "mboost" Method is selected.

theta
penalty used in the penalized coxph model, which is theta/2 time sum of squared coefficients. default is 1.
It works only when "cox" Method is selected.

Value
Object of class list with elements (XXX will be replaced with the model name you choose):

- MCB_XXX_matrix_training: Prediction results of model for training set.
- MCB_XXX_matrix_test_set: Prediction results of model for test set.
- XXX_auc_results: AUC results for each model.
- best_XXX_model: Model object for the model with best AUC.
- maximum_auc: Maximum AUC for the whole generated models.

Author(s)
Xin Yu

References
Xin Yu et al. 2019 Predicting disease progression in lung adenocarcinoma patients based on methylation correlated blocks using ensemble machine learning classifiers (under review)

Examples

```r
# import datasets
data(demo_survival_data)
datamatrix<-create_demo()
```
data(demo_MCBinformation)
#select MCB with at least 3 CpGs.
demo_MCBinformation<-demo_MCBinformation[demo_MCBinformation[,"CpGs_num"]>2,]

trainingset<-colnames(datamatrix) %in% sample(colnames(datamatrix),0.6*length(colnames(datamatrix)))
testingset<!trainingset

#create the results using Cox regression.
mcb_cox_res<-metricMCB(MCBset = demo_MCBinformation,
 training_set = datamatrix[,trainingset],
 Surv = demo_survival_data[trainingset],
 testing_set = datamatrix[,testingset],
 Surv.new = demo_survival_data[testingset],
 Method = "cox"
)

metricMCB.cv

Calculation of model AUC for Methylation Correlation Blocks using cross validation

Description

To enable quantitative analysis of the methylation patterns within individual Methylation Correlation Blocks across many samples, a single metric to define the methylated pattern of multiple CpG sites within each block. Compound scores which calculated all CpGs within individual Methylation Correlation Blocks by SVM model were used as the compound methylation values of Methylation Correlation Blocks.

Usage

```r
metricMCB.cv(MCBset, data_set, Surv, nfold, Method, predict_time, alpha, n_mstop, n_nu, theta, silent)
```

Arguments

- **MCBset**: Methylation Correlation Block information returned by the IndentifyMCB function.
- **data_set**: methylation matrix used for training the model in the analysis.
- **Surv**: Survival function contain the survival information for training.
- **nfold**: fold used in the cross validation procedure.
- **Method**: model used to calculate the compound values for multiple Methylation correlation blocks. Options include "svm", "cox", "mboost", and "enet". The default option is SVM method.
- **predict_time**: time point of the ROC curve used in the AUC calculations, default is 3 years.
- **alpha**: The elasticnet mixing parameter, with 0 <= alpha <= 1. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty. It works only when "enet" Method is selected.
metricMCB.cv

n_mstop
an integer giving the number of initial boosting iterations. If mstop = 0, the offset model is returned. It works only when "mboost" Method is selected.

n_nu
a double (between 0 and 1) defining the step size or shrinkage parameter in mboost model. It works only when "mboost" Method is selected.

theta
penalty used in the penalized coxph model, which is theta/2 time sum of squared coefficients. default is 1. It works only when "cox" Method is selected.

silent
Ture indicates that processing information and progress bar will be shown.

Value

Object of class list with elements (XXX will be replaced with the model name you choose):

- **MCB_matrix**: Prediction results of model.
- **auc_results**: AUC results for each model.

Author(s)

Xin Yu

References

Xin Yu et al. 2019 Predicting disease progression in lung adenocarcinoma patients based on methylation correlated blocks using ensemble machine learning classifiers (under review)

Examples

```r
# import datasets
data(demo_survival_data)
datamatrix<-create_demo()
data(demo_MCBinformation)

# select MCB with at least 3 CpGs.
demo_MCBinformation<-demo_MCBinformation[demo_MCBinformation[,"CpGs_num"]>2,]

trainingset<-colnames(datamatrix) %in% sample(colnames(datamatrix),0.6*length(colnames(datamatrix)))
testingset<-!trainingset

# create the results using Cox regression.
mcb_cox_res<-metricMCB.cv(MCBset = demo_MCBinformation,
data_set = datamatrix,
Surv = demo_survival_data,
Method = "cox")
```
multi_coxph

multivariate survival analysis using coxph

Usage

```r
multi_coxph(dataframe, y_surv, digits = 4, asnumeric = TRUE)
```

Arguments

- **dataframe**
 - Clinic data and covariates ready to be tested. Note that Rows are samples and columns are variables.
- **y_surv**
 - Survival function contain survival data, usually are obtained form Surv() function in survival package.
- **digits**
 - Integer indicating the number of decimal places.
- **asnumeric**
 - Indicator that the data will be (True) / not (False) transformed into numeric. Default is true.

Value

Object of class `matrix` with results.

Author(s)

Xin Yu

Examples

```r
data(demo_survival_data)
data('demo_data', package = 'EnMCB')
demo_set<-demo_data$realdata
dres<-multi_coxph(t(demo_set), demo_survival_data)
```
predict.mcb.coxph.penal

predict coxph penal using MCB

Description
Compute fitted values and regression terms for a model fitted by coxph

Usage
```
## S3 method for class 'mcb.coxph.penal'
predict(object, newdata, ...)
```

Arguments
- `object`: the results of a coxph fit.
- `newdata`: Optional new data at which to do predictions. If absent predictions are for the data frame used in the original fit. When coxph has been called with a formula argument created in another context, i.e., coxph has been called within another function and the formula was passed as an argument to that function, there can be problems finding the data set. See the note below.
- `...`: other parameters pass to predict.coxph

Value
prediction values of regression.

Author(s)
Xin Yu

pre_process_methylation

Preprocess the Beta value matrix

Description
This process is optional for the pipeline. This function pre-process the Beta matrix and transform the Beta value into M value.

Usage
```
pre_process_methylation(met,Mvalue,constant_offset,remove_na,remove_percentage)
```
Arguments

- **met**: Methylation matrix for CpGs. Rows are the CpG names, columns are samples.
- **Mvalue**: Boolean value, TRUE for the M transformation.
- **constant_offset**: The constant offset used in the M transformation formula.
- **remove_na**: Boolean value, if TRUE, CpGs with NA values will be removed.
- **remove_percentage**: If percentage of NA value exceeds the threshold (percentage), the whole CpG probe will be removed. Otherwise, the NA values are replaced with rowmeans.

Value

Object of class `matrix`.

Examples

```r
demo_set <- create_demo()
pre_process_methylation(demo_set, Mvalue = FALSE)
```

univ_coxph

Univariate and multivariate survival analysis using coxph

Usage

`univ_coxph(dataframe, y_surv, digits = 4, asnumeric = TRUE)`

Arguments

- **dataframe**: Clinic data and covariates ready to be tested. Rows are variables and columns are samples.
- **y_surv**: Survival function containing survival data, usually obtained from `Surv()` function in the survival package.
- **digits**: Integer indicating the number of decimal places.
- **asnumeric**: Indicator that the data will be (True) / not (False) transformed into numeric. Default is true.

Value

Object of class `matrix` with results.
Author(s)
Xin Yu

Examples

```r
data(demo_survival_data)
data('demo_data', package = "EnMCB")
demo_set <- demo_data$realdata
res <- univ_coxph(demo_set, demo_survival_data)
```
Index

* Correlation
 metricMCB, 16
 metricMCB.cv, 18
* Methylation
 metricMCB, 16
 metricMCB.cv, 18
* datasets
 anno_matrix, 2
 demo_data, 6
 demo_MCBinformation, 6
 demo_survival_data, 7
* ensemble
 ensemble_model, 10
* methylation
 ensemble_model, 10
* stacking
 ensemble_model, 10

anno_matrix, 2
as.data.frame.ridgemat, 3
as.ridgemat, 3
CompareMCB, 4
create_demo, 5
demo_data, 6
demo_MCBinformation, 6
demo_survival_data, 7
DiffMCB, 7
draw_survival_curve, 9
ensemble_model, 10
ensemble_prediction, 11
fast_roc_calculation, 12
IdentifyMCB, 13
IdentifyMCB_parallel, 14
metricMCB, 16
metricMCB.cv, 18

multi_coxph, 20
pre_process_methylation, 21
predict.mcb.coxph.penal, 21
univ_coxph, 22