Package ‘EnrichedHeatmap’

January 23, 2024

Type Package
Title Making Enriched Heatmaps
Version 1.32.0
Date 2023-03-19
Depends R (>= 3.6.0), methods, grid, ComplexHeatmap (>= 2.11.0), GenomicRanges
Imports matrixStats, stats, GetoptLong, Rcpp, utils, locfit, circlize (>= 0.4.5), IRanges
Suggests testthat (>= 0.3), knitr, markdown, rmarkdown, genefilter, RColorBrewer
VignetteBuilder knitr

Description Enriched heatmap is a special type of heatmap which visualizes the enrichment of genomic signals on specific target regions. Here we implement enriched heatmap by ComplexHeatmap package. Since this type of heatmap is just a normal heatmap but with some special settings, with the functionality of ComplexHeatmap, it would be much easier to customize the heatmap as well as concatenating to a list of heatmaps to show correspondence between different data sources.

biocViews Software, Visualization, Sequencing, GenomeAnnotation, Coverage

URL https://github.com/jokergoo/EnrichedHeatmap
License MIT + file LICENSE

LinkingTo Rcpp
git_url https://git.bioconductor.org/packages/EnrichedHeatmap
git_branch RELEASE_3_18
git_last_commit 42e8bf6
git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-01-23

Author Zuguang Gu [aut, cre] (<https://orcid.org/0000-0002-7395-8709>)
Maintainer Zuguang Gu <z.gu@dkfz.de>
R topics documented:

anno_enriched .. 2
as.normalizedMatrix .. 3
copyAttr ... 5
default_smooth_fun .. 6
discretize ... 6
dist_by_closeness .. 8
EnrichedHeatmap .. 9
enriched_score .. 11
extract_anno_enriched 12
failed_rows ... 12
getSignalsFromList ... 13
makeWindows ... 14
normalizeToMatrix .. 16
print.normalizedMatrix 18
rbind.normalizedMatrix 19
[.normalizedMatrix ... 20

Index 21

anno_enriched Annotation Function to Show the Enrichment

Description

Annotation Function to Show the Enrichment

Usage

anno_enriched(gp = gpar(col = "red"), pos_line = NULL, pos_line_gp = NULL,
ylim = NULL, value = c("mean", "sum", "abs_mean", "abs_sum"),
yaxis = TRUE, axis = yaxis, axis_param = list(side = "right"),
show_error = FALSE, height = unit(2, "cm"), ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp</td>
<td>Graphic parameters. There are two non-standard parameters: neg_col and pos_col. If these two parameters are defined, the positive signals and negative signals are visualized separately. The graphic parameters can be set as vectors when the heatmap or heatmap list is split into several row clusters.</td>
</tr>
<tr>
<td>pos_line</td>
<td>Whether draw vertical lines which represent positions of target?</td>
</tr>
<tr>
<td>pos_line_gp</td>
<td>Graphic parameters for the position lines.</td>
</tr>
<tr>
<td>ylim</td>
<td>Ranges on y-axis. By default it is inferred from the data.</td>
</tr>
<tr>
<td>value</td>
<td>The method to summarize signals from columns of the normalized matrix.</td>
</tr>
<tr>
<td>yaxis</td>
<td>Deprecated, use axis instead.</td>
</tr>
</tbody>
</table>
as.normalizedMatrix

Description

Convert a Normal Matrix to a normalizedMatrix Object

Usage

as.normalizedMatrix(mat, k_upstream = 0, k_downstream = 0, k_target = 0,
extend, signal_name = "signals", target_name = "targets",
background = NA, smooth = FALSE, smooth_fun = default_smooth_fun,
keep = c(0, 1), trim = NULL)
Arguments

mat A matrix generated by other software.
k_upstream Number of windows in the upstream.
k_downstream Number of windows in the downstream.
k_target Number of windows in the target.
extend Extension to the target. The length should be 1 (if one of k_upstream or k_downstream is zero). or 2 (if both of k_upstream and k_downstream are non-zero).
signal_name The name of signal regions. It is only used for printing the object.
target_name The name of the target names. It is only used for printing the object.
background The background value in the matrix.
smooth Whether apply smoothing on rows in the matrix.
smooth_fun The smoothing function that is applied to each row in the matrix. This self-defined function accepts a numeric vector (may contain NA values) and returns a vector with same length. If the smoothing is failed, the function should call stop to throw errors so that normalizeToMatrix can catch how many rows are failed in smoothing. See the default default_smooth_fun for example.
keep Percentiles in the normalized matrix to keep. The value is a vector of two percent values. Values less than the first percentile is replaces with the first percentile and values larger than the second percentile is replaced with the second percentile.
trim Deprecated, please use keep instead.

Details

If users use the matrix from other software, they can use this function to convert it to the normalizedMatrix object and visualize it afterwards.

Value

A normalizedMatrix object.

Author(s)

z.gu@dkfz.de

Examples

There is no example
NULL
copyAttr

Description

Copy Attributes to Another Object

Usage

`copyAttr(x, y)`

Arguments

- `x` Object 1.
- `y` Object 2.

Details

The `normalizeToMatrix` object is actually a matrix but with more additional attributes attached. When manipulating such matrix, there are some circumstances that the attributes are lost. This function is used to copy these specific attributes when dealing with the matrix.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
gr = GRanges(seqnames = c("chr5", "chr5"),
            ranges = IRanges(start = c(98, 98),
                             end = c(104, 104)))
 target = GRanges(seqnames = "chr5",
                  ranges = IRanges(start = 100, end = 100))
mat1 = normalizeToMatrix(gr, target, extend = 6, w = 1)
# attributes removed and you cannot use it for EnrichedHeatmap()
mat2 = mat1[]
# copy attributes to mat2 and now mat3 can be used for EnrichedHeatmap()
mat3 = copyAttr(mat1, mat2)
```
discretize

discretize
Discretize a Continuous Matrix to a Discrete Matrix

Description
Discretize a Continuous Matrix to a Discrete Matrix

Usage
discretize(mat, rule, right_closed = FALSE)

Arguments
- **mat**: Input numeric vector.
- **rule**: Input numeric vector.
- **right_closed**: Logical. Default FALSE.

Details
The smoothing function is applied to every row in the normalized matrix. For this default smoothing function, **locfit** is first tried on the vector. If there is error, **loess** smoothing is tried afterwards. If both smoothing are failed, there will be an error.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
```r
# There is no example
NULL
```
discretize

Arguments

mat A normalize matrix from `normalizeToMatrix`.
rule A list of intervals which provide mapping between continuous values to discrete values. Note the order of intervals determines the order of corresponding discrete levels.
right_closed Is the interval right closed?

Details

Assuming we have a normalized matrix with both positive values and negative values, we only want to see the enrichment of the windows/regions showing significant positive values and negative values and we are only interested in the direction of the values while not the value itself, then we can define the rule as:

```r
rule = list(
  "positive" = c(0.5, Inf),
  "negative" = c(-Inf, -0.5)
)
```

And we can convert the continuous matrix to a discrete matrix and visualize it:

```r
mat2 = discretize(mat, rule)
EnrichedHeatmap(mat2, col = c("positive" = "red", "negative" = "green"))
```

Another example is to discretize the signals to discrete levels according to the intensities:

```r
rule = list(
  "very_high" = c(100, Inf),
  "high" = c(50, 100),
  "intermediate" = c(25, 50),
  "low" = c(1e-6, 25)
)
```

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL
dist_by_closeness
Distance by Closeness

Description
Distance by Closeness

Usage

```r
dist_by_closeness(mat)
```

Arguments

- `mat`: A numeric matrix where the distance is calculated by rows.

Details
For two rows in the matrix, assume \(x_1, x_2, \ldots, x_n1\) are the column index of non-zero values in row 1 and \(y_1, y_2, \ldots, y_n2\) are the column index for non-zero values in row 2, the distance between the two rows based on the closeness is calculated as:

\[
d_{closeness} = \frac{\sum_i \sum_j |x_i - y_j|}{n_1 \times n_2}
\]

Value
A `dist` object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

```r
x1 = c(0, 0, 0, 0, 1, 1, 1, 0, 0, 0)
x2 = c(0, 0, 0, 1, 1, 1, 0, 0, 0, 0)
x3 = c(1, 0, 0, 0, 1, 1, 0, 0, 0, 0)
m = rbind(x1, x2, x3)
dist(m)
dist_by_closeness(m)
```
EnrichedHeatmap

Constructor Method for the Enriched Heatmap

Description

Constructor Method for the Enriched Heatmap

Usage

EnrichedHeatmap(mat,
 col,
 top_annotation = HeatmapAnnotation(enriched = anno_enriched()),
 row_order = order(enriched_score(mat), decreasing = TRUE),
 pos_line = TRUE,
 pos_line_gp = gpar(lty = 2),
 axis_name = NULL,
 axis_name_rot = 0,
 axis_name_gp = gpar(fontsize = 10),
 border = TRUE,
 cluster_rows = FALSE,
 row_dend_reorder = -enriched_score(mat),
 show_row_dend = FALSE,
 show_row_names = FALSE,
 heatmap_legend_param = list(),
 ...)

Arguments

mat A matrix which is returned by \texttt{normalizeToMatrix}.
col Color settings. If the signals are categorical, color should be a vector with category levels as names.
top_annotation A special annotation which is always put on top of the enriched heatmap and is constructed by \texttt{anno_enriched}.
row_order Row order. Default rows are ordered by enriched scores calculated from \texttt{enriched_score}.
pos_line Whether draw vertical lines which represent the positions of target?
pos_line_gp Graphic parameters for the position lines.
axis_name Names for axis which is below the heatmap. If the targets are single points, \texttt{axis_name} is a vector of length three which corresponds to upstream, target itself and downstream. If the targets are regions with width larger than 1, \texttt{axis_name} should be a vector of length four which corresponds to upstream, start of targets, end of targets and downstream.
axis_name_rot Rotation for axis names.
axis_name_gp Graphic parameters for axis names.
border Whether show the border of the heatmap?
cluster_rows Clustering on rows are turned off by default.
show_row_dend Whether show dendrograms on rows if hierarchical clustering is applied on rows?
row_dend_reorder Weight for reordering the row dendrogram. It is reordered by enriched scores by default.
show_row_names Whether show row names?
heatmap_legend_param A list of settings for heatmap legends. at and labels can not be set here.
... Other arguments passed to Heatmap.

Details

The enriched heatmap is essentially a normal heatmap but with several special settings. Following parameters are set with pre-defined values:

cluster_columns enforced to be FALSE
show_column_names enforced to be FALSE
bottom_annotation enforced to be NULL

EnrichedHeatmap calls Heatmap, thus, most of the arguments in Heatmap are usable in EnrichedHeatmap such as to apply clustering on rows, or to split rows by a data frame or k-means clustering. Users can also add more than one heatmaps by + operator. Enriched heatmaps and normal heatmaps can be concatenated mixed.

For detailed demonstration, please go to the vignette.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

load(system.file("extdata", "chr21_test_data.RData", package = "EnrichedHeatmap"))
mat3 = normalizeToMatrix(meth, cgi, value_column = "meth", mean_mode = "absolute",
 extend = 5000, w = 50, smooth = TRUE)
EnrichedHeatmap(mat3, name = "methylation", column_title = "methylation near CGI")
EnrichedHeatmap(mat3, name = "meth1") + EnrichedHeatmap(mat3, name = "meth2")
for more examples, please go to the vignette
enriched_score

Description

Enriched Scores

Usage

enriched_score(mat)

Arguments

mat A normalized matrix from normalizeToMatrix.

Details

The function calculates how the signal is enriched in the target by weighting the distance to the target.

For a numeric vector, assume the vector is denoted as combination of three sub-vectors \(c(x_1, x_2, x_3)\) with length \(n_1, n_2\) and \(n_3\), where \(x_1\) are data points in upstream windows, \(x_2\) are data points in target windows and \(x_3\) are data points in downstream windows, the enriched score is calculated as

\[
\text{sum}(x_1i*/i/n1) + \text{sum}(x_3j*/(n3 - j + 1)/n3) + \text{sum}(x_2k * \text{abs}(n2/2 - \text{abs}(k - n2/2)))
\]

where the first two terms are the distance to the start or end position of the target by weighting the distance to the position that if it is closer to the start or end position of the target, it has higher weight. The second term weight the distance to the center point of the target and similar, if it is closer to the center position, it has higher weight.

Value

A numeric vector.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL
extract_anno_enriched Extract Enrichment Annotation Graphics as a Separated Plot

Description

Extract Enrichment Annotation Graphics as a Separated Plot

Usage

extract_anno_enriched(ht_list, which = NULL, newpage = TRUE, padding = NULL)

Arguments

ht_list The heatmap list returned by draw,HeatmapList-method.
which The index of enriched heatmap in the heatmap list. The value can be an integer index or a character index (the name of the heatmap).
newpage Whether call grid.newpage to create a new page?
padding Padding of the plot.

Details

The extracted plot is exactly the same as that on the enriched heatmap.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

failed_rows Indices of Rows Failed from Smoothing

Description

Indices of Rows Failed from Smoothing

Usage

failed_rows(m)
getSignalsFromList

Arguments

m Matrix from normalizeToMatrix.

Value

A numeric vector or NULL.

Examples

There is no example
NULL

generateSignalsFromList

Get Signals from a List

Description

Get Signals from a List

Usage

generateSignalsFromList(lt, fun = function(x) mean(x, na.rm = TRUE))

Arguments

lt A list of normalized matrices which are returned by normalizeToMatrix. Matrices in the list should be generated with same settings (e.g. they should use same target regions, same extension to targets and same number of windows).

fun A user-defined function to summarize signals.

Details

Let’s assume you have a list of histone modification signals for different samples and you want to visualize the mean pattern across samples. You can first normalize histone mark signals for each sample and then calculate means values across all samples. In following example code, hm_gr_list is a list of GRanges objects which contain positions of histone modifications, tss is a GRanges object containing positions of gene TSS.

```r
mat_list = NULL
for(i in seq_along(hm_gr_list)) {
    mat_list[[i]] = normalizeToMatrix(hm_gr_list[[i]], tss, value_column = "density")
}
```
If we compress the list of matrices as a three-dimension array where the first dimension corresponds to genes, the second dimension corresponds to windows and the third dimension corresponds to samples, the mean signal across all sample can be calculated on the third dimension. Here `getSignalsFromList` simplifies this job.

Applying `getSignalsFromList()` to `mat_list`, it gives a new normalized matrix which contains mean signals across all samples and can be directly used in `EnrichedHeatmap()`.

```r
mat_mean = getSignalsFromList(mat_list)
EnrichedHeatmap(mat_mean)
```

The correlation between histone modification and gene expression can also be calculated on the third dimension of the array. In the user-defined function `fun`, `x` is the vector for gene `i` and window `j` in the array, and `i` is the index of current gene.

```r
mat_corr = getSignalsFromList(mat_list,
    fun = function(x, i) cor(x, expr[i, ], method = "spearman"))
```

Then `mat_corr` here can be used to visualize how gene expression is correlated to histone modification around TSS.

```r
EnrichedHeatmap(mat_corr)
```

Value

A `normalizeToMatrix` object which can be directly used for `EnrichedHeatmap`.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

`NULL`

makeWindows

Split Regions into Windows

Description

Split Regions into Windows

Usage

```r
makeWindows(query, w = NULL, k = NULL, direction = c("normal", "reverse"),
            short.keep = FALSE)
```
makeWindows

Arguments

query A GRanges-class object.
w Window size. A value larger than 1 means the number of base pairs and a value between 0 and 1 is the percent to the current region.
k Number of partitions for each region. If it is set, all other arguments are ignored.
direction Where to start the splitting? See 'Details' section.
short.keep If the the region can not be split equally under the window size, the argument controls whether to keep the windows that are smaller than the window size. See 'Details' section.

Details

Following illustrates the meaning of direction and short.keep:

- one region, split by 3bp window ("->" represents the direction of the sequence)
 aaabbbccc direction = "normal", short.keep = FALSE
 aaabbbcccc direction = "normal", short.keep = TRUE
 aaabbbccc direction = "reverse", short.keep = FALSE
 abbbcccddd direction = "reverse", short.keep = TRUE

Value

A GRanges-class object with two additional columns attached:

• .i_query which contains the correspondance between small windows and original regions in query
• .i_window which contains the index of the small window on the current region.

Author(s)

Zuguang gu <z.gu@dkfz.de>

Examples

query = GRanges(seqnames = "chr1", ranges = IRanges(start = c(1, 11, 21), end = c(10, 20, 30)))
makeWindows(query, w = 2)
makeWindows(query, w = 0.5)
makeWindows(query, w = 3)
makeWindows(query, w = 3, direction = "reverse")
makeWindows(query, w = 3, short.keep = TRUE)
makeWindows(query, w = 3, direction = "reverse", short.keep = TRUE)
makeWindows(query, w = 12)
makeWindows(query, w = 12, short.keep = TRUE)
makeWindows(query, k = 3)
query = GRanges(seqnames = "chr1", ranges = IRanges(start = c(1, 11, 31), end = c(10, 30, 70)))
makeWindows(query, w = 2)
makeWindows(query, w = 0.2)
normalizeToMatrix

Normalize Associations between Genomic Signals and Target Regions into a Matrix

Description

Normalize Associations between Genomic Signals and Target Regions into a Matrix

Usage

```r
normalizeToMatrix(signal, target, extend = 5000, w = max(extend)/100,
value_column = NULL, mapping_column = NULL, background = ifelse(smooth, smooth, NA),
empty_value = NULL, mean_mode = c("absolute", "weighted", "w0", "coverage"),
include_target = any(width(target) > 1),
target_ratio = min(c(0.4, mean(width(target))/(sum(extend) + mean(width(target))))),
k = min(c(20, min(width(target)))))
```

Arguments

- **signal**: A `GRanges-class` object.
- **target**: A `GRanges-class` object.
- **extend**: Extended base pairs to the upstream and/or downstream of target. It can be a vector of length one or two. Length one means same extension to the upstream and downstream.
- **w**: Window size for splitting upstream and downstream, measured in base pairs.
- **value_column**: Column index in `signal` that is mapped to colors. If it is not set, it assumes values for all signal regions are 1.
- **mapping_column**: Mapping column to restrict overlapping between `signal` and `target`. By default it tries to look for all regions in `signal` that overlap with every target.
- **background**: Values for windows that don’t overlap with `signal`.
- **empty_value**: Deprecated, please use background instead.
- **mean_mode**: When a window is not perfectly overlapped to `signal`, how to summarize values to the window. See ‘Details’ section for a detailed explanation.
- **include_target**: Whether include `target` in the heatmap? If the width of all regions in `target` is 1, `include_target` is enforced to `FALSE`.
- **target_ratio**: The ratio of `target` columns in the normalized matrix. If the value is 1, `extend` will be reset to 0.
- **k**: Number of windows only when `target_ratio = 1` or `extend == 0`, otherwise ignored.
- **smooth**: Whether apply smoothing on rows in the matrix?
`normalizeToMatrix`

smooth_fun The smoothing function that is applied to each row in the matrix. This self-defined function accepts a numeric vector (may contain NA values) and returns a vector with same length. If the smoothing is failed, the function should call `stop` to throw errors so that `normalizeToMatrix` can catch how many rows are failed in smoothing. See the default `default_smooth_fun` for example.

keep Percentiles in the normalized matrix to keep. The value is a vector of two percent values. Values less than the first percentile is replaces with the first percentile and values larger than the second percentile is replaced with the second percentile.

limit Similar as keep, but it provides boundary for absolute values. The value should be a vector of length two.

trim Deprecated, please use keep instead.

flip_upstream Sometimes whether the signals are on the upstream or the downstream of the targets are not important and users only want to show the relative distance to targets. If the value is set to TRUE, the upstream part in the normalized matrix is flipped and added to the downstream part. The flipping is only allowed when the targets are single-point targets or the targets are excluded in the normalized matrix (by setting `include_target = FALSE`). If the extension for the upstream and downstream is not equal, the smaller extension is used for the final matrix.

verbose Whether to print help messages.

Details

In order to visualize associations between signal and target, the data is transformed into a matrix and visualized as a heatmap by `EnrichedHeatmap` afterwards.

Upstream and downstream also with the target body are splitted into a list of small windows and overlap to signal. Since regions in signal and small windows do not always have 100 percent overlap, there are four different averaging modes:

Following illustrates different settings for `mean_mode` (note there is one signal region overlapping with other signals):

<table>
<thead>
<tr>
<th>40</th>
<th>50</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>++++</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>++++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>=============</td>
<td>a window (17bp), there are 4bp not overlapping to any signal regions.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

absolute: \((40 + 30 + 50 + 20)/4\)
weighted: \((40*4 + 30*6 + 50*3 + 20*3)/(4 + 6 + 3 + 3)\)
\(w0: \((40*4 + 30*6 + 50*3 + 20*3)/(4 + 6 + 3 + 3 + 4)\)\)
coverage: \((40*4 + 30*6 + 50*3 + 20*3)/17\)

Value

A matrix with following additional attributes:
upstream_index column index corresponding to upstream of target
target_index column index corresponding to target
downstream_index column index corresponding to downstream of target
extend extension on upstream and downstream
smooth whether smoothing was applied on the matrix
failed_rows index of rows which are failed after smoothing

The matrix is wrapped into a simple normalizeToMatrix class.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

```r
signal = GRanges(seqnames = "chr1",
range = IRange(start = c(1, 4, 7, 11, 14, 17, 21, 24, 27),
end = c(2, 5, 8, 12, 15, 18, 22, 25, 28)),
score = c(1, 2, 3, 1, 2, 3, 1, 2, 3))
target = GRanges(seqnames = "chr1", ranges = IRange(start = 10, end = 20))
normalizeToMatrix(signal, target, extend = 10, w = 2)
normalizeToMatrix(signal, target, extend = 10, w = 2, include_target = TRUE)
normalizeToMatrix(signal, target, extend = 10, w = 2, value_column = "score")
```

print.normalizedMatrix

Print the Normalized Matrix

Description

Print the Normalized Matrix

Usage

```r
## S3 method for class 'normalizedMatrix'
print(x, ...)```

**Arguments**

- `x` The normalized matrix returned by `normalizeToMatrix`.
- `...` Other arguments.

**Value**

No value is returned.
rbind.normalizedMatrix

Bind Matrix by Rows

Description

Bind Matrix by Rows

Usage

## S3 method for class 'normalizedMatrix'
rbind(..., deparse.level = 1)

Arguments

... Matrices
deparse.level Not used.

Value

A normalizedMatrix class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL
Description
Subset normalized matrix by rows

Usage
## S3 method for class 'normalizedMatrix'
x[i, j, drop = FALSE]

Arguments
x the normalized matrix returned by `normalizeToMatrix`
i row index
j column index
drop whether drop the dimension

Value
A `normalizedMatrix` class object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL
Index

[.normalizedMatrix, 20
anno_enriched, 2, 9
as.normalizedMatrix, 3
copyAttr, 5
default_axis_param, 3
default_smooth_fun, 4, 6, 17
discretize, 6
dist, 8
dist_by_closeness, 8
enriched_score, 9, 11
EnrichedHeatmap, 3, 9, 10, 14, 17
Extract.normalizedMatrix
    [.normalizedMatrix), 20
extract_anno_enriched, 12
failed_rows, 12
getsSignalsFromList, 13, 14
grid.newpage, 12
Heatmap, 10
locfit, 6
loess, 6
makeWindows, 14
normalizeToMatrix, 4, 5, 7, 9, 11, 13, 14, 16, 17, 18, 20
print.normalizedMatrix, 18
rbind.normalizedMatrix, 19
stop, 4, 17