Package ‘FEAST’

May 10, 2024

Type Package

Title FEAture SelcTion (FEAST) for Single-cell clustering

Version 1.12.0

Description Cell clustering is one of the most important and commonly performed tasks in single-cell RNA sequencing (scRNA-seq) data analysis. An important step in cell clustering is to select a subset of genes (referred to as “features”), whose expression patterns will then be used for downstream clustering. A good set of features should include the ones that distinguish different cell types, and the quality of such set could have significant impact on the clustering accuracy. FEAST is an R library for selecting most representative features before performing the core of scRNA-seq clustering. It can be used as a plug-in for the established clustering algorithms such as SC3, TSCAN, SHARP, SIMLR, and Seurat. The core of FEAST algorithm includes three steps:
1. consensus clustering;
2. gene-level significance inference;
3. validation of an optimized feature set.

License GPL-2

Encoding UTF-8

LazyData true

Depends R (>= 4.1), mclust, BiocParallel, SummarizedExperiment

biocViews Sequencing, SingleCell, Clustering, FeatureExtraction

BugReports https://github.com/suke18/FEAST/issues

Imports SingleCellExperiment, methods, stats, utils, irlba, TSCAN, SC3, matrixStats

Suggests rmrkwdown, Seurat, ggpubr, knitr, testthat (>= 3.0.0), BiocStyle

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation yes
align_CellType

Author Kenong Su [aut, cre],
Hao Wu [aut]

Maintainer Kenong Su <kenong.su@emory.edu>

git_url https://git.bioconductor.org/packages/FEAST

git_branch RELEASE_3_19

git_last_commit adbdda9

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-10

Contents

- align_CellType ... 2
- cal_F2 ... 3
- cal_Fisher2 .. 4
- cal_metrics ... 4
- cal_MSE ... 5
- Consensus ... 5
- eval_Cluster .. 6
- FEAST ... 7
- FEAST_fast ... 8
- Norm_Y ... 8
- process_Y .. 9
- Purity ... 10
- SC3_Clust ... 10
- Select_Model_short_SC3 .. 11
- Select_Model_short_TSCAN ... 12
- setUp_BPPARAM ... 13
- trueclass .. 13
- TSCAN_Clust ... 14
- vector2matrix .. 15
- Visual_Rslt .. 15
- Y ... 16

Index 17

align_CellType

Align the cell types from the prediction with the truth.

Description

Align the cell types from the prediction with the truth.
Usage

align_CellType(tt0)

Arguments

tt0 a N*N table.

Value

the matched (re-ordered) table

Examples

vec1 = rep(1:4, each=100)
vec2 = sample(vec1)
tb = table(vec1, vec2)
#tb_arg = align_CellType(tb)

cal_F2 Calculate the gene-level F score and corresponding significance level.

Description

Calculate the gene-level F score and corresponding significance level.

Usage

cal_F2(Y, classes)

Arguments

Y A gene expression matrix
classes The initial cluster labels NA values are allowed. This can directly from the Consensus function.

Value

The score vector

Examples

data(Yan)
cal_F2(Y, classes = trueclass)
cal_Fisher2
Calculate the gene-level fisher score.

Description

Calculate the gene-level fisher score.

Usage

```r
cal_Fisher2(Y, classes)
```

Arguments

- `Y`: A gene expression matrix
- `classes`: The initial cluster labels NA values are allowed. This can directly from the Consensus function.

Value

The score vector. This is from the paper https://arxiv.org/pdf/1202.3725.pdf Vector based calculation

cal_metrics
Calculate 3 metrics and these methods are exported in C codes. flag = 1 — Rand index, flag = 2 — Fowlkes and Mallows’s index, flag = 3 — Jaccard index

Description

Calculate 3 metrics and these methods are exported in C codes. flag = 1 — Rand index, flag = 2 — Fowlkes and Mallows’s index, flag = 3 — Jaccard index.

Usage

```r
cal_metrics(cl1, cl2, randMethod = c("Rand", "FM", "Jaccard"))
```

Arguments

- `cl1`: a vector
- `cl2`: a vector
- `randMethod`: a string chosen from "Rand", "FM", or "Jaccard"

Value

a numeric vector including three values
cal_MSE

Description

Standard way to preprocess the count matrix. It is the QC step for the genes.

Usage

cal_MSE(Ynorm, cluster, return_mses = FALSE)

Arguments

Ynorm A normalized gene expression matrix. If not, we will normalize it for you.
cluster The clustering outcomes. Specifically, they are cluster labels.
return_mses True or False indicating whether returning the MSE.

Value

The MSE of the clustering centers with the predicted Y.

Examples

data(Yan)
Ynorm = Norm_Y(Y)
class = trueclass
MSE_res = cal_MSE(Ynorm, cluster)

Consensus

Consensus Clustering

Description

Consensus Clustering

Usage

Consensus(Y, num_pcs = 10, top_pctg = 0.33, k = 2, thred = 0.9, nProc = 1)
Arguments

- **Y**: A expression matrix. It is recommended to use the raw count matrix. Users can input normalized matrix directly.
- **num_pcs**: The number of top pcs that will be investigated on through consensus clustering.
- **top_pctg**: Top percentage of features for dimension reduction.
- **k**: The number of input clusters (best guess).
- **thred**: For the final GMM clustering, the probability of a cell belonging to a certain cluster.
- **nProc**: number of cores for BiocParallel environment.

Value

- the clustering labels and the featured genes.

Examples

```r
data(Yan)
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con = Consensus(Y, k=5)
```

Description

Calculate the a series of the evaluation statistics.

Usage

```
eval_Cluster(vec1, vec2)
```

Arguments

- **vec1**: a vector.
- **vec2**: a vector. x and y are with the same length.

Value

- a vector of evaluation metrics

Examples

```r
vec2 = vec1 = rep(1:4, each = 100)
vec2[1:10] = 4
acc = eval_Cluster(vec1, vec2)
```
FEAST main function

Description

FEAST main function

Usage

FEAST(
 Y,
 k = 2,
 num_pcs = 10,
 dim_reduce = c("irlba", "svd", "pca"),
 split = FALSE,
 batch_size = 1000,
 nProc = 1
)

Arguments

Y A expression matrix. Raw count matrix or normalized matrix.

k The number of input clusters (best guess).

num_pcs The number of top pcs that will be investigated through the consensus clustering.

dim_reduce dimension reduction methods chosen from pca, svd, or irlba.

split boolean. If T, using subsampling to calculate the gene-level significance.

batch_size when split is true, need to claim the batch size for splitting the cells.

nProc number of cores for BiocParallel environment.

Value

the rankings of the gene-significance.

Examples

data(Yan)
k = length(unique(trueclass))
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
ixs = FEAST(Y, k=k)
FEAST_fast
FEAST main function (fast version)

Description

FEAST main function (fast version)

Usage

```r
FEAST_fast(Y, k = 2, num_pcs = 10, split = FALSE, batch_size = 1000, nProc = 1)
```

Arguments

- **Y**: A expression matrix. Raw count matrix or normalized matrix.
- **k**: The number of input clusters (best guess).
- **num_pcs**: The number of top pcs that will be investigated through the consensus clustering.
- **split**: boolean. If T, using subsampling to calculate the gene-level significance.
- **batch_size**: when split is true, need to claim the batch size for splitting the cells.
- **nProc**: number of cores for BiocParallel environment.

Value

the rankings of the gene-significance.

Examples

```r
data(Yan)
k = length(unique(trueclass))
res = FEAST_fast(Y, k=k)
```

Norm_Y
Normalize the count expression matrix by the size factor and take the log transformation.

Description

Normalize the count expression matrix by the size factor and take the log transformation.

Usage

```r
Norm_Y(Y)
```

Arguments

- **Y**: a count expression matrix
process_Y

Value

a normalized matrix

Examples

data(Yan)
Ynorm = Norm_Y(Y)

--

process_Y Standard way to preprocess the count matrix. It is the QC step for the
genes.

--

Description

Standard way to preprocess the count matrix. It is the QC step for the genes.

Usage

process_Y(Y, thre = 2)

Arguments

Y A gene expression data (Raw count matrix)

thre The threshold of minimum number of cells expressing a certain gene (default =2)

Value

A processed gene expression matrix. It is not log transformed

Examples

data(Yan)
YY = process_Y(Y, thre=2)
Purity

Calculate the purity between two vectors.

Description

Calculate the purity between two vectors.

Usage

Purity(x, y)

Arguments

- **x**
 - a vector.
- **y**
 - a vector. x and y are with the same length.

Value

the purity score

SC3_Clust

SC3 Clustering

Description

SC3 Clustering

Usage

SC3_Clust(Y, k = NULL, input_markers = NULL)

Arguments

- **Y**
 - A expression matrix. It is recommended to use the raw count matrix.
- **k**
 - The number of clusters. If it is not provided, k is estimated by the default method in SC3.
- **input_markers**
 - A character vector including the featured genes. If they are not presented, SC3 will take care of this.

Value

the clustering labels and the featured genes.
Using clustering results based on feature selection to perform model selection.

Description

Using clustering results based on feature selection to perform model selection.

Usage

```r
Select_Model_short_SC3(Y, cluster, tops = c(500, 1000, 2000))
```

Arguments

- **Y**: A gene expression matrix
- **cluster**: The initial cluster labels NA values are allowed. This can directly from the Consensus function.
- **tops**: A numeric vector containing a list of numbers corresponding to top genes; e.g., tops = c(500, 1000, 2000).

Value

mse and the SC3 clustering result.

Examples

```r
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con_res = Consensus(Y, k=k)
# not run
# mod_res = Select_Model_short_SC3(Y, cluster = con_res$cluster, top = c(100, 200))
```
Using clustering results (from TSCAN) based on feature selection to perform model selection.

Description

Using clustering results (from TSCAN) based on feature selection to perform model selection.

Usage

```r
Select_Model_short_TSCAN(
  Y,
  cluster,
  minexpr_percent = 0.5,
  cvcutoff = 1,
  tops = c(500, 1000, 2000)
)
```

Arguments

- **Y**
 A gene expression matrix
- **cluster**
 The initial cluster labels NA values are allowed. This can directly from the Consensus function.
- **minexpr_percent**
 The threshold used for processing data in TSCAN. Using it by default.
- **cvcutoff**
 The threshold used for processing data in TSCAN. Using it by default.
- **tops**
 A numeric vector containing a list of numbers corresponding to top genes; e.g., tops = c(500, 1000, 2000).

Value

mse and the TSCAN clustering result.

Examples

```r
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con_res = Consensus(Y, k=k)
# not run
# mod_res = Select_Model_short_TSCAN(Y, cluster = con_res$cluster, top = c(100, 200))
```
setUp_BPPARAM

set up for the parallel computing for biocParallel.

Description

This function sets up the environment for parallel computing.

Usage

```r
setUp_BPPARAM(nProc = 0, BPPARAM = NULL)
```

Arguments

- `nProc` number of processors
- `BPPARAM` bpparameter from bpparam

Value

BAPPARAM settings

Examples

```r
setUp_BPPARAM(nProc=1)
```

trueclass

An example single cell dataset for the cell label information (Yan)

Description

The true cell type labels for Yan dataset. It includes 8 different cell types.

Usage

```r
data("Yan")
```

Format

A character vector contains the cell type label

Source

References

Examples

```r
data("Yan")
table(trueclass)
```

Description

TSCAN Clustering

Usage

```r
TSCAN_Clust(Y, k, minexpr_percent = 0.5, cvcutoff = 1, input_markers = NULL)
```

Arguments

- `Y`: A expression matrix. It is recommended to use the raw count matrix.
- `k`: The number of clusters. If it is not provided, `k` is estimated by the default method in SC3.
- `minexpr_percent`: minimum expression threshold (default = 0.5).
- `cvcutoff`: the cv cutoff to filter the genes (default = 1).
- `input_markers`: A character vector including the featured genes. If they are not presented, SC3 will take care of this.

Value

the clustering labels and the featured genes.

Examples

```r
data(Yan)
k = length(unique(trueclass))
# TSCAN_res = TSCAN_Clust(Y, k=k)
```
vector2matrix

Description

function for convert a vector to a binary matrix

Usage

```r
tensor2matrix(vec)
```

Arguments

- `vec`: a vector.

Value

a n by n binary matrix indicating the adjacency.

Visual_Rslt

Description

Using clustering results based on feature selection to perform model selection.

Usage

```r
Visual_Rslt(model_cv_res, trueclass)
```

Arguments

- `trueclass`: The real class labels

Value

a list of mse dataframe, clustering accuracy dataframe, and ggplot object.
Examples

```r
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2)  # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, ]
con_res = Consensus(Y, k=k)
# Not run
# mod_res = Select_Model_short_SC3(Y, cluster = con_res$cluster, top = c(100, 200))
library(ggpubr)
# Visual_Rslt(model_cv_res = mod_res, trueclass = trueclass)
```

Y

An example single cell count expression matrix (Yan)

Description

Y is a count expression matrix which belongs to “matrix” class. The data includes 124 cells about human preimplantation embryos and embryonic stem cells. It contains 19304 genes after removing genes with extreme high dropout rate.

Usage

`data("Yan")`

Format

An object of "matrix" class contains the count expressions

Source

References

Examples

```r
data("Yan")
Y[1:10, 1:4]
```
Index

* **datasets**
 - trueclass, 13
 - Y, 16

* **internal**
 - setUp_BPPARAM, 13

align_CellType, 2

cal_F2, 3

cal_Fisher2, 4

cal_metrics, 4

cal_MSE, 5

Consensus, 5

eval_Cluster, 6

FEAST, 7

FEAST_fast, 8

Norm_Y, 8

process_Y, 9

Purity, 10

SC3_Clust, 10

Select_Model_short_SC3, 11

Select_Model_short_TSCAN, 12

setUp_BPPARAM, 13

trueclass, 13

TSCAN_Clust, 14

vector2matrix, 15

Visual_Rslt, 15

Y, 16