Package ‘FeatSeekR’

May 29, 2024

Type Package

Title FeatSeekR an R package for unsupervised feature selection

Version 1.4.0

Description FeatSeekR performs unsupervised feature selection using replicated measurements. It iteratively selects features with the highest reproducibility across replicates, after projecting out those dimensions from the data that are spanned by the previously selected features. The selected a set of features has a high replicate reproducibility and a high degree of uniqueness.

License GPL-3

Encoding UTF-8

Imports pheatmap, MASS, pracma, stats, SummarizedExperiment, methods

RoxygenNote 7.2.3

Suggests rmarkdown, knitr, BiocStyle, DmelSGI, testthat (>= 3.0.0)

VignetteBuilder knitr

BugReports https://github.com/tcapraz/FeatSeekR/issues

URL https://github.com/tcapraz/FeatSeekR

biocViews Software, StatisticalMethod, FeatureExtraction, MassSpectrometry

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/FeatSeekR

git_branch RELEASE_3_19

git_last_commit 7bd9062

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Tuemay Capraz [cre, aut] (<https://orcid.org/0000-0002-2547-067X>)

Maintainer Tuemay Capraz <tuemay.capraz@embl.de>
Contents

- calcFstat ... 2
- check_input ... 2
-FeatSeek .. 3
-FeatSeekR ... 4
-fit_lm ... 5
-init_selected ... 5
-plotSelectedFeatures .. 6
-plotVarianceExplained .. 6
-simData .. 7
-variance_explained ... 8

Index

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcFstat</td>
<td>2</td>
</tr>
<tr>
<td>check_input</td>
<td>2</td>
</tr>
<tr>
<td>FeatSeek</td>
<td>3</td>
</tr>
<tr>
<td>FeatSeekR</td>
<td>4</td>
</tr>
<tr>
<td>fit_lm</td>
<td>5</td>
</tr>
<tr>
<td>init_selected</td>
<td>5</td>
</tr>
<tr>
<td>plotSelectedFeatures</td>
<td>6</td>
</tr>
<tr>
<td>plotVarianceExplained</td>
<td>6</td>
</tr>
<tr>
<td>simData</td>
<td>7</td>
</tr>
<tr>
<td>variance_explained</td>
<td>8</td>
</tr>
</tbody>
</table>

calcFstat

Description

calcFstat

Usage

```
calcFstat(data, fac)
```

Arguments

- **data**: 2 dimensional array with samples x features, where samples belongs different conditions. The function was adapted from the genefilter package.
- **fac**: factor of length samples, indicating which sample belongs to which condition

Value

F-statistic for all features

check_input

Description

Checks input data. Input data should be a 2 dimensional array with features x samples or SummarizedExperiment carrying one assay named data and colData indicating which sample belongs to which condition
FeatSeek

Usage

check_input(data, max_features, conditions = NULL)

Arguments

data input data provided toFeatSeek eitherSummarizedExperiment or 2 dimensional array with features x samples

conditions if data is a 2 dimensional array with features x samples a factor indicating which sample corresponds to which condition must be provided

Value

SummarizedExperiment where condition information is stored in colData

Description

This function ranks features of a 2 dimensional array according to their reproducibility between conditions.

Usage

FeatSeek(
 data,
 conditions = NULL,
 max_features = NULL,
 init = NULL,
 verbose = TRUE
)

Arguments

data SummarizedExperiment with assay named data, where samples belongs to different conditions. Which sample belongs to which condition should be indicated in colData slot conditions. Or matrix with features x samples. Each conditions have multiple samples from replicated measurements.

conditions factor of length samples, indicating which sample belongs to which condition. Only required if data is provided as matrix.

max_features integer number of features to rank

init character vector with names of initial features. If NULL the feature with highest F-statistic will be used

verbose logical indicating whether messages should be printed
Value

SummarizedExperiment containing one assay with the selected features. rowData stores for each selected feature the F-statistic under metric, the cumulative explained variance under explained variance and the feature names under selected

Examples

```r
# run FeatSeek to select the top 20 features
data <- array(rnorm(100*30), dim=c(30, 100),
dimnames <- list(paste("feature", seq_len(30)), NULL))
conds <- rep(seq_len(50), 2)
res <- FeatSeek(data, conds, max_features=20)

# res stores the 20 selected features ranked by their replicate
# reproducibility
```

FeatSeekR

FeatSeekR an R package for unsupervised feature selection

Description

FeatSeekR performs unsupervised feature selection using replicated measurements. It iteratively selects features with the highest reproducibility across conditions, after projecting out those dimensions from the data that are spanned by the previously selected features. The selected a set of features has a high replicate reproducibility and a high degree of uniqueness.

Details

For information on how to use this package please type vignette("FeatSeekR-vignette").

Please post questions regarding the package to the Bioconductor Support Site:

https://support.bioconductor.org

Author(s)

Tümay Capraz
Description

Fit linear model for each feature as a function of the previously selected features S. The dimensions spanned by the selected features are projected out of the data by setting each feature to its residuals from the linear model fit.

Usage

```r
fit_lm(data, S, k)
```

Arguments

- `data` (2 dimensional array samples x features)
- `S` set of selected features
- `k` current iteration

Value

data with previously selected features projected out

init_selected

Description

Checks if preselected init features are in input data. If init is NULL, it is set to feature with highest condition correlation.

Usage

```r
init_selected(init, se)
```

Arguments

- `init` preselected starting set of features
- `data` input data as SummarizedExperiment

Value

names of initial set of feature
plotSelectedFeatures

Description

plot correlation matrix of selected feature sets

Usage

plotSelectedFeatures(res, n_features = NULL, assay = "selected")

Arguments

res result SummarizedExperiment from FeatSeek function
n_features top n_features to plot. if NULL then the maximum number of features in res will be plotted
assay assay slot to plot from result SummarizedExperiment object, default is the selected features slot

Value

returns heatmap of selected features

Examples

run FeatSeek to select the top 20 features
data <- array(rnorm(100*30), dim=c(30,100),
 dimnames = list(paste("feature", seq_len(30)), NULL))
conds <- rep(seq_len(50), 2)
res <- FeatSeek(data, conds, max_features=20)

res stores the 20 selected features ranked by their replicate reproducibility
plot the top 5 features
plotSelectedFeatures(res, n_features=5)

plotVarianceExplained

Description

plot variance explained from 1 to max_features in res

Usage

plotVarianceExplained(res)
Arguments

res result SummarizedExperiment from FeatSeek function

Value

returns plot of variance explained vs number of features

Examples

run FeatSeek to select the top 20 features
data <- array(rnorm(100*30), dim=c(30,100),
 dimnames = list(paste("feature", seq_len(30)), NULL))
conds <- rep(seq_len(50), 2)
res <- FeatSeek(data, conds, max_features=20)

res stores the 20 selected features ranked by their replicate
reproducibility
plotVarianceExplained(res)

Description

simulate Data with orthogonal feature clusters and replicated samples. Each feature cluster cor-
responds to a different latent factor and contains 10 redundant features. E.g. choosing samples = 100,
n_latent_factors = 5 and replicates = 2 will simulate a 50 x 200 data matrix, where the first 100
samples belong to replicate 1 and sample 101-200 belong to replicate 2.

Usage

simData(conditions, n_latent_factors, replicates)

Arguments

c_conditions number of conditions to generate samples from
n_latent_factors number of latent factors to generate
replicates number of replicates to generate

Details

simData constructs n_latent_factors by generating a random matrix Q whose row vectors Q_i ~
N(0, 1) with n samples and i ∈ {1, ..., n_latent_factors} are orthonormal, each corresponding to
a different latent factor. To simulate a set of redundant feature groups, it generates 10 features X_j
for each latent factor Q_i by scaling each latent factor by a random factor δ_j ~ N(0, 1) and adding
replicate specific noise ε_c ~ N(0, 0.1) with c ∈ {1, ..., replicates} preserving orthogonality.
Value
SummarizedExperiment object carrying simulated data, with colData indicating which sample belongs to which replicate

Examples

simulate data 100 samples from 100 conditions, 20 features generated by 2
latent factors and 2 replicates
simData(conditions=100, n_latent_factors=2, replicates=2)

variance_explained

Description

variance_explained

Usage

variance_explained(data, selected)

Arguments

data 2 dimensional array samples x features
selected character vector of selected features

Value

average variance explained by selected features
Index

* internal
 calcFstat, 2
 check_input, 2
 fit_lm, 5
 init_selected, 5
 variance_explained, 8

* package
 FeatSeekR, 4

calcFstat, 2
check_input, 2
FeatSeek, 3
FeatSeekR, 4
fit_lm, 5
init_selected, 5
plotSelectedFeatures, 6
plotVarianceExplained, 6
simData, 7
variance_explained, 8