Package ‘GEWIST’

January 1, 2024

Type Package
Title Gene Environment Wide Interaction Search Threshold
Version 1.46.0
Depends R (>= 2.10), car
Author Wei Q. Deng, Guillaume Pare
Maintainer Wei Q. Deng <dengwq@mcmaster.ca>
Description This ‘GEWIST’ package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.
License GPL-2
LazyLoad yes
biocViews MultipleComparison, Genetics
git_url https://git.bioconductor.org/packages/GEWIST
git_branch RELEASE_3_18
git_last_commit 3211068
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-01

R topics documented:

GEWIST-package ... 2
effectPDF ... 2
gewistLevene ... 4

Index 7
Description

This 'GEWIST' package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.

Details

Package: PathWei
Type: Package
Version: 0.99.z
License: GPL-2
LazyLoad: yes

Author(s)

Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

description

Compute the optimal Variance Prioritization power and corresponding Levene’s test p-value threshold for prioritization given the interaction effect size distribution using GEWIST.
effectPDF

Usage

```
effectPDF(distribution = c("beta", "normal", "uniform", "weibull"),
           parameter1, parameter2 = NULL, parameter3 = NULL, p, N, theta_c, M,
           K = 20000, nb_incr = 50, range = NULL, verbose = FALSE)
```

Arguments

- `distribution` distribution of interaction effect size. Possible distributions are:
 - "beta" for beta distribution
 - "normal" for normal distribution
 - "uniform" for uniform distribution
 - "weibull" for weibull distribution
- `parameter1` the first parameter used in the corresponding distribution
- `parameter2` the second parameter used in the corresponding distribution, could set to be null
- `parameter3` the third parameter used in the corresponding distribution, could set to be null
- `p` minor allele frequency of the SNP, a number between 0 and 0.5
- `N` sample size
- `theta_c` proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1
- `M` total number of SNPs to be tested
- `K` number of GEWIST procedures, by default, set to be 20,000
- `nb_incr` number of effect size points in the range to be prioritized using GEWIST; by default set to be 50.
- `range` range of variance explained by interaction effect sizes, a vector of length 2
- `verbose` logical; if TRUE, for each interaction effect size, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.

Value

A list with three components:

- `Optimal_VP_power` VP power to detect interactions at the optimal VP p-value threshold
- `Conventional_power` power to detect interactions without prioritization, i.e, VP power at Levene` test p-value of 1
- `Optimal_pval_threshold` levene`e test p-value at which optimal VP power is achieved

Warning

Computational time is directly proportional to `nb_incr`.
Author(s)
Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References
Deng W.Q, Pare G. (2011) A fast algorithm to optimize SNP prioritization for gene-gene and gene-
environment interactions. Genetic Epidemiology. 35: 729-738. doi: 10.1002/gepi.20624
Pare G, Cook NR, Ridker PM, Chasman DI (2010) On the Use of Variance per Genotype as a
Tool to Identify Quantitative Trait Interaction Effects: A Report from the Women’s Genome Health
Levene H. (1960) Robust tests for equality of variances. In Contributions to Probability and Statis-

Examples

Given a SNP with minor allele frequency of 10% and a sample
of 10,000 individuals, we are interested in testing interactions
between this SNP and a covariate of effect size 10%. The
total number of SNP is 500,000. Assume the unknown interaction
effect size has a Weibull distribution in the range of 0.05%
and 0.3% variance explained with 50 increments. Repeat GEWIST
for each of the 50 interaction effect sizes.

library(GEWIST)
effectPDF(distribution = "weibull", parameter1 = 0.8, parameter2 = 0.3,
parameter3 = NULL, p = 0.1 ,N = 10000, theta_c = 0.1, M = 350000,
K = 20000, nb_incr = 50, range = c(0.05/100,0.3/100), verbose = FALSE)

End of script
gewistLevene

Arguments

- \(p\)
 minor allele frequency of the SNP, a number between 0 and 0.5
- \(N\)
 sample size
- \(\theta_{gc}\)
 proportion of quantitative trait variance explained by the interaction, should be a number between 0 and 1
- \(\theta_c\)
 proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1
- \(M\)
 total number of SNPs to be tested
- \(K\)
 number of procedures, by default, set to be 20,000
- \(\text{verbose}\)
 logical; if TRUE, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.

Value

A list with three components:

- \(\text{Optimal_VP_power}\)
 VP power to detect interactions at the optimal Levene’s test p-value threshold
- \(\text{Conventional_power}\)
 power to detect interactions without prioritization, i.e, VP power at Levene’s test p-value of 1
- \(\text{Optimal_pval_threshold}\)
 levene’e test p-value at which optimal VP power is achieved

Author(s)

Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

Examples

Given a SNP with minor allele frequency of 10% and a sample of 15,000 individuals, we are interested in testing interactions between this SNP and a covariate of effect size #10%. The total number of SNP is 500,000. Assume the interaction explains 0.1% of the quantitative trait variance.
library(GEWIST)
gewistLevene(p = 0.1, N = 15000, theta_gc = 0.1/100, theta_c = 0.1, M = 500000,
K = 20000, verbose=FALSE)
Index

* Bonferroni correction
 effectPDF, 2
 GEWIST-package, 2
 gewistLevene, 4
* Levene's Test
 effectPDF, 2
 GEWIST-package, 2
 gewistLevene, 4
* genetic interactions
 effectPDF, 2
 GEWIST-package, 2
 gewistLevene, 4
* quantitative trait
 effectPDF, 2
 GEWIST-package, 2
 gewistLevene, 4
* variance prioritization
 effectPDF, 2
 GEWIST-package, 2
 gewistLevene, 4

effectPDF, 2
GEWIST (GEWIST-package), 2
GEWIST-package, 2
gewistLevene, 4