Package ‘GISPA’

March 13, 2024

Type Package
Title GISPA: Method for Gene Integrated Set Profile Analysis
Version 1.26.0
Date 2020-06-16
Author Bhakti Dwivedi and Jeanne Kowalski
Maintainer Bhakti Dwivedi <bhakti.dwivedi@emory.edu>
Description GISPA is a method intended for the researchers who are interested in defining gene sets with similar, a priori specified molecular profile. GISPA method has been previously published in Nucleic Acid Research (Kowalski et al., 2016; PMID: 26826710).
Depends R (>= 3.5)
Imports Biobase, changepoint, data.table, genefilter, graphics, GSEABase, HH, lattice, latticeExtra, plyr, scatterplot3d, stats
License GPL-2
LazyData true
Collate 'cptPlot.R' 'cptModel.R' 'computePS.R' 'GISPA.R'
 'cptSlopeplot.R' 'data.R' 'propBarplot.R' 'stackedBarplot.R'
 'zzz.R'
biocViews StatisticalMethod, GeneSetEnrichment, GenomeWideAssociation
Suggests knitr
VignetteBuilder knitr
NeedsCompilation no
RoxygenNote 7.1.0
PackageStatus Deprecated
git_url https://git.bioconductor.org/packages/GISPA
git_branch RELEASE_3_18
git_last_commit f8dceaf
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-13
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnvset</td>
<td>2</td>
</tr>
<tr>
<td>computePS</td>
<td>3</td>
</tr>
<tr>
<td>cptModel</td>
<td>4</td>
</tr>
<tr>
<td>cptPlot</td>
<td>5</td>
</tr>
<tr>
<td>cptSlopeplot</td>
<td>6</td>
</tr>
<tr>
<td>exprset</td>
<td>7</td>
</tr>
<tr>
<td>GISPAn</td>
<td>7</td>
</tr>
<tr>
<td>propBarplot</td>
<td>8</td>
</tr>
<tr>
<td>stackedBarplot</td>
<td>9</td>
</tr>
<tr>
<td>varset</td>
<td>11</td>
</tr>
</tbody>
</table>

Index 12

cnvset
Copy Number Variation (CNV) data

Description

A dataset containing the genome-wide gene copy change identified in the 3 multiple myeloma cell line samples. The variables are as follows

Usage

```
cnvset
```

Format

A data matrix with 534 genes copy change and 3 samples

Details

- gene
- copy number variation segment ID
- sample 1 copy change segment mean value
- sample 2 copy change segment mean value
- sample 3 copy change segment mean value

@source https://research.themmrf.org/
Description

Computes the increased or decreased profile statistics for each row (or gene) across the three samples within a feature or data type (expression, methylation, or copy-number variation).

Usage

\texttt{computePS(rd1, cd1, cd2, profile)}

Arguments

\texttt{rd1} : A numeric value of the reference sample (R) on which to estimate the profile statistics for a given row
\texttt{cd1} : A numeric value of the comparison sample 1 (S1) for a given gene, gene probe or gene copy segment
\texttt{cd2} : A numeric value of the comparison sample 2 (S2) for a given gene, gene probe or gene copy segment
\texttt{profile} : The desired direction of genomic change. The values are "up" (default) or "down" to select for increased or decreased gene set profile, respectively

Details

This function requires three data values corresponding to three samples for a given gene (or row), respectively.

Value

The returned value is profile statistics computed considering the specified change in the reference sample when compared to the remaining two relative samples.

Author(s)

Bhakti Dwivedi & Jeanne Kowalski

Examples

\texttt{rd1 = 40}
\texttt{cd1 = 20}
\texttt{cd2 = 20}
\texttt{computePS(rd1, cd1, cd2, profile="up")}
cptModel

Computes within and between gene feature profile statistics by feature and amongst features

Description
Computes the percentiles on the estimated profile statistics within a gene and across genes for one or more combination of feature or data types (expression, methylation, copy-number variation, or variant change)

Usage
cptModel(psm, genelist, cpt.data, cpt.method, cpt.max, profile, feature)

Arguments
- psm: A data matrix of estimated gene profile statistics for each feature
- genelist: A vector of gene names or gene symbols corresponding to the profile statistics
- cpt.data: Identify changepoints in the data using variance (cpt.var), mean (cpt.mean) or both (meanvar). Default is cpt.var.
- cpt.method: Choice of single or multiple changepoint model. Default is "BinSeg".
- cpt.max: The maximum number of changepoints to search for using "BinSeg" method. Default is 60. This number is dependent on the number of input data points
- profile: The desired direction of genomic change. The values are "up" (default) or "down" to select for increased or decreased gene set profile, respectively
- feature: Analysis type i.e., one ('1'), two ('2') or three ('3') dimensional feature analysis.

Details
This function estimates within and between feature profile statistics by gene in addition to the summed percentiles and successive differences

Value
Estimated change points in the input data set

Author(s)
Bhakti Dwivedi & Jeanne Kowalski

Examples
```r
id <- 1000 # number of probes
s <- 3 # number of sample groups
dm <- matrix(runif(id*s,0,200), nrow=id, ncol=s, dimnames=list(paste("gene", 1:id, sep=""), paste("fs", 1:s, sep=""))
genelist <- rownames(dm)
cptModel(dm, genelist, cpt.data="var", cpt.method="BinSeg", cpt.max=60, profile="up", feature=1)
```
cptPlot

Scatterplot representation of gene sets by change points

Description

Scatterplot representation of identified change points on the estimated profile statistics within the data

Usage

cptPlot(psv, cut.pts)

Arguments

- **psv**: A data vector of estimated profile statistics on which changepoints are identified
- **cut.pts**: The estimated profile statistics cutoffs corresponding to the locations in psv

Details

This function expects ‘gispa.output’ profile statistics output from GISPA.R main function

Value

Plot representing all the identified gene sets by change points in the data

Author(s)

Bhakti Dwivedi & Jeanne Kowalski

Examples

```r
x <- runif(100, 0.0, 1.0)
y <- c(0.2, 0.6, 0.8)
cpt.plot <- cptPlot(psv=x, cut.pts=y)
```
cptSlopeplot

Scatterplot representation of identified change points gene set slopes

Description

This function will plot the average slopes estimated over all gene sets within each change point by data types.

Usage

cptSlopeplot(gispa.output, feature, type, cpt)

Arguments

gispa.output : A data matrix of between gene feature profile statistics for each feature with corresponding identified changepoints. The row names should correspond to genes or names to be displayed on y-axis

feature : Analysis type i.e., one (‘1’), two (‘2’) or three (‘3’) dimensional feature analysis.

type : Type of data, e.g., EXP (default) for expression, VAR of variants, CNV for copy number change.

cpt : Change point cutoff to be highlighted. The default is 1

Details

This function expects the output from GISPA function of GISPA package, and highlights the gene set slope profile in the selected changepoints.

Value

Scatterplot illustrating the average slopes by change point to access the best gene set profile

Author(s)

Bhakti Dwivedi & Jeanne Kowalski

Examples

```r
id <- 200  # number of rows
s <- 3  # number of columns
dm <- matrix(runif(id*s,0,10), nrow=id, ncol=s,
    dimnames=list(paste("gene", 1:id, sep=""),
        paste("sample", 1:s, sep="")))
changepoints <- sort(sample(1:2, id, replace=TRUE))
dm <- cbind(dm, changepoints)
cptSlopeplot(gispa.output=dm, feature=1, type="EXP", cpt=1)
```
exprset

Gene Variant (EXP) data

Description

A dataset containing the genome-wide gene expression values from 3 multiple myeloma cell line samples. The variables are as follows:

Usage

```r
exprset
```

Format

A data matrix with 1500 genes and 3 samples

Details

- gene
- gene names
- sample 1 log2 transformed normalized expression count values
- sample 2 log2 transformed normalized expression count values
- sample 3 log2 transformed normalized expression count values

@source https://research.themmrf.org/

GISPA

Gene Integrates Set Profile Analysis

Description

Identifies gene sets with a similar a prior defined profile using any combination of three feature or data types

Usage

```r
GISPA(feature,f.sets,g.set,ref.samp.idx,comp.samp.idx,f.profiles,cpt.data,cpt.method,cpt.max)
```
propBarplot

Arguments

feature : Analysis type i.e., one ('1'), two ('2') or three ('3') dimensional feature analysis.
f.sets : A list of ExpressionSet data objects corresponding to a data type
g.set : A GeneSet from an ExpressionSet to subset the f.sets for analysis purposes. 'genelds' should correspond to the gene names. Default is null, i.e., genome-wide analysis
ref.samp.idx : Reference sample column index on which to determine the gene set profile. The default is 3
comp.samp.idx : The other two relative sample column index against which the profile is being determined. The default is 4 and 5
f.profiles : A vector of the desired direction of genomic change (or profile) corresponding to each data type. The values are "up" or "down" for increased and decreased gene set profile, respectively
cpt.data : Identify changepoints for data using variance (cpt.var), mean (cpt.mean) or both (meanvar). Default is cpt.var.
cpt.method : Choice of single or multiple changepoint model. Default is "BinSeg".
cpt.max : The maximum number of changepoints to search for using "BinSeg" method. Default is 60. This number is dependent on the number of input data points

Value

The returned value is a data matrix including the original data along with between gene profile statistics and identified changepoints.

propBarplot

A plotting function for proportion by sample

Description

Given a gene, this function will plot the proportion of each sample over the three samples within each data type

Usage

propBarplot(gispa.output,feature,cpt,input.cex,input.cex.lab,ft.col,strip.col)

Arguments

gispa.output : A data matrix of between gene feature profile statistics for each feature with corresponding identified changepoints. The row names should correspond to genes or names to be displayed on y-axis
feature : Analysis type i.e., one ('1'), two ('2') or three ('3') dimensional feature analysis.
stackedBarplot

cpt : Changepoints to be plotted.
input.cex : character (or symbol expansion) for the x- and y-axis labels
input.cex.lab : character (or symbol expansion) for the horizontal and vertical strip labels
ft.col : a vector of colors of the bar for the features or data types
strip.col : color to be used for the vertical strip

Details

This function expects the output from the main function of GISPA package, and highlights the gene set in the selected changepoints and their proportion in each of the three sample groups by data type.

Value

Barplot illustrating each sample proportion for each gene in the selected change point

Author(s)

Bhakti Dwivedi & Jeanne Kowalski

Examples

id <- 20 ## number of rows
s <- 3 ## number of columns
dm <- matrix(runif(id*s,0,10), nrow=id, ncol=s,
 dimnames=list(paste("gene", 1:id, sep=""),
 paste("fs", 1:s, sep=""))
changepoints <- sort(sample(1:2, id, replace=TRUE))
dm <- cbind(dm,changepoints)
propBarplot(gispa.output=dm,feature=2,cpt=1,
 input.cex=0.5,input.cex.lab=0.5,
 ft.col=c("grey0", "grey60"),strip.col="yellow")

stackedBarplot : A plotting function for each sample proportion

Description

Given a gene, this function will plot the proportion of each sample over all the samples for each gene or row within each data type

Usage

stackedBarplot(gispa.output,feature,cpt,type,input.cex,input.cex.lab,input.gap,samp.col,strip.col)
Arguments

- **gispa.output**: A data frame containing genes as rows followed by between gene feature profile statistics for each sample.
- **feature**: Analysis type i.e., one ('1d'), two ('2d') or three ('3d') dimensional feature analysis.
- **cpt**: Changepoint gene set to be plotted.
- **type**: Type of data, e.g., EXP (default) for expression, VAR of variants, CNV for copy number change.
- **input.cex**: character (or symbol expansion): x- and y-axis labels
- **input.cex.lab**: character (or symbol expansion) for the horizontal and vertical strip labels
- **input.gap**: gap or distance between each data type plot
- **samp.col**: a vector of colors of the bar for the three sample groups, reference followed by other two samples
- **strip.col**: color to be used for the vertical strip

Details

This function expects the output from GISPA function of GISPA package, and highlights the gene set in the selected changepoints and their proportion in each of the three sample groups.

Value

Barplot illustrating each sample proportion for each gene in the selected change point

Author(s)

Bhakti Dwivedi & Jeanne Kowalski

Examples

```r
id <- 20  # number of rows
s <- 4  # number of columns
dm <- matrix(runif(id*s,min=0,max=100), nrow=id, ncol=s,
             dimnames=list(paste("gene", 1:id, sep=""),
                          paste("sample", 1:s, sep="")))
changepoints <- sort(sample(1:2, id, replace=TRUE))
dm <- cbind(dm, changepoints)
stackedBarplot(gispa.output=dm, feature=1, cpt=1, type="EXP",
               input.cex=1.5, input.cex.lab=1.5, input.gap=0.5,
               samp.col=c("red", "green", "blue"), strip.col="yellow")
```
varset

<table>
<thead>
<tr>
<th>varset</th>
<th>Variant (VAR) data</th>
</tr>
</thead>
</table>

Description

A dataset containing the genome-wide gene variant proportion from 3 multiple myeloma cell line samples. The variables are as follows

Usage

varset

Format

A data matrix with 1101 genes variants and 3 samples

Details

- gene
- gene names
- sample 1 transformed variant proportion data
- sample 2 transformed variant proportion data
- sample 3 transformed variant proportion data

@source https://research.themmrf.org/
Index

* Profile
 computePS, 3
 cptModel, 4
* Statistics
 computePS, 3
 cptModel, 4
* datasets
 cnvset, 2
 exprset, 7
 varset, 11

 cnvset, 2
 computePS, 3
 cptModel, 4
 cptPlot, 5
 cptSlopeplot, 6
 exprset, 7
 GISPA, 7
 propBarplot, 8
 stackedBarplot, 9
 varset, 11