Package ‘GOSemSim’

May 3, 2024

Type Package

Title GO-terms Semantic Similarity Measures

Version 2.30.0

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively.

Depends R (>= 3.5.0)

LinkingTo Rcpp

Imports AnnotationDbi, GO.db, methods, rlang, stats, utils, yulab.utils

Suggests AnnotationHub, BiocManager, clusterProfiler, DOSE, knitr, org.Hs.eg.db, prettydoc, readr, rmarkdown, testthat, tidyselect, ROCr

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

Encoding UTF-8

BugReports https://github.com/YuLab-SMU/GOSemSim/issues

biocViews Annotation, GO, Clustering, Pathways, Network, Software

RoxygenNote 7.3.0

git_url https://git.bioconductor.org/packages/GOSemSim
git_branch RELEASE_3_19
git_last_commit f155e5a
git_last_commit_date 2024-04-30
GOSemSim-package

Repository Bioconductor 3.19

Date/Publication 2024-05-03

Author Guangchuang Yu [aut, cre],
Alexey Stukalov [ctb],
Pingfan Guo [ctb],
Chuanle Xiao [ctb],
Lluís Revilla Sancho [ctb]

Contents

GOSemSim-package 2
buildGOmap .. 3
clusterSim .. 4
combineScores 5
geneSim ... 5
godata .. 6
GOSemSimDATA-class 7
goSim .. 8
go_term_table 9
infoContentMethod 9
load_OrgDb 10
mclusterSim 10
mgeneSim 11
mgoSim ... 12
read.blast2go 13
read.gaf .. 14
tcss_cutoff 14
termSim .. 16
wangMethod_internal 16

Index 18

GOSemSim-package
GOSemSim: GO-terms Semantic Similarity Measures

Description

The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively.
buildGOmap

Author(s)

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

Other contributors:

- Alexey Stukalov <astukalov@gmail.com> [contributor]
- Pingfan Guo <1178431277@qq.com> [contributor]
- Chuanle Xiao <xiaochuanle@126.com> [contributor]
- Lluis Revilla Sancho <lluis.revilla@gmail.com> [contributor]

See Also

Useful links:

- Report bugs at https://github.com/YuLab-SMU/GOSemSim/issues

Description

Adding indirect GO annotation

Usage

buildGOmap(TERM2GENE)

Arguments

TERM2GENE data.frame with two or three columns of GO TERM, GENE and ONTOLOGY (optional)

Details

provided by a data.frame of GO TERM (column 1), GENE (column 2) and ONTOLOGY (optional) that describes GO direct annotation, this function will add indirect GO annotation of genes.

Value

data.frame, GO annotation with direct and indirect annotation

Author(s)

Yu Guangchuang
clusterSim

Semantic Similarity Between Two Gene Clusters

Description

Given two gene clusters, this function calculates semantic similarity between them.

Usage

```r
clusterSim(
  cluster1,
  cluster2,
  semData,
  measure = "Wang",
  drop = "IEA",
  combine = "BMA"
)
```

Arguments

- `cluster1`: A set of gene IDs.
- `cluster2`: Another set of gene IDs.
- `semData`: GOSemSimDATA object
- `measure`: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
- `drop`: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- `combine`: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

- `similarity`: similarity

References

See Also

goSim mgoSim geneSim mgeneSim mclusterSim
Examples

```r
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261", "241", "994")
clusterSim(cluster1, cluster2, semData=d, measure="Wang")
```

combineScores

combineScores

combining similarity matrix to similarity score

Description

Functions for combining similarity matrix to similarity score

Usage

```r
combineScores(SimScores, combine)
```

Arguments

- **SimScores**: similarity matrix
- **combine**: combine method

Value

similarity value

Author(s)

Guangchuang Yu http://guangchuangyu.github.io

geneSim

Semantic Similarity Between two Genes

Description

Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms

Usage

```r
geneSim(gene1, gene2, semData, measure = "Wang", drop = "IEA", combine = "BMA")
```
godata

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene1</td>
<td>Entrez gene id.</td>
</tr>
<tr>
<td>gene2</td>
<td>Another entrez gene id.</td>
</tr>
<tr>
<td>semData</td>
<td>GOSemSimDATA object</td>
</tr>
<tr>
<td>measure</td>
<td>One of "Resnik", "Lin", "Rel", "Jiang" "TCSS" and "Wang" methods.</td>
</tr>
<tr>
<td>drop</td>
<td>A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.</td>
</tr>
<tr>
<td>combine</td>
<td>One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.</td>
</tr>
</tbody>
</table>

Value

list of similarity value and corresponding GO.

References

See Also

gosim mgosim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
geneSim("241", "251", semData=d, measure="Wang")
processTCSS = FALSE,
cutoff = NULL
)

Arguments

OrgDb OrgDb object (will be removed in future, please use annoDb instead)
annoDb GO annotation database, can be OrgDb or a data.frame contains three columns
 of 'GENE', 'GO' and 'ONTOLGY'.
keytype keytype
ont one of 'BP', 'MF', 'CC'
computeIC logical, whether compute IC
processTCSS logical, whether to process TCSS
cutoff cutoff of TCSS

Value

GOSemSimDATA object

Author(s)

Guangchuang Yu

Description

Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Slots

keys gene ID
ont ontology
IC IC data
geneAnno gene to GO mapping
tcssdata tcssdata
metadata metadata
Semantic Similarity Between Two GO Terms

Description

Given two GO IDs, this function calculates their semantic similarity.

Usage

```r
goSim(GOID1, GOID2, semData, measure = "Wang")
```

Arguments

- **GOID1**: GO ID 1.
- **GOID2**: GO ID 2.
- **semData**: GOSemSimDATA object
- **measure**: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.

Value

- **similarity**

References

See Also

- `mgoSim`
- `geneSim`
- `mgeneSim`
- `clusterSim`
- `mclusterSim`

Examples

```r
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
goSim("GO:0004022", "GO:0005515", semData=d, measure="Wang")
```
Information content of GO terms

Description
These datasets are the information contents of GO terms.

References

Information content based methods

Description
Information Content Based Methods for semantic similarity measuring

Usage
infoContentMethod(ID1, ID2, method, godata)

Arguments
ID1 Ontology Term
ID2 Ontology Term
method one of "Resnik", "Jiang", "Lin" and "Rel", "TCSS".
godata GOSemSimDATA object

Details
implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.

Value
semantic similarity score

Author(s)
Guangchuang Yu https://guangchuangyu.github.io
Description
load OrgDb

Usage
load_OrgDb(OrgDb)

Arguments
OrgDb OrgDb object or OrgDb name

Value
OrgDb object

Author(s)
Guangchuang Yu

mclusterSim
Pairwise Semantic Similarities for a List of Gene Clusters

Description
Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage
mclusterSim(clusters, semData, measure = "Wang", drop = "IEA", combine = "BMA")

Arguments
clusters A list of gene clusters.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
Value

similarity matrix

References

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

goSim mgoSim geneSim mgeneSim clusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
c <- c("835", "5261", "241")
cluster1 <- c("578", "582")
cluster2 <- c("307", "308", "317")
clusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, semData=d, measure="Wang")

mgeneSim

Pairwise Semantic Similarity for a List of Genes

Description

Given a list of genes, this function calculates pairwise semantic similarities.

Usage

mgeneSim(
 genes,
 semData,
 measure = "Wang",
 drop = "IEA",
 combine = "BMA",
 verbose = TRUE
)

Arguments

genes A list of entrez gene IDs.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
mgoSim

drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.

combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

verbose show progress bar or not.

Value
similarity matrix

References

See Also
goSim mgoSim geneSim clusterSim mclusterSim

Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
mGeneSim(c("835", "5261","241"), semData=d, measure="Wang")

drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.

combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

verbose show progress bar or not.

Value
similarity matrix

References

See Also
goSim mgoSim geneSim clusterSim mclusterSim

Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
mGeneSim(c("835", "5261","241"), semData=d, measure="Wang")

drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.

combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

verbose show progress bar or not.

Value
similarity matrix

References

See Also
goSim mgoSim geneSim clusterSim mclusterSim

Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
mGeneSim(c("835", "5261","241"), semData=d, measure="Wang")

Description
Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity

Usage
mgoSim(GO1, GO2, semData, measure = "Wang", combine = "BMA")

Arguments
GO1 A set of go terms.
GO2 Another set of go terms.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Description
Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity

Usage
mgoSim(GO1, GO2, semData, measure = "Wang", combine = "BMA")

Arguments
GO1 A set of go terms.
GO2 Another set of go terms.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
Value

similarity

References

See Also

goSim geneSim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
mgoSim("GO:0003824", go2, semData=d, measure="Wang")
mgoSim(go1, go2, semData=d, measure="Wang")

Description

given a BLAST2GO file, this function extracts the information from it and make it use for TERM2GENE.

Usage

read.blast2go(file, add_indirect_GO = FALSE)

Arguments

file BLAST2GO file
add_indirect_GO whether add indirect GO annotation

Value

a data frame with three columns: GENE, GO and ONTOLOGY
read.gaf

Description

parse GAF files

Usage

```
read.gaf(file, asis = FALSE, add_indirect_GO = FALSE)
parse.gff(file, asis = FALSE, add_indirect_GO = FALSE)
```

Arguments

- `file`: GAF file
- `asis`: logical, whether output the original contains of the file and only works if `add_indirect_GO = FALSE`
- `add_indirect_GO`: whether to add indirect GO annotation

Details

given a GAF file, this function extracts the information from it

Value

A data.frame. Original table if `asis` works, otherwise contains 3 columns of `GENE`, `GO` and `ONTOLOGY`

tcss_cutoff

determine the topological cutoff for TCSS method

Description

determine the topological cutoff for TCSS method

Usage

```
tcss_cutoff(
  OrgDb = NULL,
  keytype = "ENTREZID",
  ont,
  combine_method = "max",
  ppidata
)
```
Arguments

- **OrgDb**: OrgDb object
- **keytype**: keytype
- **ont**: ontology: "BP", "MF", "CC"
- **combine_method**: "max", "BMA", "avg", "rcmax", "rcmax.avg"
- **ppidata**: A data.frame contains positive set and negative set. Positive set is PPI pairs that already verified. ppidata has three columns, column 1 and 2 are character, column 3 must be logical value:TRUE/FALSE.

Value

numeric, topological cutoff for given parameters

Examples

```r
## Not run:
library(org.Hs.eg.db)
library(STRINGdb)

string_db <- STRINGdb$new(version = "11.0", species = 9606, score_threshold = 700)
string_proteins <- string_db$get_proteins()

# get relationship
ppi <- string_db$get_interactions(string_proteins$protein_external_id)

ppi$from <- vapply(ppi$from, function(e) strsplit(e, "9606.")[[1]][2], character(1))
ppi$to <- vapply(ppi$to, function(e) strsplit(e, "9606.")[[1]][2], character(1))

len <- nrow(ppi)

#select length
s_len <- 100
pos_1 <- sample(len, s_len, replace = T)
# negative set
pos_2 <- sample(len, s_len, replace = T)
pos_3 <- sample(len, s_len, replace = T)

#union as ppidata
ppidata <- data.frame(pro1 = c(ppi$from[pos_1], ppi$from[pos_2]),
                      pro2 = c(ppi$to[pos_1], ppi$to[pos_3]),
                      label = c(rep(TRUE, s_len), rep(FALSE, s_len)),
                      stringsAsFactors = FALSE)

cutoff <- tcss_cutoff(OrgDb = org.Hs.eg.db, keytype = "ENSEMBLPROT",
                      ont = "BP", combine_method = "max", ppidata)

## End(Not run)
```
Description
measuring similarities between two term vectors.

Usage
termSim(
 t1,
 t2,
 semData,
 method = c("Wang", "Resnik", "Rel", "Jiang", "Lin", "TCSS")
)

Arguments
t1 term vector
t2 term vector
semData GOSemSimDATA object
method one of "Wang", "Resnik", "Rel", "Jiang", and "Lin", "TCSS".

Details
provide two term vectors, this function will calculate their similarities.

Value
score matrix

Author(s)
Guangchuang Yu http://guangchuangyu.github.io

Description
Method Wang for semantic similarity measuring

Usage
wangMethod_internal(ID1, ID2, ont = "BP")
Arguments

<table>
<thead>
<tr>
<th>ID1</th>
<th>Ontology Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID2</td>
<td>Ontology Term</td>
</tr>
<tr>
<td>ont</td>
<td>Ontology</td>
</tr>
</tbody>
</table>

Value

semantic similarity score

Author(s)

Guangchuang Yu http://ygc.name
Index

* classes
 GOSemSimDATA-class, 7

* datasets
 go_term_table, 9

* internal
 GOSemSim-package, 2

* manip
 clusterSim, 4
 geneSim, 5
 goSim, 8
 mclusterSim, 10
 mgeneSim, 11
 mgoSim, 12
 buildGOmap, 3
 clusterSim, 4, 6, 8, 11–13
 combineScores, 5
 geneSim, 4, 5, 8, 11–13
 GO (go_term_table), 9
 go_term_table, 9
 godata, 6
 GOSemSim (GOSemSim-package), 2
 GOSemSim-package, 2
 GOSemSimDATA-class, 7
 goSim, 4, 6, 8, 11–13
 gotbl (go_term_table), 9
 infoContentMethod, 9
 load_OrgDb, 10
 mclusterSim, 4, 6, 8, 10, 12, 13
 mgeneSim, 4, 6, 8, 11, 11, 13
 mgoSim, 4, 6, 8, 11, 12, 12
 parse_gff (read.gaf), 14
 read.blast2go, 13
 read.gaf, 14
 show, GOSemSimDATA-method (GOSemSimDATA-class), 7
tcss_cutoff, 14
termSim, 16
wangMethod_internal, 16