Package ‘GOSemSim’

May 29, 2024

Type Package
Title GO-terms Semantic Similarity Measures
Version 2.30.0
Maintainer Guangchuang Yu <guangchuangyu@gmail.com>
Description The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively.
Depends R (>= 3.5.0)
LinkingTo Rcpp
Imports AnnotationDbi, GO.db, methods, rlang, stats, utils, yulab.utils
Suggests AnnotationHub, BiocManager, clusterProfiler, DOSE, knitr, org.Hs.eg.db, prettydoc, readr, rmarkdown, testthat, tidyselect, ROCr
VignetteBuilder knitr
ByteCompile true
License Artistic-2.0
Encoding UTF-8
BugReports https://github.com/YuLab-SMU/GOSemSim/issues
biocViews Annotation, GO, Clustering, Pathways, Network, Software
RoxygenNote 7.3.0
git_url https://git.bioconductor.org/packages/GOSemSim
git_branch RELEASE_3_19
git_last_commit f155e5a
git_last_commit_date 2024-04-30
Description

The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively.
buildGOmap

Description

Adding indirect GO annotation

Usage

buildGOmap(TERM2GENE)

Arguments

| TERM2GENE | data.frame with two or three columns of GO TERM, GENE and ONTOLOGY (optional) |

Details

provided by a data.frame of GO TERM (column 1), GENE (column 2) and ONTOLOGY (optional) that describes GO direct annotation, this function will add indirect GO annotation of genes.

Value

data.frame, GO annotation with direct and indirect annotation

Author(s)

Yu Guangchuang
clusterSim

Semantic Similarity Between Two Gene Clusters

Description

Given two gene clusters, this function calculates semantic similarity between them.

Usage

```r
clusterSim(
  cluster1,
  cluster2,
  semData,
  measure = "Wang",
  drop = "IEA",
  combine = "BMA"
)
```

Arguments

- `cluster1`: A set of gene IDs.
- `cluster2`: Another set of gene IDs.
- `semData`: GOSemSimDATA object
- `measure`: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
- `drop`: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- `combine`: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

- `similarity`

References

See Also

- `goSim`
- `mgoSim`
- `geneSim`
- `mgeneSim`
- `mclusterSim`
combineScores

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261", "241", "994")
c

c

Description

Functions for combining similarity matrix to similarity score

Usage

```r
combineScores(SimScores, combine)
```

Arguments

- **SimScores**: similarity matrix
- **combine**: combine method

Value

similarity value

Author(s)

Guangchuang Yu http://guangchuangyu.github.io

geneSim

Semantic Similarity Between two Genes

Description

Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms

Usage

```r
geneSim(gene1, gene2, semData, measure = "Wang", drop = "IEA", combine = "BMA")
```
Arguments

gene1 Entrez gene id.
gene2 Another entrez gene id.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang" "TCSS" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

list of similarity value and corresponding GO.

References

See Also

goSim mgoSim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
geneSim("241", "251", semData=d, measure="Wang")
processTCSS = FALSE,
cutoff = NULL
)

Arguments

OrgDb OrgDb object (will be removed in future, please use annoDb instead)
annoDb GO annotation database, can be OrgDb or a data.frame contains three columns of ‘GENE’, ‘GO’ and ‘ONTOLOGY’.
keytype keytype
ont one of ‘BP’, ‘MF’, ‘CC’
computeIC logical, whether computer IC
processTCSS logical, whether to process TCSS
cutoff cutoff of TCSS

Value

GOSemSimDATA object

Author(s)

Guangchuang Yu

GOSemSimDATA-class Class “GOSemSimDATA” This class stores IC and gene to go mapping for semantic similarity measurement

Description

Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Slots

keys gene ID
ont ontology
IC IC data
geneAnno gene to GO mapping
tcssdata tcssdata
metadata metadata
goSim

Semantic Similarity Between Two GO Terms

Description

Given two GO IDs, this function calculates their semantic similarity.

Usage

goSim(GOID1, GOID2, semData, measure = "Wang")

Arguments

GOID1 GO ID 1.
GOID2 GO ID 2.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.

Value

similarity

References

See Also

mgoSim geneSim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
goSim("GO:0004022", "GO:0005515", semData=d, measure="Wang")
go_term_table

Information content of GO terms

Description

These datasets are the information contents of GO terms.

References

infoContentMethod

information content based methods

Description

Information Content Based Methods for semantic similarity measuring

Usage

```
infoContentMethod(ID1, ID2, method, godata)
```

Arguments

- **ID1**: Ontology Term
- **ID2**: Ontology Term
- **method**: one of "Resnik", "Jiang", "Lin" and "Rel", "TCSS".
- **godata**: GOSemSimDATA object

Details

implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.

Value

semantic similarity score

Author(s)

Guangchuang Yu https://guangchuangyu.github.io
load_OrgDb

Description
load OrgDb

Usage
load_OrgDb(OrgDb)

Arguments
OrgDb OrgDb object or OrgDb name

Value
OrgDb object

Author(s)
Guangchuang Yu

mclusterSim

Pairwise Semantic Similarities for a List of Gene Clusters

Description
Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage
mclusterSim(clusters, semData, measure = "Wang", drop = "IEA", combine = "BMA")

Arguments
clusters A list of gene clusters.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
mgeneSim

Value

similarity matrix

References

See Also

goSim mgoSim geneSim mgeneSim clusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261","241")
cluster2 <- c("578","582")
cluster3 <- c("307", "308", "317")
clusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, semData=d, measure="Wang")

mgeneSim

Pairwise Semantic Similarity for a List of Genes

Description

Given a list of genes, this function calculates pairwise semantic similarities.

Usage

mgeneSim(
 genes,
 semData,
 measure = "Wang",
 drop = "IEA",
 combine = "BMA",
 verbose = TRUE
)

Arguments

genes A list of entrez gene IDs.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
mgoSim

Description

Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity

Usage

mgoSim(GO1, GO2, semData, measure = "Wang", combine = "BMA")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO1</td>
<td>A set of go terms.</td>
</tr>
<tr>
<td>GO2</td>
<td>Another set of go terms.</td>
</tr>
<tr>
<td>semData</td>
<td>GOSemSimDATA object</td>
</tr>
<tr>
<td>measure</td>
<td>One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.</td>
</tr>
<tr>
<td>combine</td>
<td>One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.</td>
</tr>
</tbody>
</table>

Value

similarity matrix

References

See Also

goSim mgoSim geneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
mGeneSim(c("835", "5261","241"), semData=d, measure="Wang")
Value

similarity

References

See Also

goSim geneSim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0003055", "GO:0020037")
mgoSim("GO:0003024", go2, semData=d, measure="Wang")
mgoSim(go1, go2, semData=d, measure="Wang")

Description

given a BLAST2GO file, this function extracts the information from it and make it use for TERM2GENE.

Usage

read.bl2go(file, add_indirect_GO = FALSE)

Arguments

file
BLAST2GO file

add_indirect_GO
whether add indirect GO annotation

Value

a data frame with three columns: GENE, GO and ONTOLOGY
Description

parse GAF files

Usage

read.gaf(file, asis = FALSE, add_indirect_GO = FALSE)

parse_gff(file, asis = FALSE, add_indirect_GO = FALSE)

Arguments

file

GAF file

asis

logical, whether output the original contains of the file and only works if 'add_indirect_GO = FALSE'

add_indirect_GO

whether to add indirect GO annotation

Details

given a GAF file, this function extracts the information from it

Value

A data.frame. Original table if 'asis' works, otherwise contains 3 columns of 'GENE', 'GO' and 'ONTOLOGY'

tcss_cutoff
determine the topological cutoff for TCSS method

Description
determine the topological cutoff for TCSS method

Usage
tcss_cutoff(
OrgDb = NULL,
keytype = "ENTREZID",
ont,
combine_method = "max",
ppidata
)
Arguments

OrgDb OrgDb object
keytype keytype
ont ontology: "BP", "MF", "CC"
combine_method "max", "BMA", "avg", "rcmax", "rcmax.avg"
ppidata A data.frame contains positive set and negative set. Positive set is PPI pairs that already verified. ppidata has three columns, column 1 and 2 are character, column 3 must be logical value: TRUE/FALSE.

Value
numeric, topological cutoff for given parameters

Examples

Not run:
library(org.Hs.eg.db)
library(STRINGdb)
string_db <- STRINGdb$new(version = "11.0", species = 9606, score_threshold = 700)
string_proteins <- string_db$get_proteins()

#get relationship
ppi <- string_db$get_interactions(string_proteins$protein_external_id)

ppi$from <- vapply(ppi$from, function(e) strsplit(e, "9606.")[[1]][2], character(1))
ppi$to <- vapply(ppi$to, function(e) strsplit(e, "9606.")[[1]][2], character(1))

len <- nrow(ppi)

#select length
s_len <- 100
pos_1 <- sample(len, s_len, replace = T)
#negative set
pos_2 <- sample(len, s_len, replace = T)
pos_3 <- sample(len, s_len, replace = T)

#union as ppidata
ppidata <- data.frame(pro1 = c(ppi$from[pos_1], ppi$from[pos_2]), pro2 = c(ppi$to[pos_1], ppi$to[pos_3]), label = c(rep(TRUE, s_len), rep(FALSE, s_len)), stringsAsFactors = FALSE)

cutoff <- tcss_cutoff(OrgDb = org.Hs.eg.db, keytype = "ENSEMBLPROT", ont = "BP", combine_method = "max", ppidata)

End(Not run)
termSim

description
measuring similarities between two term vectors.

usage
termSim(
t1,
t2,
semData,
method = c("Wang", "Resnik", "Rel", "Jiang", "Lin", "TCSS")
)

arguments
 t1, t2 term vector
 semData GOSemSimDATA object
 method one of "Wang", "Resnik", "Rel", "Jiang", and "Lin", "TCSS".

details
provide two term vectors, this function will calculate their similarities.

value
score matrix

author(s)
Guangchuang Yu http://guangchuangyu.github.io

wangMethod

description
Method Wang for semantic similarity measuring.

usage
wangMethod_internal(ID1, ID2, ont = "BP")
Arguments

<table>
<thead>
<tr>
<th>ID1</th>
<th>Ontology Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID2</td>
<td>Ontology Term</td>
</tr>
<tr>
<td>ont</td>
<td>Ontology</td>
</tr>
</tbody>
</table>

Value

semantic similarity score

Author(s)

Guangchuang Yu http://ygc.name
Index

* classes
 GOSemSimDATA-class, 7
* datasets
 go_term_table, 9
* internal
 GOSemSim-package, 2
* manip
 clusterSim, 4
geneSim, 5
goSim, 8
mclusterSim, 10
mgeneSim, 11
mgoSim, 12
buildGOmap, 3
clusterSim, 4, 6, 8, 11–13
combineScores, 5
geneSim, 4, 5, 8, 11–13
GO (go_term_table), 9
go_term_table, 9
godata, 6
GOSemSim (GOSemSim-package), 2
GOSemSim-package, 2
GOSemSimDATA-class, 7
goSim, 4, 6, 8, 11–13
gotbl (go_term_table), 9
infoContentMethod, 9
load_OrgDb, 10
mclusterSim, 4, 6, 8, 10, 12, 13
mgeneSim, 4, 6, 8, 11, 11, 13
mgoSim, 4, 6, 8, 11, 12, 12
parse_gff (read.gaf), 14
read.blast2go, 13
read.gaf, 14
show, GOSemSimDATA-method (GOSemSimDATA-class), 7
tcss_cutoff, 14
termSim, 16
wangMethod_internal, 16