Package ‘GOSemSim’

March 18, 2024

Type Package

Title GO-terms Semantic Similarity Measures

Version 2.28.1

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively.

Depends R (>= 3.5.0)

LinkingTo Rcpp

Imports AnnotationDbi, GO.db, methods, rlang, stats, utils, yulab.utils

Suggests AnnotationHub, BiocManager, clusterProfiler, DOSE, knitr, readr, rmarkdown, org.Hs.eg.db, prettydoc, testthat, tidyr, tidyselect, ROCR

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

Encoding UTF-8

BugReports https://github.com/YuLab-SMU/GOSemSim/issues

biocViews Annotation, GO, Clustering, Pathways, Network, Software

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/GOSemSim

git_branch RELEASE_3_18

git_last_commit 84618af

git_last_commit_date 2024-01-16

GOSemSim-package

Description

Implementation of semantic similarity measures to estimate the functional similarities among Gene Ontology terms and gene products

Details

Quantitative measure of functional similarities among gene products is important for post-genomics study, and widely used in gene function prediction, cluster analysis and pathway modeling. This package is designed to estimate the GO terms’ and genes’ semantic similarities. Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. Support many species,
buildGOmap

including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, E coli strain K12 and strain Sakai, Fly, Human, Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, Zebrafish.

Package: GOSemSim
Type: Package
Version: 2.0.0
Date: 09-11-2012
biocViews: GO, Clustering, Pathways, Anopheles_gambiae, Arabidopsis_thaliana, Bos_taurus, Caenorhabditis_elegans, Canis_familiaris, Danio_rerio, Drosophila_melanogaster, Equus_caspius, Gallus_gallus, Glostrupia_galega, Homo_sapiens, Hymenoptera, Leishmania_major, Macrocephalus_pseudoplatyystoma, Mus_musculus, Oryctolagus_cuniculus, Plasmodium_falciparum, Rattus_norvegicus, Saccharomyces_cerevisiae, Streptomyces_coelicolor, Sus_scrofa, Xenopus_laevis
Depends: methods, AnnotationDbi, GO.db
Imports: clusterProfiler, DOSE
License: Artistic-2.0
Author(s)
Guangchuang Yu
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>
References
See Also
goSim mgoSim geneSim mgeneSim clusterSim mclusterSim

buildGOmap

Description
Adding indirect GO annotation

Usage
buildGOmap(x)

Arguments
x data.frame with two or three columns of GENE, GO and ONTOLOGY (optional)

Details
provided by a data.frame of GENE (column 1), GO (column 2) and ONTOLOGY (optional) that describes GO direct annotation, this function will add indirect GO annotation of genes.
Value
data.frame, GO annotation with direct and indirect annotation

Author(s)
Yu Guangchuang

clusterSim

Semantic Similarity Between Two Gene Clusters

Description
Given two gene clusters, this function calculates semantic similarity between them.

Usage
clusterSim(
 cluster1,
 cluster2,
 semData,
 measure = "Wang",
 drop = "IEA",
 combine = "BMA"
)

Arguments
cluster1 A set of gene IDs.
cluster2 Another set of gene IDs.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value
similarity

References
combineScores

See Also
goSim mgoSim geneSim mgeneSim mclusterSim

Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261", "241", "994")
cluster2 <- c("307", "308", "317", "321", "506", "378", "388", "396")
clusterSim(cluster1, cluster2, semData=d, measure="Wang")

combineScores

combining similarity matrix to similarity score

Description

Functions for combining similarity matrix to similarity score

Usage

combineScores(SimScores, combine)

Arguments

SimScores similarity matrix
combine combine method

Value

similarity value

Author(s)

Guangchuang Yu http://guangchuangyu.github.io
Description
Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms.

Usage
```
geneSim(gene1, gene2, semData, measure = "Wang", drop = "IEA", combine = "BMA")
```

Arguments
- `gene1`: Entrez gene id.
- `gene2`: Another entrez gene id.
- `semData`: GOSemSimDATA object.
- `measure`: One of "Resnik", "Lin", "Rel", "Jiang" "TCSS" and "Wang" methods.
- `drop`: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- `combine`: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value
- list of similarity value and corresponding GO.

References

See Also
goSim mgoSim mgeneSim clusterSim mclusterSim

Examples
```
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
geneSim("241", "251", semData=d, measure="Wang")
```
Description

prepare GO DATA for measuring semantic similarity

Usage

godata(
 OrgDb = NULL,
 keytype = "ENTREZID",
 ont,
 computeIC = TRUE,
 processTCSS = FALSE,
 cutoff = NULL
)

Arguments

OrgDb OrgDb object
keytype keytype
ont one of 'BP', 'MF', 'CC'
computeIC logical, whether computer IC
processTCSS logical, whether to process TCSS
cutoff cutoff of TCSS

Value

GOSemSimDATA object

Author(s)

Guangchuang Yu
GOSemSimDATA-class

Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Description
Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Slots
keys gene ID
ont ontology
IC IC data
geneAnno gene to GO mapping
tcssdata tcssdata
metadata metadata

goSim
Semantic Similarity Between Two GO Terms

Description
Given two GO IDs, this function calculates their semantic similarity.

Usage

 goSim(GOID1, GOID2, semData, measure = "Wang")

Arguments

 GOID1 GO ID 1.
 GOID2 GO ID 2.
 semData GOSemSimDATA object
 measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.

Value

 similarity

References

See Also

mgoSim geneSim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
goSim("GO:0004022", "GO:0005515", semData=d, measure="Wang")

Description

These datasets are the information contents of GO terms.

References

infoContentMethod information content based methods

Description

Information Content Based Methods for semantic similarity measuring

Usage

infoContentMethod(ID1, ID2, method, godata)

Arguments

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID1</td>
<td>Ontology Term</td>
</tr>
<tr>
<td>ID2</td>
<td>Ontology Term</td>
</tr>
<tr>
<td>method</td>
<td>one of "Resnik", "Jiang", "Lin" and "Rel", "TCSS".</td>
</tr>
<tr>
<td>godata</td>
<td>GOSemSimDATA object</td>
</tr>
</tbody>
</table>

Details

implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.
mclusterSim

Value

semantic similarity score

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

load_OrgDb

Description

load OrgDb

Usage

load_OrgDb(OrgDb)

Arguments

OrgDb

OrgDb object or OrgDb name

Value

OrgDb object

Author(s)

Guangchuang Yu

mclusterSim

Pairwise Semantic Similarities for a List of Gene Clusters

Description

Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage

mclusterSim(clusters, semData, measure = "Wang", drop = "IEA", combine = "BMA")
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clusters</td>
<td>A list of gene clusters.</td>
</tr>
<tr>
<td>semData</td>
<td>GOSemSimDATA object</td>
</tr>
<tr>
<td>measure</td>
<td>One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.</td>
</tr>
<tr>
<td>drop</td>
<td>A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.</td>
</tr>
<tr>
<td>combine</td>
<td>One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.</td>
</tr>
</tbody>
</table>

Value

similarity matrix

References

See Also

gosim mgoSim geneSim mgeneSim clusterSim

Examples

```r
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261","241")
cluster2 <- c("578","582")
cluster3 <- c("307", "308", "317")
clusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, semData=d, measure="Wang")
```

mgeneSim

Pairwise Semantic Similarity for a List of Genes

Description

Given a list of genes, this function calculates pairwise semantic similarities.
Usage

```r
geneSim(
  genes,
  semData,
  measure = "Wang",
  drop = "IEA",
  combine = "BMA",
  verbose = TRUE
)
```

Arguments

- `genes`: A list of entrez gene IDs.
- `semData`: GOSemSimDATA object.
- `measure`: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
- `drop`: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- `combine`: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
- `verbose`: show progress bar or not.

Value

similarity matrix

References

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

goSim mgoSim geneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
geneSim(c("835","5261","241"), semData=d, measure="Wang")
mgoSim

Semantic Similarity Between two GO terms lists

Description
Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity.

Usage
mgoSim(GO1, GO2, semData, measure = "Wang", combine = "BMA")

Arguments
- GO1: A set of go terms.
- GO2: Another set of go terms.
- semData: GOSemSimDATA object
- measure: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
- combine: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value
- similarity

References

See Also
goSim geneSim mgeneSim clusterSim mclusterSim

Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
mgoSim("GO:0003824", go2, semData=d, measure="Wang")
mgoSim(go1, go2, semData=d, measure="Wang")
read.blast2go

Description

given a BLAST2GO file, this function extracts the information from it and make it use for TERM2GENE.

Usage

```
read.blast2go(file, add_indirect_GO = FALSE)
```

Arguments

- **file**: BLAST2GO file
- **add_indirect_GO**: whether add indirect GO annotation

Value

a data frame with three columns: GENE, GO and ONTOLOGY

read.gaf

Description

parse GAF files

Usage

```
read.gaf(file, asis = FALSE, add_indirect_GO = FALSE)
parse_gff(file, asis = FALSE, add_indirect_GO = FALSE)
```

Arguments

- **file**: GAF file
- **asis**: logical, whether output the original contains of the file and only works if `add_indirect_GO = FALSE`
- **add_indirect_GO**: whether to add indirect GO annotation

Details

given a GAF file, this function extracts the information from it
tcss_cutoff

Value

A data.frame. Original table if 'asis' works, otherwise contains 3 columns of 'GENE', 'GO' and 'ONTOLOGY'

tcss_cutoff determine the topological cutoff for TCSS method

Description

determine the topological cutoff for TCSS method

Usage

tcss_cutoff(
 OrgDb = NULL,
 keytype = "ENTREZID",
 ont,
 combine_method = "max",
 ppidata
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrgDb</td>
<td>OrgDb object</td>
</tr>
<tr>
<td>keytype</td>
<td>keytype</td>
</tr>
<tr>
<td>ont</td>
<td>ontology : "BP", "MF", "CC"</td>
</tr>
<tr>
<td>combine_method</td>
<td>"max", "BMA", "avg", "rcmax", "rcmax.avg"</td>
</tr>
<tr>
<td>ppidata</td>
<td>A data.frame contains positive set and negative set. Positive set is PPI pairs that already verified. ppidata has three columns, column 1 and 2 are character, column 3 must be logical value:TRUE/FALSE.</td>
</tr>
</tbody>
</table>

Value

numeric, topological cutoff for given parameters

Examples

```r
## Not run:
library(org.Hs.eg.db)
library(STRINGdb)

string_db <- STRINGdb$new(version = "11.0", species = 9606, score_threshold = 700)
string_proteins <- string_db$get_proteins()

#get relationship
ppi <- string_db$get_interactions(string_proteins$protein_external_id)
```
termSim <- vapply(ppi$from, function(e) strsplit(e, "9606."))[1][2], character(1))

ppi$to <- vapply(ppi$to, function(e) strsplit(e, "9606."))[1][2], character(1))

len <- nrow(ppi)

select length
s_len <- 100
pos_1 <- sample(len, s_len, replace = T)

negative set
pos_2 <- sample(len, s_len, replace = T)
pos_3 <- sample(len, s_len, replace = T)

union as ppidata
ppidata <- data.frame(pro1 = c(ppi$from[pos_1], ppi$from[pos_2]), pro2 = c(ppi$to[pos_1], ppi$to[pos_3]), label = c(rep(TRUE, s_len), rep(FALSE, s_len)), stringsAsFactors = FALSE)

cutoff <- tcss_cutoff(OrgDb = org.Hs.eg.db, keytype = "ENSEMBLPROT", ont = "BP", combine_method = "max", ppidata)

End(Not run)

termSim

termSim

Description

measuring similarities between two term vectors.

Usage

termSim(
 t1,
 t2,
 semData,
 method = c("Wang", "Resnik", "Rel", "Jiang", "Lin", "TCSS")
)

Arguments

t1 term vector

t2 term vector

semData GOSemSimDATA object

method one of "Wang", "Resnik", "Rel", "Jiang", and "Lin", "TCSS".
Details
provide two term vectors, this function will calculate their similarities.

Value
score matrix

Author(s)
Guangchuang Yu http://guangchuangyu.github.io

Description
Method Wang for semantic similarity measuring

Usage
wangMethod_internal(ID1, ID2, ont = "BP")

Arguments
ID1 Ontology Term
ID2 Ontology Term
ont Ontology

Value
semantic similarity score

Author(s)
Guangchuang Yu http://ygc.name
Index

* classes
 GOSemSimDATA-class, 8
* datasets
 go_term_table, 9
* manip
 clusterSim, 4
geneSim, 6
goSim, 8
mclusterSim, 10
mgeneSim, 11
mgoSim, 13
* package
 GOSemSim-package, 2

buildGOmap, 3
clusterSim, 3, 4, 6, 9, 11–13
combineScores, 5
geneSim, 3, 5, 6, 9, 11–13
GO (go_term_table), 9
go_term_table, 9
godata, 7
GOSemSim (GOSemSim-package), 2
GOSemSim-package, 2
GOSemSimDATA-class, 8
goSim, 3, 5, 6, 8, 11–13
gotbl (go_term_table), 9
infoContentMethod, 9
load_OrgDb, 10
mclusterSim, 3, 5, 6, 9, 10, 12, 13
mgeneSim, 3, 5, 6, 9, 11, 11, 13
mgoSim, 3, 5, 6, 9, 11, 12, 13
parse_gff (read.gaf), 14
read.blast2go, 14
read.gaf, 14

show, GOSemSimDATA-method (GOSemSimDATA-class), 8
tcss_cutoff, 15
termSim, 16
wangMethod_internal, 17