Package ‘GOSemSim’

March 27, 2024

Type Package

Title GO-terms Semantic Similarity Measures

Version 2.28.1

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively.

Depends R (>= 3.5.0)

LinkingTo Rcpp

Imports AnnotationDbi, GO.db, methods, rlang, stats, utils, yulab.utils

Suggests AnnotationHub, BiocManager, clusterProfiler, DOSE, knitr, readr, rmarkdown, org.Hs.eg.db, prettydoc, testthat, tidyr, tidyselect, ROCR

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

Encoding UTF-8

BugReports https://github.com/YuLab-SMU/GOSemSim/issues

biocViews Annotation, GO, Clustering, Pathways, Network, Software

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/GOSemSim
git_branch RELEASE_3_18
git_last_commit 84618af
git_last_commit_date 2024-01-16
Repository Bioconductor 3.18

Date/Publication 2024-03-27

Author Guangchuang Yu [aut, cre],
Alexey Stukalov [ctb],
Pingfan Guo [ctb],
Chuanle Xiao [ctb],
Lluís Revilla Sancho [ctb]

R topics documented:

- GOSemSim-package .. 2
- buildGOmap ... 3
- clusterSim ... 4
- combineScores .. 5
- geneSim ... 6
- godata ... 7
- GOSemSimDATA-class ... 8
- goSim ... 8
- go_term_table ... 9
- infoContentMethod ... 9
- load_OrgDb ... 10
- mclusterSim .. 10
- mgeneSim .. 11
- mgoSim ... 13
- read.blast2go .. 14
- read.gaf ... 14
- tcss_cutoff .. 15
- termSim ... 16
- wangMethod_internal .. 17

Index 18

GOSemSim-package
Gene Ontology-based Semantic Similarity Measures

Description

Implementation of semantic similarity measures to estimate the functional similarities among Gene Ontology terms and gene products.

Details

Quantitative measure of functional similarities among gene products is important for post-genomics study and widely used in gene function prediction, cluster analysis and pathway modeling. This package is designed to estimate the GO terms’ and genes’ semantic similarities. Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. Support many species,
Addding indirect GO annotation

Usage

```r
buildGOmap(x)
```

Arguments

- `x`: data.frame with two or three columns of GENE, GO and ONTOLOGY (optional)

Details

Provided by a data.frame of GENE (column 1), GO (column 2) and ONTOLOGY (optional) that describes GO direct annotation, this function will add indirect GO annotation of genes.
Value

data.frame, GO annotation with direct and indirect annotation

Author(s)

Yu Guangchuang

classSim Semantic Similarity Between Two Gene Clusters

Description

Given two gene clusters, this function calculates semantic similarity between them.

Usage

```r
classSim(
  cluster1, 
  cluster2, 
  semData, 
  measure = "Wang", 
  drop = "IEA", 
  combine = "BMA"
)
```

Arguments

- `cluster1`: A set of gene IDs.
- `cluster2`: Another set of gene IDs.
- `semData`: GOSemSimDATA object
- `measure`: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
- `drop`: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- `combine`: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

similarity

References

combineScores

See Also

goSim mgoSim geneSim mgeneSim mclusterSim

Examples

```r
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261", "241", "994")
cluster2 <- c("307", "308", "317", "321", "506", "378", "388", "396")
clusterSim(cluster1, cluster2, semData=d, measure="Wang")
```

Description

Functions for combining similarity matrix to similarity score

Usage

```r
combineScores(SimScores, combine)
```

Arguments

- `SimScores`: similarity matrix
- `combine`: combine method

Value

similarity value

Author(s)

Guangchuang Yu http://guangchuangyu.github.io
geneSim

Semantic Similarity Between two Genes

Description

Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms.

Usage

geneSim(gene1, gene2, semData, measure = "Wang", drop = "IEA", combine = "BMA")

Arguments

gene1 Entrez gene id.
gene2 Another entrez gene id.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang" "TCSS" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

list of similarity value and corresponding GO.

References

See Also

goSim mgoSim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
geneSim("241", "251", semData=d, measure="Wang")
Description

prepare GO DATA for measuring semantic similarity

Usage

godata(
 OrgDb = NULL,
 keytype = "ENTREZID",
 ont,
 computeIC = TRUE,
 processTCSS = FALSE,
 cutoff = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrgDb</td>
<td>OrgDb object</td>
</tr>
<tr>
<td>keytype</td>
<td>keytype</td>
</tr>
<tr>
<td>ont</td>
<td>one of 'BP', 'MF', 'CC'</td>
</tr>
<tr>
<td>computeIC</td>
<td>logical, whether to compute IC</td>
</tr>
<tr>
<td>processTCSS</td>
<td>logical, whether to process TCSS</td>
</tr>
<tr>
<td>cutoff</td>
<td>cutoff of TCSS</td>
</tr>
</tbody>
</table>

Value

GOSemSimDATA object

Author(s)

Guangchuang Yu
Description
Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Slots
- keys gene ID
- ont ontology
- IC IC data
- geneAnno gene to GO mapping
- tcssdata tcssdata
- metadata metadata

goSim
Semantic Similarity Between Two GO Terms

Description
Given two GO IDs, this function calculates their semantic similarity.

Usage
goSim(GOID1, GOID2, semData, measure = "Wang")

Arguments
- GOID1 GO ID 1.
- GOID2 GO ID 2.
- semData GOSemSimDATA object
- measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.

Value
similarity

References
See Also

mgoSim geneSim mgeneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
goSim("GO:0004022", "GO:0005515", semData=d, measure="Wang")

go_term_table Information content of GO terms

Description

These datasets are the information contents of GO terms.

References

infoContentMethod information content based methods

Description

Information Content Based Methods for semantic similarity measuring

Usage

infoContentMethod(ID1, ID2, method, godata)

Arguments

ID1 Ontology Term
ID2 Ontology Term
method one of "Resnik", "Jiang", "Lin" and "Rel", "TCSS".
godata GOSemSimDATA object

Details

implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.
Value

semantic similarity score

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

load_OrgDb

load_OrgDb

Description

load OrgDb

Usage

load_OrgDb(OrgDb)

Arguments

OrgDb OrgDb object or OrgDb name

Value

OrgDb object

Author(s)

Guangchuang Yu

mclusterSim

Pairwise Semantic Similarities for a List of Gene Clusters

Description

Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage

mclusterSim(clusters, semData, measure = "Wang", drop = "IEA", combine = "BMA")
mgeneSim

Arguments

- **clusters**: A list of gene clusters.
- **semData**: GOSemSimDATA object
- **measure**: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
- **drop**: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- **combine**: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

Similarity matrix

References

See Also

goSim mgSim geneSim mgeneSim clusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261", "241")
cluster2 <- c("578", "582")
cluster3 <- c("307", "308", "317")
clusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, semData=d, measure="Wang")

mgeneSim

Pairwise Semantic Similarity for a List of Genes

Description

Given a list of genes, this function calculates pairwise semantic similarities.
Usage

mgeneSim(
 genes,
 semData,
 measure = "Wang",
 drop = "IEA",
 combine = "BMA",
 verbose = TRUE
)

Arguments

genes A list of entrez gene IDs.
semData GOSemSimDATA object
measure One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
verbose show progress bar or not.

Value

similarity matrix

References

See Also

goSim mgoSim geneSim clusterSim mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
mgeneSim(c("835", "5261","241"), semData=d, measure="Wang")
mgoSim

Semantic Similarity Between two GO terms lists

Description

Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity.

Usage

mgoSim(GO1, GO2, semData, measure = "Wang", combine = "BMA")

Arguments

- GO1: A set of go terms.
- GO2: Another set of go terms.
- semData: GOSemSimDATA object
- measure: One of "Resnik", "Lin", "Rel", "Jiang", "TCSS" and "Wang" methods.
- combine: One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

similarity

References

See Also

goSim, geneSim, mgeneSim, clusterSim, mclusterSim

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
mgoSim("GO:0003824", go2, semData=d, measure="Wang")
mgoSim(go1, go2, semData=d, measure="Wang")
read.blast2go

Description

Given a BLAST2GO file, this function extracts the information from it and makes it use for TERM2GENE.

Usage

```r
read.blast2go(file, add_indirect.GO = FALSE)
```

Arguments

- `file`: BLAST2GO file
- `add_indirect.GO`: Whether to add indirect GO annotation

Value

A data frame with three columns: GENE, GO and ONTOLOGY

read.gaf

Description

Parse GAF files.

Usage

```r
read.gaf(file, asis = FALSE, add_indirect.GO = FALSE)
```

Arguments

- `file`: GAF file
- `asis`: Logical, whether output the original contains of the file and only works if `add_indirect.GO = FALSE`
- `add_indirect.GO`: Whether to add indirect GO annotation

Details

Given a GAF file, this function extracts the information from it.
Value

A data.frame. Original table if ’asis’ works, otherwise contains 3 columns of ’GENE’, ’GO’ and ’ONTOLOGY’

tcss_cutoff

determine the topological cutoff for TCSS method

Description
determine the topological cutoff for TCSS method

Usage
tcss_cutoff(
 OrgDb = NULL,
 keytype = "ENTREZID",
 ont,
 combine_method = "max",
 ppidata
)

Arguments

OrgDb OrgDb object
keytype keytype
ont ontology: "BP", "MF", "CC"
combine_method "max", "BMA", "avg", "rcmax", "rcmax.avg"
ppidata A data.frame contains positive set and negative set. Positive set is PPI pairs that already verified. ppidata has three columns, column 1 and 2 are character, column 3 must be logical value:TRUE/FALSE.

Value

numeric, topological cutoff for given parameters

Examples

Not run:
library(org.Hs.eg.db)
library(STRINGdb)

string_db <- STRINGdb$new(version = "11.0", species = 9606,
 score_threshold = 700)
string_proteins <- string_db$get_proteins()

get relationship
ppi <- string_db$get_interactions(string_proteins$protein_external_id)
termSim

Description

measuring similarities between two term vectors.

Usage

termSim(
 t1,
 t2,
 semData,
 method = c("Wang", "Resnik", "Rel", "Jiang", "Lin", "TCSS")
)

Arguments

t1 term vector

t2 term vector

semData GOSemSimDATA object

method one of "Wang", "Resnik", "Rel", "Jiang", and "Lin", "TCSS".

ppi$from <- vapply(ppi$from, function(e)
 strsplit(e, "9606.")[1][[2]], character(1))
ppi$to <- vapply(ppi$to, function(e)
 strsplit(e, "9606.")[1][[2]], character(1))
len <- nrow(ppi)

select length
s_len <- 100
pos_1 <- sample(len, s_len, replace = T)
negative set
pos_2 <- sample(len, s_len, replace = T)
pos_3 <- sample(len, s_len, replace = T)
union as ppidata
ppidata <- data.frame(pro1 = c(ppi$from[pos_1], ppi$from[pos_2]),
 pro2 = c(ppi$to[pos_1], ppi$to[pos_3]),
 label = c(rep(TRUE, s_len), rep(FALSE, s_len)),
 stringsAsFactors = FALSE)
cutoff <- tcss_cutoff(OrgDb = org.Hs.eg.db, keytype = "ENSMBLPROT",
 ont = "BP", combine_method = "max", ppidata)

End(Not run)
Details

provide two term vectors, this function will calculate their similarities.

Value

score matrix

Author(s)

Guangchuang Yu http://guangchuangyu.github.io

Description

Method Wang for semantic similarity measuring

Usage

`wangMethod_internal(ID1, ID2, ont = "BP")`

Arguments

- `ID1`: Ontology Term
- `ID2`: Ontology Term
- `ont`: Ontology

Value

semantic similarity score

Author(s)

Guangchuang Yu http://ygc.name
Index

* classes
 GOSemSimDATA-class, 8
* datasets
 go_term_table, 9
* manip
 clusterSim, 4
geneSim, 6
goSim, 8
mclusterSim, 10
mgeneSim, 11
mgoSim, 13
* package
 GOSemSim-package, 2

buildGOmap, 3
clusterSim, 3, 4, 6, 9, 11–13
combineScores, 5
geneSim, 3, 5, 6, 9, 11–13
GO (go_term_table), 9
go_term_table, 9
godata, 7
GOSemSim (GOSemSim-package), 2
GOSemSim-package, 2
GOSemSimDATA-class, 8
goSim, 3, 5, 6, 8, 11–13
gotbl (go_term_table), 9

infoContentMethod, 9
load_OrgDb, 10
mclusterSim, 3, 5, 6, 9, 10, 12, 13
mgeneSim, 3, 5, 6, 9, 11, 11, 13
mgoSim, 3, 5, 6, 9, 11, 12, 13

parse_gff (read.gaf), 14
read.blast2go, 14
read.gaf, 14

show, GOSemSimDATA-method (GOSemSimDATA-class), 8
tcss_cutoff, 15
termSim, 16
wangMethod_internal, 17