Package ‘GenProSeq’

May 9, 2024

Type Package

Title Generating Protein Sequences with Deep Generative Models

Description Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model.

Version 1.8.0

Date 2024-02-06

LazyData FALSE

Depends keras, mclust, R (>= 4.2)

Imports tensorflow, word2vec, DeepPINCS, tgtsea, CatEncoders, reticulate, stats

Suggests VAExprs, stringdist, knitr, testthat, rmarkdown

License Artistic-2.0

biocViews Software, Proteomics

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/GenProSeq

git_branch RELEASE_3_19

git_last_commit 1065e59

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19
ART

Description

The autoregressive generative model predicts the next amino acid in a protein given the amino acid sequence up to that point. The autoregressive model generates proteins one amino acid at a time. For one step of generation, it takes a context sequence of amino acids as input and outputs a probability distribution over amino acids. We sample from that distribution and then update the context sequence with the sampled amino acid. The Transformer is used as an encoder model. The AR with the Transformer model can be trained by the function "fit_ART", and then the function "gen_ART" generates protein sequences.

Usage

```r
fit_ART(prot_seq,  
        length_seq,  
        embedding_dim,  
        num_heads,  
        ff_dim,  
        num_transformer_blocks,  
        layers = NULL,  
        prot_seq_val = NULL,  
        epochs,  
        batch_size,  
        preprocessing = list(  
            x_train = NULL,  
            x_val = NULL,  
            y_train = NULL,  
```
y_val = NULL,
len = NULL,
length_seq = NULL,
num_AA = NULL,
embedding_dim = NULL,
removed_prot_seq = NULL,
removed_prot_seq_val = NULL),
use_generator = FALSE,
optimizer = "adam",
metrics = "accuracy",
validation_split = 0, ...)

gen_ART(x,
seed_prot,
length_AA,
method = NULL,
b = NULL,
t = 1,
k = NULL,
p = NULL)

Arguments

- prot_seq: amino acid sequence
- length_seq: length of sequence used as input
- embedding_dim: dimension of the dense embedding
- num_heads: number of attention heads
- ff_dim: hidden layer size in feedforward network inside transformer
- num_transformer_blocks: number of transformer blocks
- layers: list of layers between the transformer encoder and the output layer (default: NULL)
- prot_seq_val: amino acid sequence for validation (default: NULL)
- epochs: number of epochs
- batch_size: batch size
- preprocessing: list of preprocessed results, they are set to NULL as default x_train, y_train, lenc, length_seq, num_AA, and embedding_dim must be required for training
 - x_train: embedded sequence data for train, result of the function "DeepPINCS::get_seq_encode_pad"
 - x_val: embedded sequence data for validation, result of the function "DeepPINCS::get_seq_encode_pad"
 - y_train: labels for train
 - y_val: labels for validation
 - lenc: encoded labels, result of the function "DeepPINCS::get_seq_encode_pad"
 - length_seq: length of sequence
- num_AA : number of amino acids, result of the function "DeepPINCS::get_seq_encode_pad"
- embedding_dim : dimension of the dense embedding
- removed_prot_seq : index for removed protein sequences while checking
- removed_prot_seq_val : index for removed protein sequences of validation

use_generator use data generator if TRUE (default: FALSE)
optimizer name of optimizer (default: adam)
metrics name of metrics (default: accuracy)
validation_split proportion of validation data, it is ignored when there is a validation set (default: 0)

... additional parameters for the "fit"
x result of the function "fit_ART"
seed_prot sequence to be used as a seed protein
length_AA length of amino acids to be generated
method "greedy", "beam", "temperature", "top_k", or "top_p"
b beam size in the beam search
t temperature in the temperature sampling (default: 1)
k number of amino acids in the top-k sampling
p minimum probability for the set of amino acids in the top-p sampling

Value
- model trained ART model
- preprocessing preprocessed results

Author(s)
- Dongmin Jung

References

See Also
- keras::fit, keras::compile, ttgsea::sampling_generator, DeepPINCS::multiple_sampling_generator, DeepPINCS::seq_preprocessing, DeepPINCS::get_seq_encode_pad, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform
Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  prot_seq <- DeepPINCS::SARS_CoV2_3CL_Protease

  # model parameters
  length_seq <- 10
  embedding_dim <- 16
  num_heads <- 2
  ff_dim <- 16
  num_transformer_blocks <- 2
  batch_size <- 32
  epochs <- 2

  # ART
  ART_result <- fit_ART(prot_seq = prot_seq,
                        length_seq = length_seq,
                        embedding_dim = embedding_dim,
                        num_heads = num_heads,
                        ff_dim = ff_dim,
                        num_transformer_blocks = num_transformer_blocks,
                        layers = list(layer_dropout(rate = 0.1),
                                      layer_dense(units = 32, activation = "relu"),
                                      layer_dropout(rate = 0.1)),
                        prot_seq_val = prot_seq,
                        epochs = epochs,
                        batch_size = batch_size,
                        use_generator = TRUE,
                        callbacks = callback_early_stopping(
                            monitor = "val_loss",
                            patience = 10,
                            restore_best_weights = TRUE))

  seed_prot <- "SGFRKMAFPS"
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "greedy")
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "beam", b = 5)
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "temperature", t = 0.1)
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_k", k = 3)
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_p", p = 0.75)

  ### from preprocessing
  ART_result2 <- fit_ART(num_heads = 4,
                         ff_dim = 32,
                         num_transformer_blocks = 3,
                         layers = list(layer_dropout(rate=0.1),
                                       layer_dense(units=32, activation="relu"),
                                       layer_dropout(rate=0.1)),
                         epochs = epochs,
                         batch_size = batch_size,
                         preprocessing = ART_result$preprocessing,
                         use_generator = TRUE,
                         callbacks = callback_early_stopping(
```

monitor = "val_loss",
patience = 50,
restore_best_weights = TRUE))

```
gen_ART(ART_result2, seed_prot, length_AA = 20, method = "greedy")
gen_ART(ART_result2, seed_prot, length_AA = 20, method = "beam", b = 5)
gen_ART(ART_result2, seed_prot, length_AA = 20, method = "temperature", t = 0.1)
gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_k", k = 3)
gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_p", p = 0.75)
```
Value
aligned amino acid sequences

Author(s)
Dongmin Jung

Source

GAN
Generative adversarial network for generating protein sequences

Description
The generative adversarial network (GAN) is made up of a discriminator and a generator that compete in a two-player minimax game. The objective of the generator is to produce an output that is so close to real that it confuses the discriminator in being able to differentiate the fake data from the real data. The conditional GAN (CGAN) is based on vanilla GAN with additional conditional input to generator and discriminator. The auxiliary classifier GAN (ACGAN) is an extension of CGAN that adds conditional input only to the generator. The Word2vec is applied to amino acids for embedding. The GAN or ACGAN model can be trained by the function “fit_GAN”, and then the function “gen_GAN” generates protein sequences from the trained model.

Usage
```r
fit_GAN(prot_seq,
    label = NULL,
    length_seq,
    embedding_dim,
    embedding_args = list(),
    latent_dim = NULL,
    intermediate_generator_layers,
    intermediate_discriminator_layers,
    prot_seq_val = NULL,
    label_val = NULL,
    epochs,
    batch_size,
    preprocessing = list(
        x_train = NULL,
        x_val = NULL,
        y_train = NULL,
        y_val = NULL,
        lenc = NULL,
        length_seq = NULL,
```
num_seq = NULL,
embedding_dim = NULL,
embedding_matrix = NULL,
removed_prot_seq = NULL,
removed_prot_seq_val = NULL,
latent_dim = NULL,
optimizer = "adam",
validation_split = 0)

gen_GAN(x,
 label = NULL,
 num_seq,
 remove_gap = TRUE)

Arguments

prot_seq aligned amino acid sequence
label label (default: NULL)
length_seq length of sequence
embedding_dim dimension of the dense embedding
embedding_args list of arguments for "word2vec::word2vec" but for dim, min_count and split
latent_dim dimension of latent vector (default: NULL)
intermediate_generator_layers list of intermediate layers for generator, without input layer
intermediate_discriminator_layers list of intermediate layers for discriminator, without output layer
prot_seq_val amino acid sequence for validation (default: NULL)
label_val label for validation (default: NULL)
epochs number of epochs
batch_size batch size
preprocessing list of preprocessed results, they are set to NULL as default x_train, length_seq, num_seq, embedding_dim and embedding_matrix must be required for training
 • x_train : embedded sequence data for train
 • x_val : embedded sequence data for validation
 • y_train : labels for train
 • y_val : labels for validation
 • lenc : encoded labels
 • length_seq : length of sequence
 • num_seq : number of sequences for train
 • embedding_dim : dimension of the dense embedding
 • embedding_matrix : embedding matrix
 • removed_prot_seq : index for removed protein sequences while checking
 • removed_prot_seq_val : index for removed protein sequences of validation
GAN

- latent_dim: dimension of latent vector

 optimizer name of optimizer (default: adam)

 validation_split proportion of validation data, it is ignored when there is a validation set (default: 0)

 x result of the function "fit_GAN"

 num_seq number of sequences to be generated

 remove_gap remove gaps from sequences (default: TRUE)

Value

 model trained GAN model

 generator trained generator model

 discriminator trained discriminator model

 preprocessing preprocessed results

 gen_seq generated sequence data

 label labels for generated sequence data

Author(s)

 Dongmin Jung

References

See Also

 keras::train_on_batch, keras::evaluate, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform

Examples

 if (keras::is_keras_available() & reticulate::py_available()) {
 data("example_PTEN")
 # model parameters
 length_seq <- 403
 embedding_dim <- 8
 latent_dim <- 4
 epochs <- 2
 batch_size <- 64
prot_seq_check

Check a protein sequence

Description

The protein sequence dataset is filtered by eliminating sequences containing the non-amino acid characters (digits and blank spaces) from the amino acid sequences. A valid amino acid sequence means a string that only contains capital letters of an alphabet and a hyphen for a gap.

Usage

`prot_seq_check(prot_seq, label = NULL)`

Arguments

- **prot_seq**: amino acid sequences
- **label**: label (default: NULL)
prot_vec

Value
valid sequences

Author(s)
Dongmin Jung

References

Examples
data("example_PTEN")
prot_seq_check(example_PTEN[1])

prot_vec Converting from protein sequences to vectors or vice versa.

Description
By using the word2vec model, amino acids are mapped to vectors of real numbers. Conceptually, it involves a mathematical embedding from a space with many dimensions per amino acid to a continuous vector space with a much lower dimension.

Usage
prot2vec(prot_seq, embedding_dim, embedding_matrix = NULL, ...)
vec2prot(prot_vec, embedding_matrix)

Arguments
prot_seq protein sequences
prot_vec protein embedding vectors
embedding_dim dimension of embedding vectors
embedding_matrix embedding matrix (default: NULL)
... arguments for "word2vec::word2vec" but for dim, min_count and split

Value
prot_seq protein sequences
prot_vec protein embedding vectors
embedding_matrix embedding matrix
Author(s)
Dongmin Jung

References

See Also
word2vec::word2vec, word2vec::word2vec_similarity

Examples
```r
data("example_PTEN")
prot_seq <- example_PTEN[1:10]
prot2vec_result <- prot2vec(prot_seq = prot_seq, embedding_dim = 8)
vec2prot_result <- vec2prot(prot_vec = prot2vec_result$prot_vec,
                        embedding_matrix = prot2vec_result$embedding_matrix)
```

Description
The Transformer architecture is a nonrecurrent architecture with a series of attention-based blocks. Each block is composed of a multi-head attention layer and a position-wise feedforward layer with an add and normalize layer in between. These layers process input sequences simultaneously, in parallel, independently of sequential order.

Usage
```
layer_embedding_token_position(x, maxlen, vocab_size, embed_dim)
layer_transformer_encoder(x, embed_dim, num_heads, ff_dim, num_transformer_blocks)
```

Arguments
- `x`: layer object
- `maxlen`: maximum of sequence size
- `vocab_size`: vocabulary size
- `embed_dim`: embedding size for each token
- `num_heads`: number of attention heads
- `ff_dim`: hidden layer size in feedforward network inside transformer
- `num_transformer_blocks`: number of transformer blocks
Value

layer object

Author(s)

Dongmin Jung

References

Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  num_AA <- 20
  length_seq <- 10
  embedding_dim <- 16
  num_heads <- 2
  ff_dim <- 16
  num_transformer_blocks <- 2

  inputs <- layer_input(shape = length_seq)
  x <- inputs %>%
    layer_embedding_token_position(maxlen = length_seq,
                                   vocab_size = num_AA,
                                   embed_dim = embedding_dim) %>%
    layer_transformer_encoder(embed_dim = embedding_dim,
                              num_heads = num_heads,
                              ff_dim = ff_dim,
                              num_transformer_blocks = num_transformer_blocks) %>%
    layer_global_average_pooling_1d()
}
```

VAE

Variational autoencoder for generating protein sequences

Description

The variational autoencoder (VAE) is a class of autoencoder where the encoder module is used to learn the parameter of a distribution and the decoder is used to generate examples from samples drawn from the learned distribution. The conditional variational autoencoder (CVAE) is designed to generate desired samples by including additional conditioning information. Since there may be underlying distinctions between groups of samples, the Gaussian mixture model is used for sequence generation. The Word2vec is applied to amino acids for embedding. The VAE or CVAE model can be trained by the function "fit_VAE", and then the function "gen_VAE" generates protein sequences from the trained model.
Usage

```r
fit_VAE(prot_seq,
  label = NULL,
  length_seq,
  embedding_dim,
  embedding_args = list(),
  latent_dim = 2,
  intermediate_encoder_layers,
  intermediate_decoder_layers,
  prot_seq_val = NULL,
  label_val = NULL,
  regularization = 1,
  epochs,
  batch_size,
  preprocessing = list(
    x_train = NULL,
    x_val = NULL,
    y_train = NULL,
    y_val = NULL,
    lenc = NULL,
    length_seq = NULL,
    embedding_dim = NULL,
    embedding_matrix = NULL,
    removed_prot_seq = NULL,
    removed_prot_seq_val = NULL),
  use_generator = FALSE,
  optimizer = "adam",
  validation_split = 0, ...)
```

```r
gen_VAE(x,
  label = NULL,
  num_seq,
  remove_gap = TRUE,
  batch_size,
  use_generator = FALSE)
```

Arguments

- **prot_seq**: aligned amino acid sequence
- **label**: label (default: NULL)
- **length_seq**: length of sequence
- **embedding_dim**: dimension of the dense embedding
- **embedding_args**: list of arguments for "word2vec::word2vec" but for dim, min_count and split
- **latent_dim**: dimension of latent vector (default: 2)
- **intermediate_encoder_layers**: list of intermediate layers for encoder, without input layer
intermediate_decoder_layers
list of intermediate layers for decoder, without output layer

regularization
regularization parameter, which is nonnegative (default: 1)

prot_seq_val
amino acid sequence for validation (default: NULL)

label_val
label for validation (default: NULL)

epochs
number of epochs

batch_size
batch size

preprocessing
list of preprocessed results, they are set to NULL as default x_train, length_seq, embedding_dim and embedding_matrix must be required for training

• x_train : embedded sequence data for train
• x_val : embedded sequence data for validation
• y_train : labels for train
• y_val : labels for validation
• lenc : encoded labels
• length_seq : length of sequence
• embedding_dim : dimension of the dense embedding
• embedding_matrix : embedding matrix
• removed_prot_seq : index for removed protein sequences while checking
• removed_prot_seq_val : index for removed protein sequences of validation

use_generator
use data generator if TRUE (default: FALSE)

optimizer
name of optimizer (default: adam)

validation_split
proportion of validation data, it is ignored when there is a validation set (default: 0)

... additional parameters for the "fit"

x
result of the function "fit_VAE"

num_seq
number of sequences to be generated

remove_gap
remove gaps from sequences (default: TRUE)

Value

model
trained VAE model

encoder
trained encoder model

decoder
trained decoder model

preprocessing
preprocessed results

gen_seq
generated sequence data

label
labels for generated sequence data

latent_vector
latent vector from embedded sequence data

Author(s)

Dongmin Jung
References

See Also

keras::fit, keras::compile, reticulate::array_reshape, mclust::mclustBIC, mclust::mclustModel, mclust::sim, DeepPINCS::multiple_sampling_generator, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform

Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  data("example_luxA")
  label <- substr(example_luxA, 3, 3)

  # model parameters
  length_seq <- 360
  embedding_dim <- 8
  batch_size <- 128
  epochs <- 2

  # CVAE
  VAE_result <- fit_VAE(prot_seq = example_luxA,
    label = label,
    length_seq = length_seq,
    embedding_dim = embedding_dim,
    embedding_args = list(iter = 20),
    intermediate_encoder_layers = list(layer_dense(units = 128),
      layer_dense(units = 16)),
    intermediate_decoder_layers = list(layer_dense(units = 16),
      layer_dense(units = 128)),
    prot_seq_val = example_luxA,
    label_val = label,
    epochs = epochs,
    batch_size = batch_size,
    use_generator = FALSE,
    optimizer = keras::optimizer_adam(clipnorm = 0.1),
    callbacks = keras::callback_early_stopping(
      monitor = "val_loss",
      patience = 10,
      restore_best_weights = TRUE))
  gen_prot_VAE_I <- gen_VAE(VAE_result, label = rep("I", 100), num_seq = 100)
  gen_prot_VAE_L <- gen_VAE(VAE_result, label = rep("L", 100), num_seq = 100)

  ### from preprocessing
  VAE_result2 <- fit_VAE(intermediate_encoder_layers = list(layer_dense(units = 128),
    layer_dense(units = 16)),
    intermediate_decoder_layers = list(layer_dense(units = 16),
```
layer_dense(units = 128)),
epochs = epochs, batch_size = batch_size,
preprocessing = VAE_result$preprocessing,
use_generator = FALSE,
optimizer = keras::optimizer_adam(clipnorm = 0.1),
callbacks = keras::callback_early_stopping(
 monitor = "val_loss",
 patience = 10,
 restore_best_weights = TRUE))
gen_prot_VAE2_I <- gen_VAE(VAE_result2, label = rep("I", 100), num_seq = 100)
gen_prot_VAE2_L <- gen_VAE(VAE_result2, label = rep("L", 100), num_seq = 100)
Index

ART, 2
example_luxA, 6
example_PTEN, 6
fit_ART (ART), 2
fit_GAN (GAN), 7
fit_VAE (VAE), 13
GAN, 7
gen_ART (ART), 2
gen_GAN (GAN), 7
gen_VAE (VAE), 13
layer_embedding_token_position
 (transformer), 12
layer_transformer_encoder
 (transformer), 12
prot2vec (prot_vec), 11
prot_seq_check, 10
prot_vec, 11
transformer, 12
VAE, 13
vec2prot (prot_vec), 11