Package ‘GenProSeq’

March 29, 2024

Type Package
Title Generating Protein Sequences with Deep Generative Models
Description Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model.

Version 1.6.0
Date 2023-05-24
LazyData FALSE
Depends keras, mclust, R (>= 4.2)
Imports tensorflow, word2vec, DeepPINCS, ttgsea, CatEncoders, reticulate, stats
Suggests ggseqlogo, VAExprs, stringdist, knitr, testthat, rmarkdown
License Artistic-2.0
biocViews Software, Proteomics
NeedsCompilation no
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/GenProSeq
git_branch RELEASE_3_18
git_last_commit b262d91
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Autoregressive language model with Transformer

Description

The autoregressive generative model predicts the next amino acid in a protein given the amino acid sequence up to that point. The autoregressive model generates proteins one amino acid at a time. For one step of generation, it takes a context sequence of amino acids as input and outputs a probability distribution over amino acids. We sample from that distribution and then update the context sequence with the sampled amino acid. The Transformer is used as an encoder model. The AR with the Transformer model can be trained by the function "fit_ART", and then the function "gen_ART" generates protein sequences.

Usage

```r
fit_ART(prot_seq,
    length_seq,
    embedding_dim,
    num_heads,
    ff_dim,
    num_transformer_blocks,
    layers = NULL,
    prot_seq_val = NULL,
    epochs,
    batch_size,
    preprocessing = list(
        x_train = NULL,
        x_val = NULL,
        y_train = NULL,
```
y_val = NULL,
 lenc = NULL,
 length_seq = NULL,
 num_AA = NULL,
 embedding_dim = NULL,
 removed_prot_seq = NULL,
 removed_prot_seq_val = NULL),
use_generator = FALSE,
optimizer = "adam",
metrics = "accuracy",
validation_split = 0, ...)

gen_ART(x,
 seed_prot,
 length_AA,
 method = NULL,
 b = NULL,
 t = 1,
 k = NULL,
 p = NULL)

Arguments

 prot_seq amino acid sequence
 length_seq length of sequence used as input
 embedding_dim dimension of the dense embedding
 num_heads number of attention heads
 ff_dim hidden layer size in feedforward network inside transformer
 num_transformer_blocks
 layers list of layers between the transformer encoder and the output layer (default: NULL)
 prot_seq_val amino acid sequence for validation (default: NULL)
 epochs number of epochs
 batch_size batch size
 preprocessing list of preprocessed results, they are set to NULL as default x_train, y_train, lenc, length_seq, num_AA, and embedding_dim must be required for training
 • x_train : embedded sequence data for train, result of the function "DeepPINCS::get_seq_encode_pad"
 • x_val : embedded sequence data for validation, result of the function "DeepPINCS::get_seq_encode_pad"
 • y_train : labels for train
 • y_val : labels for validation
 • lenc : encoded labels, result of the function "DeepPINCS::get_seq_encode_pad"
 • length_seq : length of sequence
ART

- num_AA: number of amino acids, result of the function "DeepPINCS::get_seq_encode_pad"
- embedding_dim: dimension of the dense embedding
- removed_prot_seq: index for removed protein sequences while checking
- removed_prot_seq_val: index for removed protein sequences of validation

use_generator: use data generator if TRUE (default: FALSE)
optimizer: name of optimizer (default: adam)
metrics: name of metrics (default: accuracy)
validation_split: proportion of validation data, it is ignored when there is a validation set (default: 0)
... additional parameters for the "fit"
x: result of the function "fit_ART"
seed_prot: sequence to be used as a seed protein
length_AA: length of amino acids to be generated
method: "greedy", "beam", "temperature", "top_k", or "top_p"
b: beam size in the beam search
t: temperature in the temperature sampling (default: 1)
k: number of amino acids in the top-k sampling
p: minimum probability for the set of amino acids in the top-p sampling

Value
- model: trained ART model
- preprocessing: preprocessed results

Author(s)
Dongmin Jung

References

See Also
keras::fit, keras::compile, ttgsea::sampling_generator, DeepPINCS::multiple_sampling_generator, DeepPINCS::seq_preprocessing, DeepPINCS::get_seq_encode_pad, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform
Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  prot_seq <- DeepPINCS::SARS_CoV2_3CL_Protease

  # model parameters
  length_seq <- 10
  embedding_dim <- 16
  num_heads <- 2
  ff_dim <- 16
  num_transformer_blocks <- 2
  batch_size <- 32
  epochs <- 2

  # ART
  ART_result <- fit_ART(prot_seq = prot_seq,
                         length_seq = length_seq,
                         embedding_dim = embedding_dim,
                         num_heads = num_heads,
                         ff_dim = ff_dim,
                         num_transformer_blocks = num_transformer_blocks,
                         layers = list(layer_dropout(rate = 0.1),
                                        layer_dense(units = 32, activation = "relu"),
                                        layer_dropout(rate = 0.1)),
                         prot_seq_val = prot_seq,
                         epochs = epochs,
                         batch_size = batch_size,
                         use_generator = TRUE,
                         callbacks = callback_early_stopping(
                           monitor = "val_loss",
                           patience = 10,
                           restore_best_weights = TRUE))

  seed_prot <- "SGFRKMAFPS"
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "greedy")
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "beam", b = 5)
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "temperature", t = 0.1)
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_k", k = 3)
  gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_p", p = 0.75)

  # from preprocessing
  ART_result2 <- fit_ART(num_heads = 4,
                         ff_dim = 32,
                         num_transformer_blocks = 3,
                         layers = list(layer_dropout(rate=0.1),
                                       layer_dense(units=32, activation="relu"),
                                       layer_dropout(rate=0.1)),
                         epochs = epochs,
                         batch_size = batch_size,
                         preprocessing = ART_result$preprocessing,
                         use_generator = TRUE,
                         callbacks = callback_early_stopping(
```

```r
  monitor = "val_loss",
  patience = 10,
  restore_best_weights = TRUE))
```
```
monitor = "val_loss",
    patience = 50,
    restore_best_weights = TRUE))

  gen_ART(ART_result2, seed_prot, length_AA = 20, method = "greedy")
  gen_ART(ART_result2, seed_prot, length_AA = 20, method = "beam", b = 5)
  gen_ART(ART_result2, seed_prot, length_AA = 20, method = "temperature", t = 0.1)
  gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_k", k = 3)
  gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_p", p = 0.75)
}

---

### example_luxA

**Example Data for Protein Sequences**

**Description**

The data consist of selected amino acid sequences of the luxA. There are 2283 aligned sequences of length 360.

**Usage**

example_luxA

**Value**

aligned amino acid sequences

**Author(s)**

Dongmin Jung

**Source**


---

### example_PTEN

**Example Data for Protein Sequences**

**Description**

The data consist of selected amino acid sequences of the PTEN. There are 912 aligned sequences of length 403.

**Usage**

example_PTEN
Value
aligned amino acid sequences

Author(s)
Dongmin Jung

Source

| GAN | Generative adversarial network for generating protein sequences |

Description
The generative adversarial network (GAN) is made up of a discriminator and a generator that compete in a two-player minimax game. The objective of the generator is to produce an output that is so close to real that it confuses the discriminator in being able to differentiate the fake data from the real data. The conditional GAN (CGAN) is based on vanilla GAN with additional conditional input to generator and discriminator. The auxiliary classifier GAN (ACGAN) is an extension of CGAN that adds conditional input only to the generator. The Word2vec is applied to amino acids for embedding. The GAN or ACGAN model can be trained by the function "fit_GAN", and then the function "gen_GAN" generates protein sequences from the trained model.

Usage
```r
fit_GAN(prot_seq,
 label = NULL,
 length_seq,
 embedding_dim,
 embedding_args = list(),
 latent_dim = NULL,
 intermediate_generator_layers,
 intermediate_discriminator_layers,
 prot_seq_val = NULL,
 label_val = NULL,
 epochs,
 batch_size,
 preprocessing = list(
 x_train = NULL,
 x_val = NULL,
 y_train = NULL,
 y_val = NULL,
 lenc = NULL,
 length_seq = NULL,
)
```

num_seq = NULL,
embedding_dim = NULL,
embedding_matrix = NULL,
removed_prot_seq = NULL,
removed_prot_seq_val = NULL,
latent_dim = NULL,
optimizer = "adam",
validation_split = 0)

gen_GAN(x,
label = NULL,
num_seq,
remove_gap = TRUE)

Arguments
prot_seq aligned amino acid sequence
label label (default: NULL)
length_seq length of sequence
embedding_dim dimension of the dense embedding
embedding_args list of arguments for "word2vec::word2vec" but for dim, min_count and split
latent_dim dimension of latent vector (default: NULL)
intermediate_generator_layers list of intermediate layers for generator, without input layer
intermediate_discriminator_layers list of intermediate layers for discriminator, without output layer
prot_seq_val amino acid sequence for validation (default: NULL)
label_val label for validation (default: NULL)
epochs number of epochs
batch_size batch size
preprocessing list of preprocessed results, they are set to NULL as default x_train, length_seq, num_seq, embedding_dim and embedding_matrix must be required for training
  • x_train : embedded sequence data for train
  • x_val : embedded sequence data for validation
  • y_train : labels for train
  • y_val : labels for validation
  • lenc : encoded labels
  • length_seq : length of sequence
  • num_seq : number of sequences for train
  • embedding_dim : dimension of the dense embedding
  • embedding_matrix : embedding matrix
  • removed_prot_seq : index for removed protein sequences while checking
  • removed_prot_seq_val : index for removed protein sequences of validation
GAN

- latent_dim: dimension of latent vector

optimizer name of optimizer (default: adam)
validation_split proportion of validation data, it is ignored when there is a validation set (default: 0)
x result of the function "fit_GAN"
num_seq number of sequences to be generated
remove_gap remove gaps from sequences (default: TRUE)

Value

model trained GAN model
generator trained generator model
discriminator trained discriminator model
preprocessing preprocessed results
gen_seq generated sequence data
label labels for generated sequence data

Author(s)

Dongmin Jung

References


See Also

keras::train_on_batch, keras::evaluate, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
  data("example_PTEN")
  # model parameters
  length_seq <- 403
  embedding_dim <- 8
  latent_dim <- 4
  epochs <- 2
  batch_size <- 64
# GAN
GAN_result <- fit_GAN(prot_seq = example_PTEN,
  length_seq = length_seq,
  embedding_dim = embedding_dim,
  latent_dim = latent_dim,
  intermediate_generator_layers = list(
    layer_dense(units = 16),
    layer_dense(units = 128)),
  intermediate_discriminator_layers = list(
    layer_dense(units = 128, activation = "relu"),
    layer_dense(units = 16, activation = "relu")),
  prot_seq_val = example_PTEN,
  epochs = epochs,
  batch_size = batch_size)
set.seed(1)
gen_prot_GAN <- gen_GAN(GAN_result, num_seq = 100)

### from preprocessing
GAN_result2 <- fit_GAN(preprocessing = GAN_result$preprocessing,
  intermediate_generator_layers = list(
    layer_dense(units = 16),
    layer_dense(units = 128)),
  intermediate_discriminator_layers = list(
    layer_dense(units = 128, activation = "relu"),
    layer_dense(units = 16, activation = "relu")),
  epochs = epochs,
  batch_size = batch_size)
gen_prot_GAN <- gen_GAN(GAN_result2, num_seq = 100)

# prot_seq_check

prot_seq_check <- function(prot_seq, label = NULL)
{
  # Check a protein sequence
  # Description
  # The protein sequence dataset is filtered by eliminating sequences containing the non-amino acid
  # characters (digits and blank spaces) from the amino acid sequences. A valid amino acid sequence
  # means a string that only contains capital letters of an alphabet and a hyphen for a gap.
  # Usage
  # prot_seq_check(prot_seq, label = NULL)
  # Arguments
  # prot_seq amino acid sequences
  # label label (default: NULL)
}
**Value**

valid sequences

**Author(s)**

Dongmin Jung

**References**


**Examples**

```r
data("example_PTEN")
prot_seq_check(example_PTEN[1])
```

---

**prot_vec**  
*Converting from protein sequences to vectors or vice versa.*

**Description**

By using the word2vec model, amino acids are mapped to vectors of real numbers. Conceptually, it involves a mathematical embedding from a space with many dimensions per amino acid to a continuous vector space with a much lower dimension.

**Usage**

```r
prot2vec(prot_seq, embedding_dim, embedding_matrix = NULL, ...)
vec2prot(prot_vec, embedding_matrix)
```

**Arguments**

- `prot_seq`: protein sequences
- `prot_vec`: protein embedding vectors
- `embedding_dim`: dimension of embedding vectors
- `embedding_matrix`: embedding matrix (default: NULL)
- `...`: arguments for "word2vec::word2vec" but for dim, min_count and split

**Value**

- `prot_seq`: protein sequences
- `prot_vec`: protein embedding vectors
- `embedding_matrix`: embedding matrix
Author(s)

Dongmin Jung

References


See Also

word2vec::word2vec, word2vec::word2vec_similarity

Examples

data("example_PTEN")
prot_seq <- example_PTEN[1:10]
prot2vec_result <- prot2vec(prot_seq = prot_seq, embedding_dim = 8)
vec2prot_result <- vec2prot(prot_vec = prot2vec_result$prot_vec,
embed_matrix = prot2vec_result$embedding_matrix)

transformer  Transformer model

Description

The Transformer architecture is a nonrecurrent architecture with a series of attention-based blocks. Each block is composed of a multi-head attention layer and a position-wise feedforward layer with an add and normalize layer in between. These layers process input sequences simultaneously, in parallel, independently of sequential order.

Usage

layer_embedding_token_position(x, maxlen, vocab_size, embed_dim)
layer_transformer_encoder(x, embed_dim, num_heads, ff_dim, num_transformer_blocks)

Arguments

x      layer object
maxlen  maximum of sequence size
vocab_size  vocabulary size
embed_dim  embedding size for each token
num_heads  number of attention heads
ff_dim  hidden layer size in feedforward network inside transformer
num_transformer_blocks  number of transformer blocks
**VAE**

**Value**

layer object

**Author(s)**

Dongmin Jung

**References**


**Examples**

```r
if (keras::is_keras_available() & reticulate::py_available()) {
 num_AA <- 20
 length_seq <- 10
 embedding_dim <- 16
 num_heads <- 2
 ff_dim <- 16
 num_transformer_blocks <- 2

 inputs <- layer_input(shape = length_seq)
 x <- inputs %>%
 layer_embedding_token_position(maxlen = length_seq,
 vocab_size = num_AA,
 embed_dim = embedding_dim) %>%
 layer_transformer_encoder(embed_dim = embedding_dim,
 num_heads = num_heads,
 ff_dim = ff_dim,
 num_transformer_blocks = num_transformer_blocks) %>%
 layer_global_average_pooling_1d()
}
```

**Description**

The variational autoencoder (VAE) is a class of autoencoder where the encoder module is used to learn the parameter of a distribution and the decoder is used to generate examples from samples drawn from the learned distribution. The conditional variational autoencoder (CVAE) is designed to generate desired samples by including additional conditioning information. Since there may be underlying distinctions between groups of samples, the Gaussian mixture model is used for sequence generation. The Word2vec is applied to amino acids for embedding. The VAE or CVAE model can be trained by the function "fit_VAE", and then the function "gen_VAE" generates protein sequences from the trained model.
Usage

```r
fit_VAE(prot_seq,
 label = NULL,
 length_seq,
 embedding_dim,
 embedding_args = list(),
 latent_dim = 2,
 intermediate_encoder_layers,
 intermediate_decoder_layers,
 prot_seq_val = NULL,
 label_val = NULL,
 regularization = 1,
 epochs,
 batch_size,
 preprocessing = list(
 x_train = NULL,
 x_val = NULL,
 y_train = NULL,
 y_val = NULL,
 lenc = NULL,
 length_seq = NULL,
 embedding_dim = NULL,
 embedding_matrix = NULL,
 removed_prot_seq = NULL,
 removed_prot_seq_val = NULL),
 use_generator = FALSE,
 optimizer = "adam",
 validation_split = 0, ...)
```

```r
gen_VAE(x,
 label = NULL,
 num_seq,
 remove_gap = TRUE,
 batch_size,
 use_generator = FALSE)
```

Arguments

- **prot_seq**: aligned amino acid sequence
- **label**: label (default: NULL)
- **length_seq**: length of sequence
- **embedding_dim**: dimension of the dense embedding
- **embedding_args**: list of arguments for "word2vec::word2vec" but for dim, min_count and split
- **latent_dim**: dimension of latent vector (default: 2)
- **intermediate_encoder_layers**: list of intermediate layers for encoder, without input layer
intermediate_decoder_layers
list of intermediate layers for decoder, without output layer

regularization
regularization parameter, which is nonnegative (default: 1)

prot_seq_val
amino acid sequence for validation (default: NULL)

label_val
label for validation (default: NULL)

epochs
number of epochs

batch_size
batch size

preprocessing
list of preprocessed results, they are set to NULL as default x_train, length_seq, embedding_dim and embedding_matrix must be required for training

• x_train : embedded sequence data for train
• x_val : embedded sequence data for validation
• y_train : labels for train
• y_val : labels for validation
• lenc : encoded labels
• length_seq : length of sequence
• embedding_dim : dimension of the dense embedding
• embedding_matrix : embedding matrix
• removed_prot_seq : index for removed protein sequences while checking
• removed_prot_seq_val : index for removed protein sequences of validation

use_generator
use data generator if TRUE (default: FALSE)

optimizer
name of optimizer (default: adam)

validation_split
proportion of validation data, it is ignored when there is a validation set (default: 0)

... additional parameters for the "fit"

x
result of the function "fit_VAE"

num_seq
number of sequences to be generated

remove_gap
remove gaps from sequences (default: TRUE)

Value

model
trained VAE model

code_str
trained encoder model

decoder
trained decoder model

preprocessing
preprocessed results

gen_seq
generated sequence data

label
labels for generated sequence data

latent_vector
latent vector from embedded sequence data

Author(s)

Dongmin Jung
References


See Also

keras::fit, keras::compile, reticulate::array_reshape, mclust::mclustBIC, mclust::mclustModel, mclust::sim, DeepPINCS::multiple_sampling_generator, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform

Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
 data("example_luxA")
 label <- substr(example_luxA, 3, 3)

 # model parameters
 length_seq <- 360
 embedding_dim <- 8
 batch_size <- 128
 epochs <- 2

 # CVAE
 VAE_result <- fit_VAE(prot_seq = example_luxA,
 label = label,
 length_seq = length_seq,
 embedding_dim = embedding_dim,
 embedding_args = list(iter = 20),
 intermediate_encoder_layers = list(layer_dense(units = 128),
 layer_dense(units = 16)),
 intermediate_decoder_layers = list(layer_dense(units = 16),
 layer_dense(units = 128)),
 prot_seq_val = example_luxA,
 label_val = label,
 epochs = epochs,
 batch_size = batch_size,
 use_generator = FALSE,
 optimizer = keras::optimizer_adam(clipnorm = 0.1),
 callbacks = keras::callback_early_stopping(
 monitor = "val_loss",
 patience = 10,
 restore_best_weights = TRUE))

 gen_prot_VAE_I <- gen_VAE(VAE_result, label = rep("I", 100), num_seq = 100)
 gen_prot_VAE_L <- gen_VAE(VAE_result, label = rep("L", 100), num_seq = 100)

 ### from preprocessing
 VAE_result2 <- fit_VAE(intermediate_encoder_layers = list(layer_dense(units = 128),
 layer_dense(units = 16)),
 intermediate_decoder_layers = list(layer_dense(units = 16),
 layer_dense(units = 16)),
 prot_seq_val = example_luxA,
 label_val = label,
 epochs = epochs,
 batch_size = batch_size,
 use_generator = FALSE,
 optimizer = keras::optimizer_adam(clipnorm = 0.1),
 callbacks = keras::callback_early_stopping(
 monitor = "val_loss",
 patience = 10,
 restore_best_weights = TRUE))
```

layer_dense(units = 128)),
epochs = epochs, batch_size = batch_size,
preprocessing = VAE_result$preprocessing,
use_generator = FALSE,
optimizer = keras::optimizer_adam(clipnorm = 0.1),
callbacks = keras::callback_early_stopping(
  monitor = "val_loss",
  patience = 10,
  restore_best_weights = TRUE))
gen_prot_VAE2_I <- gen_VAE(VAE_result2, label = rep("I", 100), num_seq = 100)
gen_prot_VAE2_L <- gen_VAE(VAE_result2, label = rep("L", 100), num_seq = 100)
Index

ART, 2
example_luxA, 6
eexample PTEN, 6

fit_ART (ART), 2
fit_GAN (GAN), 7
fit_VAE (VAE), 13

GAN, 7
gen_ART (ART), 2
gen_GAN (GAN), 7
gen_VAE (VAE), 13

layer_embedding_token_position
  (transformer), 12
layer_transformer_encoder
  (transformer), 12

prot2vec (prot_vec), 11
prot_seq_check, 10
prot_vec, 11

transformer, 12

VAE, 13
vec2prot (prot_vec), 11