Package ‘GraphPAC’

July 3, 2019

Type Package

Title Identification of Mutational Clusters in Proteins via a Graph Theoretical Approach.

Version 1.26.0

Date 2017-07-18

Author Gregory Ryslik, Hongyu Zhao

Maintainer Gregory Ryslik <gregory.ryslik@yale.edu>

Description Identifies mutational clusters of amino acids in a protein while utilizing the proteins tertiary structure via a graph theoretical model.

License GPL-2

Depends R(>= 2.15), iPAC, igraph, TSP, RMallow

Suggests RUnit, BiocGenerics

Repository Bioconductor

biocViews Clustering, Proteomics

git_url https://git.bioconductor.org/packages/GraphPAC

git_branch RELEASE_3_9

git_last_commit 69bd305

git_last_commit_date 2019-05-02

Date/Publication 2019-07-02

R topics documented:

 GraphPAC-package ... 2
 Find.TSP.Path .. 3
 GraphClust .. 4
 Plot.Protein .. 6

Index 8
GraphPAC-package

Description

The *GraphPAC* package identifies statistically significant clusters of non-synonomous amino acid mutations and is a sister package to *iPAC*. *GraphPAC* reorders the protein into a one dimensional space via a graph theoretical approach. Specifically, the traveling salesman problem (TSP) is solved heuristically via the *TSP* package. Once solved, the mutational data is reordered to follow the hamiltonian path and the nmc algorithm is run to find the mutational clusters on the remapped protein. Unlike the MDS remapping approach that is used in *iPAC*, distant amino acids no longer have an effect on each other’s position in one dimensional space allowing for a closer representation of the underlying biology.

Details

Please see the documentation for “get.Positions”, “get.AlignedPositions”, and “Plot.Protein.Linear” in the *iPAC* package. There you will find information on getting basic positional data and plotting functions.

Author(s)

Gregory Ryslik Hongyu Zhao

Maintainer: Gregory A. Ryslik <gregory.ryslik@yale.edu>

References

Examples

```r
## Not run:
#Load the positional and mutatioanl data
CIF<="https://files.rcsb.org/view/3GFT.cif"
Fasta<="https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")
data(KRAS.Mutations)

#Calculate the required clusters
GraphClust(KRAS.Mutations,KRAS.Positions$Positions,insertion.type = "cheapest_insertion",
```
Find.TSP.Path

alpha = 0.05, MultComp = "Bonferroni")

End(Not run)

<table>
<thead>
<tr>
<th>Find.TSP.Path</th>
<th>Find.TSP.Path</th>
</tr>
</thead>
</table>

Description

Employs a heuristic approach to solve the traveling salesman problem.

Usage

```r
Find.TSP.Path(PositionList, mutation.matrix, insertion.type = "cheapest_insertion", fix.start.pos = "Y")
```

Arguments

- **PositionList**
 A dataframe consisting of six columns: 1) Residue Name, 2) Amino Acid number in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6) Z-coordinate. Please see `get.Positions` and `get.AlignedPositions` in the iPAC package for further information on how to construct this matrix.

- **mutation.matrix**
 A matrix of 0’s (no mutation) and 1’s (mutation) where each column represents an amino acid in the protein and each row represents an individual sample (test subject, cell line, etc). Thus if column i in row j had a 1, that would mean that the ith amino acid for person j had a nonsynonomous mutation.

- **insertion.type**
 Specifies the type of insertion method used. Please see the TSP package for more details.

- **fix.start.pos**
 The TSP package starts the path at a random amino acid. Such that the results are easily reproducible, the default starts the path on the first amino acid in the protein.

Value

- **candidate.path**
 A numeric vector of the sequence found through the protein.

- **candidate.path.distance**
 The distance traveled along the candidate path.

- **dist.matrix**
 The distance matrix between any two pairwise amino acids.

- **linear.path.distance**
 The distance traveled if one were to visit the amino acids in the original sequence (1 -> 2 -> 3 -> ...->N)

References

Examples

```r
# Load the position and mutational data
CIF <- "https://files.rcsb.org/view/3GFT.cif"
Fasta <- "https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions <- get.Positions(CIF, Fasta, "A")
data(KRAS.Mutations)

# Save all the results to path.results
path.results <- Find.TSP.Path(KRAS.Positions$Positions, KRAS.Mutations)
```

Description

Finds mutational clusters after reordering the protein using the traveling salesman approach.

Usage

```r
GraphClust(mutation.data, position.data, insertion.type = "cheapest_insertion", alpha = 0.05,
           MultComp = "Bonferroni", fix.start.pos = "Y", Include.Culled = "Y",
           Include.Full = "Y")
```

Arguments

- **mutation.data**: A matrix of 0’s (no mutation) and 1’s (mutation) where each column represents an amino acid in the protein and each row represents an individual sample (test subject, cell line, etc). Thus if column i in row j had a 1, that would mean that the ith amino acid for person j had a nonsynonomous mutation.

- **position.data**: A dataframe consisting of six columns: 1) Residue Name, 2) Amino Acid number in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6) Z-coordinate. Please see `get.Positions` and `get.AlignedPositions` in the `iPAC` package for further information on how to construct this matrix.

- **insertion.type**: Specifies the type of insertion method used. Please see the `TSP` package for more details.

- **alpha**: The significance level required in order to find a mutational cluster significance. Please see the NMC package for further information.

- **MultComp**: The multiple comparison adjustment required as all pairwise mutations are considered. Options are: ‘Bonferroni’, ‘BH’, or ‘None’.

- **fix.start.pos**: The TSP package starts the path at a random amino acid. Such that the results are easily reproducible, the default starts the path on the first amino acid in the protein.

- **Include.Culled**: If "Y", the standard NMC algorithm will be run on the protein after removing the amino acids for which there is no positional data.

- **Include.Full**: If "Y", the standard NMC algorithm will be run on the full protein sequence.
GraphClust

Details

The protein reordering is done using the TSP package available on CRAN. This hamiltonian path then serves as the new protein ordering.

The position data can be created via the “get.AlignedPositions” or the “get.Positions” functions available via the imported iPAC package.

The mutation matrix must have the default R column headings “V1”, “V2”,...,”VN”, where N is the last amino acid in the protein. No positions should be skipped in the mutation matrix.

When unmapping back to the original space, the end points of the cluster in the mapped space are used as the endpoints of the cluster in the unmapped space.

Value

Remapped
This shows the clusters found while taking the 3D structure into account and remapping the protein using a traveling salesman approach.

OriginalCulled
This shows the clusters found if you run the NMC algorithm on the canonical linear protein, but with the amino acids for which we don’t have 3D positional data removed.

Original
This shows the clusters found if you run the NMC algorithm on the canonical linear protein with all the amino acids.

candidate.path
This shows the path found by the TSP package that heuristically minimizes the total distance through the protein.

path.distance
The length of the candidate path if traveled from start to finish.

linear.path.distance
The length of the sequential path 1,2,3,...,N (where N is the total number of amino acids in the protein).

protein.graph
A graph object created by the igraph package that has edges between amino acids on the candidate.path. This can be passed to plotting functions to create visual representations.

missing.positions
This shows which amino acids are present in the mutation matrix but for which we do not have positions. These amino acids are cut from the protein when calculating the Remapped and OriginalCulled results.

References

Examples

Not run:
#Load the positional and mutational data
CIF<--"https://files.rcsb.org/view/3GFT.cif"
Fasta<"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")
data(KRAS.Mutations)

#Calculate the required clusters
GraphClust(KRAS.Mutations,KRAS.Positions$Positions,insertion.type = "cheapest_insertion",
alpha = 0.05, MultComp = "Bonferroni")

End(Not run)

Plot.Protein

Description

Creates a circular interactive plot of the path through the protein.

Usage

\[
\text{Plot.Protein}(\text{graph, path, vertex.size = 5, color.palette = "heat"})
\]

Arguments

- **graph**: The graph object returned by GraphClust ($protein.graph$).
- **path**: The path returned by GraphClust ($candidate.path$).
- **vertex.size**: How large you want each vertex to be.
- **color.palette**: Possible options are: "heat", "gray", "topo", "cm".

Details

This will plot the amino acids in a circular directed graph. The vertices can be dragged around to enhance the visual representation. This is meant to complement the `Plot.Protein.Linear` function in iPAC which is also applicable in this package.

Note

This function is based on the “tkplot” function in igraph. Please see the documentation for that package for the necessary requirements. Special thanks to Dr. Gabor Csardi (creator of the igraph package) for his help.

References

Examples

Not run:
Loads the mutational and positional data
CIF<"https://files.rcsb.org/view/3GFT.cif"
Fasta<"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<~get.Positions(CIF,Fasta, "A")
data(KRAS.Mutations)

gets the cluster results and graph object
my.graph.clusters <- GraphClust(KRAS.Mutations,KRAS.Positions$Positions,
insertion.type = "cheapest_insertion",alpha = 0.05,
MultComp = "Bonferroni")

Plot.Protein(my.graph.clusters$protein.graph, my.graph.clusters$candidate.path,
vertex.size=5, color.paletted="heat")

End(Not run)
Index

*Topic **Amino Acids**
 Plot.Protein, 6

*Topic **Clusters**
 GraphClust, 4

*Topic **Graph**
 Find.TSP.Path, 3
 Plot.Protein, 6

*Topic **Mutations**
 GraphClust, 4

*Topic **Order**
 Plot.Protein, 6

*Topic **Traveling Salesman**
 Find.TSP.Path, 3

Find.TSP.Path, 3

GraphClust, 4

GraphPAC (GraphPAC-package), 2

GraphPAC-package, 2

Plot.Protein, 6