Package ‘HIPPO’

January 5, 2024

Type Package
Title Heterogeneity-Induced Pre-Processing Tool
Version 1.14.0
Description For scRNA-seq data, it selects features and clusters the cells simultaneously for single-cell UMI data. It has a novel feature selection method using the zero inflation instead of gene variance, and computationally faster than other existing methods since it only relies on PCA+Kmeans rather than graph-clustering or consensus clustering.
License GPL (>=2)
Depends R (>= 3.6.0)
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown
VignetteBuilder knitr
URL https://github.com/tk382/HIPPO
BugReports https://github.com/tk382/HIPPO/issues
Imports ggplot2, graphics, stats, reshape2, gridExtra, Rtsne, umap, dplyr, rlang, magrittr, irlba, Matrix, SingleCellExperiment, ggrepel
RoxygenNote 7.1.0
biocViews Sequencing, SingleCell, GeneExpression, DifferentialExpression, Clustering
git_url https://git.bioconductor.org/packages/HIPPO
git_branch RELEASE_3_18
git_last_commit 7d5a5b2
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-05
Author Tae Kim [aut, cre], Mengjie Chen [aut]
Maintainer Tae Kim <tk382@uchicago.edu>
ensg_hgnc

R topics documented:

- ensg_hgnc .. 2
- get_data_from_sce 3
- get_hippo ... 3
- get_hippo_diffexp 4
- hippo .. 4
- hippo_diagnostic_plot 5
- hippo_diffexp .. 6
- hippo_dimension_reduction 7
- hippo_feature_heatmap 8
- hippo_pca_plot 9
- hippo_tsne_plot 9
- hippo_umap_plot 10
- nb_prob_zero .. 11
- pois_prob_zero 11
- preprocess_heterogeneous 12
- preprocess_homogeneous 12
- toydata ... 13
- zero_proportion_plot 13
- zinb_prob_zero 15
- %>% .. 15

Index

| ensg_hgnc | A reference data frame that matches ENSG IDs to HGNC symbols | 16 |

Description

A reference data frame that matches ENSG IDs to HGNC symbols

Usage

ensg_hgnc

Format

A data frame with 46606 rows and 2 columns

- **ensg** Ensembl ENSG IDs
- **hgnc** HGNC symbols

Source

http://www.biomart.org/
get_data_from_sce

Access data from SCE object

Description

Access data from SCE object

Usage

```
get_data_from_sce(sce)
```

Arguments

- `sce` SingleCellExperiment object

Value

count matrix

Examples

```
data(toydata)
X = get_data_from_sce(toydata)
```

get_hippo

Access hippo object from SingleCellExperiment object.

Description

Access hippo object from SingleCellExperiment object.

Usage

```
get_hippo(sce)
```

Arguments

- `sce` SingleCellExperiment object

Value

hippo object embedded in SingleCellExperiment object

Examples

```
data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
hippo_object = get_hippo(toydata)
```
get_hippo_diffexp

Return hippo_diffexp object

Description

Return hippo_diffexp object

Usage

`get_hippo_diffexp(sce, k = 1)`

Arguments

- **sce**: SingleCellExperiment object with hippo
- **k**: integer round of result of interest

Value

data frame of differential expression test

Examples

```r
data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
toydata = hippo_diffexp(toydata)
result1 = get_hippo_diffexp(toydata)
```

hippo

HIPPO’s hierarchical clustering

Description

HIPPO’s hierarchical clustering

Usage

`hippo(sce, K = 20, z_threshold = 2, outlier_proportion = 0.001, verbose = TRUE)`

Arguments

- **sce**: SingleCellExperiment object
- **K**: number of clusters to ultimately get
- **z_threshold**: numeric > 0 as a z-value threshold for selecting the features
- **outlier_proportion**: numeric between 0 and 1, a cut-off so that when the proportion of important features reach this number, the clustering terminates
- **verbose**: if set to TRUE, it shows progress of the algorithm
hippo_diagnostic_plot

Value

a list of clustering result for each level of k=1, 2, ... K.

Examples

data(toydata)

```
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
```

Description

Conduct feature selection by computing test statistics for each gene

Usage

```
hippo_diagnostic_plot(sce, show_outliers = FALSE, zvalue_thres = 10)
```

Arguments

- `sce` SingleCellExperiment object with count matrix
- `show_outliers` boolean to indicate whether to circle the outliers with given `zvalue_thres`
- `zvalue_thres` a numeric v for defining outliers

Value

a diagnostic plot that shows genes with zero inflation

Examples

data(toydata)

```
hippo_diagnostic_plot(toydata, show_outliers=TRUE, zvalue_thres = 2)
```
Description

HIPPO's differential expression

Usage

```r
hippo_diffexp(
  sce,
  top.n = 5,
  switch_to_hgnc = FALSE,
  ref = NA,
  k = NA,
  plottitle = ""
)
```

Arguments

- `sce`: SingleCellExperiment object with hippo
- `top.n`: number of markers to return
- `switch_to_hgnc`: if the current gene names are ensemble ids, and would like to switch to hgnc
- `ref`: a data frame with columns 'hgnc' and 'ensg' to match each other, only required when switch_to_hgnc is set to TRUE
- `k`: number of rounds of clustering that you'd like to see result. Default is 1 to K
- `plottitle`: title of the resulting plot

Value

list of differential expression result

Examples

```r
data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
result = hippo_diffexp(toydata)
```
hippo_dimension_reduction

compute t-SNE or umap of each round of HIPPO

Description

compute t-SNE or umap of each round of HIPPO

Usage

```r
hippo\_dimension\_reduction(
  sce,
  method = c("umap", "tsne"),
  perplexity = 30,
  featurelevel = 1
)
```

Arguments

- `sce`: SingleCellExperiment object with hippo object in it.
- `method`: a string that determines the method for dimension reduction: either 'umap' or 'tsne'
- `perplexity`: numeric perplexity parameter for Rtsne function
- `featurelevel`: the round of clustering that you will extract features to reduce the dimension

Value

a data frame of dimension reduction result for each k in 1, ..., K

Examples

```r
data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
toydata = hippo\_dimension\_reduction(toydata, method="tsne")
hippo\_tsne\_plot(toydata)
```
hippo_feature_heatmap
HIPPO's feature heatmap

Description

HIPPO's feature heatmap

Usage

```r
hippo_feature_heatmap(
  sce,
  switch_to_hgnc = FALSE,
  ref = NA,
  top.n = 50,
  kk = 2,
  plottitle = ""
)
```

Arguments

- `sce` SingleCellExperiment object with hippo
- `switch_to_hgnc` if the current gene names are ensemble ids, and would like to switch to hgnc
- `ref` a data frame with columns 'hgnc' and 'ensg' to match each other, only required when switch_to_hgnc is set to TRUE
- `top.n` number of markers to return
- `kk` integer for the round of clustering that you'd like to see result. Default is 2
- `plottitle` title for the plot

Value

list of differential expression result

Examples

```r
data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
hippo_feature_heatmap(toydata)
```
hippo_pca_plot

Description
visualize each round of hippo through t-SNE

Usage

```r
hippo_pca_plot(sce, k = NA, pointsize = 0.5, pointalpha = 0.5, plottitle = "")
```

Arguments

- `sce`: SingleCellExperiment object with hippo and t-SNE result in it
- `k`: number of rounds of clustering that you’d like to see result. Default is 1 to K
- `pointsize`: size of the point for the plot (default 0.5)
- `pointalpha`: transparency level of points for the plot (default 0.5)
- `plottitle`: title for the ggplot

Value
ggplot for pca in each round

Examples

```r
data(toydata)
set.seed(20200321)
toydata = hippo(toydata, K = 10,z_threshold = 1)
hippo_pca_plot(toydata, k = 2:3)
```

hippo_tsne_plot

Description
visualize each round of hippo through t-SNE

Usage

```r
hippo_tsne_plot(sce, k = NA, pointsize = 0.5, pointalpha = 0.5, plottitle = "")
```

Description
visualize each round of hippo through t-SNE

Usage

```r
hippo_tsne_plot(sce, k = NA, pointsize = 0.5, pointalpha = 0.5, plottitle = "")
```
Arguments

sce SingleCellExperiment object with hippo and t-SNE result in it
k number of rounds of clustering that you’d like to see result. Default is 1 to k
pointsize size of the point for the plot (default 0.5)
pointalpha transparency level of points for the plot (default 0.5)
plottitle title for the ggplot output

Value

ggplot object for t-SNE in each round

Examples

data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
toydata = hippo_dimension_reduction(toydata, method="tsne")
hippo_tsne_plot(toydata)

Description

visualize each round of hippo through UMAP

Usage

hippo_umap_plot(sce, k = NA, pointsize = 0.5, pointalpha = 0.5, plottitle = "")

Arguments

sce SingleCellExperiment object with hippo and UMAP result in it
k number of rounds of clustering that you’d like to see result. Default is 1 to K
pointsize size of the point for the plot (default 0.5)
pointalpha transparency level of points for the plot (default 0.5)
plottitle title of the resulting plot

Value

ggplot object for umap in each round
Examples

```r
data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
toydata = hippo_dimension_reduction(toydata, method="umap")
hippo_umap_plot(toydata)
```

nb_prob_zero

Expected zero proportion under Negative Binomial

Description

Expected zero proportion under Negative Binomial

Usage

```r
nb_prob_zero(lambda, theta)
```

Arguments

- `lambda`: numeric vector of means of negative binomial
- `theta`: numeric vector of the dispersion parameter for negative binomial, 0 if poisson

Value

numeric vector of expected zero proportion under Negative Binomial

Examples

```r
nb_prob_zero(3, 1.1)
```

pois_prob_zero

Expected zero proportion under Poisson

Description

Expected zero proportion under Poisson

Usage

```r
pois_prob_zero(lambda)
```

Arguments

- `lambda`: numeric vector of means of Poisson
Value
numeric vector of expected proportion of zeros for each lambda

Examples
pois_prob_zero(3)

preprocess_heterogeneous

Preprocess UMI data without cell label so that each row contains information about each gene

Description

Preprocess UMI data without cell label so that each row contains information about each gene

Usage

preprocess_heterogeneous(X)

Arguments

X a matrix object with counts data

Value

data frame with one row for each gene.

Examples

data(toydata)
df = preprocess_heterogeneous(get_data_from_sce(toydata))

preprocess_homogeneous

Preprocess UMI data with inferred or known labels

Description

Preprocess UMI data with inferred or known labels

Usage

preprocess_homogeneous(sce, label)
Arguments

- `sce` SingleCellExperiment object with counts data
- `label` a numeric or character vector of inferred or known label

Value

data frame with one row for each gene.

Examples

data(toydata)
labels = SingleCellExperiment::colData(toydata)$phenoid
df = preprocess_homogeneous(toydata, label = labels)

toydata

* A sample single cell sequencing data subsetted from Zheng2017

Description

A sample single cell sequencing data subsetted from Zheng2017

Usage

toydata

Format

Single Cell experiment object with 10,000 genes and 100 cells

Source

https://www.nature.com/articles/ncomms14049

zero_proportion_plot

visualize each round of hippo through zero proportion plot

Description

visualize each round of hippo through zero proportion plot
zero_proportion_plot

Usage

```
zero_proportion_plot(
  sce,
  switch_to_hgnc = FALSE,
  ref = NA,
  k = NA,
  plottitle = "",
  top.n = 5,
  pointsize = 0.5,
  pointalpha = 0.5,
  textsize = 3
)
```

Arguments

- **sce**: SingleCellExperiment object with hippo element in it
- **switch_to_hgnc**: boolean argument to indicate whether to change the gene names from ENSG IDs to HGNC symbols
- **ref**: a data frame with hgnc column and ensg column
- **k**: select rounds of clustering that you would like to see result. Default is 1 to K
- **plottitle**: Title of your plot output
- **top.n**: number of top genes to show the name
- **pointsize**: size of the ggplot point
- **pointalpha**: transparency level of the ggplot point
- **textsize**: text size of the resulting plot

Value

a ggplot object that shows the zero proportions for each round

Examples

```
data(toydata)
set.seed(20200321)
toydata = hippo(toydata,K = 10,z_threshold = 1,outlier_proportion = 0.01)
data(ensg_hgnc)
zero_proportion_plot(toydata, switch_to_hgnc = TRUE, ref = ensg_hgnc)
```
Expected zero proportion under Negative Binomial

Usage

```r
zinb_prob_zero(lambda, theta, pi)
```

Arguments

- `lambda`: gene mean
- `theta`: dispersion parameter, 0 if zero-inflated poisson
- `pi`: zero inflation, 0 if negative binomial

Value

Expected zero proportion under Zero-Inflated Negative Binomial

Examples

```r
zinb_prob_zero(3, 1.1, 0.1)
```

re-export magrittr pipe operator

Description

re-export magrittr pipe operator
Index

* datasets
 ensg_hgnc, 2
 toydata, 13
>%, 15
ensg_hgnc, 2
get_data_from_sce, 3
get_hippo, 3
get_hippo_diffexp, 4
hippo, 4
hippo_diagnostic_plot, 5
hippo_diffexp, 6
hippo_dimension_reduction, 7
hippo_feature_heatmap, 8
hippo_pca_plot, 9
hippo_tsne_plot, 9
hippo_umap_plot, 10
nb_prob_zero, 11
pois_prob_zero, 11
preprocess_heterogeneous, 12
preprocess_homogeneous, 12
toydata, 13
zero_proportion_plot, 13
zinb_prob_zero, 15