Package ‘HiContacts’

May 29, 2024

Title Analysing cool files in R with HiContacts

Version 1.6.0

Date 2022-08-16

Description HiContacts provides a collection of tools to analyse and visualize Hi-C datasets imported in R by HiCExperiment.

License MIT + file LICENSE

URL https://github.com/js2264/HiContacts

BugReports https://github.com/js2264/HiContacts/issues

Depends R (>= 4.2), HiCExperiment

Imports InteractionSet, SummarizedExperiment, GenomicRanges, IRanges, GenomeInfoDb, S4Vectors, methods, BiocGenerics, BiocIO, BiocParallel, RSpectra, Matrix, tibble, tidyr, dplyr, readr, stringr, ggplot2, ggrastr, scales, stats, utils

Suggests HiContactsData, rtracklayer, GenomicFeatures, Biostrings, BSgenome.Scerevisiae.UCSC.sacCer3, WGCNA, Rfast, terra, patchwork, testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown

biocViews HiC, DNA3DStructure

Encoding UTF-8

VignetteBuilder knitr

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/HiContacts

git_branch RELEASE_3_19

git_last_commit d0aea7d

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Jacques Serizay [aut, cre] (<https://orcid.org/0000-0002-4295-0624>)

Maintainer Jacques Serizay <jacquesserizay@gmail.com>
Contents

arithmetics ... 2
checks ... 5
cisTransRatio ... 6
Contacts .. 7
distanceLaw .. 8
getCompartments ... 9
getDiamondInsulation 10
getLoops ... 11
HiContacts-plots ... 11
palettes .. 11
plot4C .. 12
plotMatrix .. 13
plotPs .. 16
plotSaddle ... 17
plotScalogram .. 17
reexports .. 18
scalogram .. 18
tracks .. 19
virtual4C .. 20

Index 21

arithmetics HiContacts arithmetics functionalities

Description

Different arithmetic operations can be performed on Hi-C contact matrices:

- normalize a contact matrix using iterative correction;
- detrend a contact matrix, i.e. remove the distance-dependent contact trend;
- autocorrelate a contact matrix: this is typically done to highlight large-scale compartments;
- divide one contact matrix by another;
- merge multiple contact matrices;
- despeckle (i.e. smooth out) a contact matrix out;
- aggregate (average) a contact matrices over a set of genomic loci of interest;
- boost Hi-C signal by enhancing long-range interactions while preserving short-range interactions (this is adapted from Boost-HiC);
- subsample interactions using a proportion or a fixed number of final interactions.
- coarsen a contact matrix to a larger (coarser) resolution
Usage

S4 method for signature 'HiCExperiment'
aggregate(
 x,
 targets,
 flankingBins = 51,
 maxDistance = NULL,
 BPPARAM = BiocParallel::bpparam()
)

detrend(x, use.scores = "balanced")

autocorrelate(x, use.scores = "balanced", detrend = TRUE, ignore.ndiags = 3)

divide(x, by, use.scores = "balanced", pseudocount = 0)

S4 method for signature 'HiCExperiment,HiCExperiment'
merge(x, y, ..., use.scores = "balanced", FUN = mean)

despeckle(x, use.scores = "balanced", focal.size = 1)

boost(x, use.scores = "balanced", alpha = 1, full.replace = FALSE)

coarsen(x, bin.size)

S4 method for signature 'HiCExperiment'
normalize(
 object,
 use.scores = "count",
 niters = 200,
 min.nnz = 10,
 mad.max = 3
)

subsample(x, prop)

Arguments

x, y.object a HiCExperiment object
targets Set of chromosome coordinates for which interaction counts are extracted from
 the Hi-C contact file, provided as a GRanges object (for diagonal-centered loci)
 or as a GInteractions object (for off-diagonal coordinates).
flankingBins Number of bins on each flank of the bins containing input targets.
maxDistance Maximum distance to use when compiling distance decay
BPPARAM BiocParallel parameters
use.scores Which scores to use to perform operations
detrend Detrend matrix before performing autocorrelation
ignore_ndiags ignore N diagonals when calculating correlations
by a HiCExperiment object
pseudocount Add a pseudocount when dividing matrices (Default: 0)
... HiCExperiment objects. For aggregate, targets (a set of GRanges or GInter-
actions).
FUN merging function
focal.size Size of the smoothing rectangle
alpha Power law scaling factor. As indicated in Boost-HiC documentation, the alpha
 parameter influences the weighting of contacts: if alpha < 1 long-range inter-
 actions are prioritized; if alpha » 1 short-range interactions have more weight
 when computing the distance matrix.
full.replace Whether to replace the entire set of contacts, rather than only filling the missing
 interactions (count=0) (Default: FALSE)
bin.size Bin size to coarsen a HiCExperiment at
niter Number of iterations for ICE matrix balancing
min.nnz Filter bins with less than min.nnz non-zero elements when performing ICE ma-
 trix balancing
mad.max Filter out bins whose log coverage is less than mad.max median absolute devia-
 tions below the median bin log coverage.
prop Float between 0 and 1, or integer corresponding to the # of

Value

a HiCExperiment object with extra scores

Examples

Normalize a contact matrix

library(HiContacts)
contacts_yeast <- contacts_yeast()
normalize(contacts_yeast)

Detrending a contact matrix

detrend(contacts_yeast)

Auto-correlate a contact matrix

autocorrelate(contacts_yeast)
checks

Divide 2 contact matrices

```
contacts_yeast <- refocus(contacts_yeast, 'II')
contacts_yeast_eco1 <- contacts_yeast_eco1() |> refocus('II')
divide(contacts_yeast_eco1, by = contacts_yeast)
```

Merge 2 contact matrices

```
merge(contacts_yeast_eco1, contacts_yeast)
```

Despeckle (smoothen) a contact map

```
despeckle(contacts_yeast)
```

Aggregate a contact matrix over centromeres, at different scales

```
contacts <- contacts_yeast() |> zoom(resolution = 1000)
centros <- toplologicalFeatures(contacts, 'centromeres')
aggregate(contacts, targets = centros, flankingBins = 51)
```

Enhance long-range interaction signal

```
contacts <- contacts_yeast() |> zoom(resolution = 1000) |> refocus('II')
boost(contacts, alpha = 1)
```

Subsample & "coarsen" contact matrix

```
subcontacts <- subsample(contacts, prop = 100000)
coarsened_subcontacts <- coarsen(subcontacts, bin.size = 4000)
```

Description

Useful functions to validate the nature/structure of (m)cool files or HiCExperiment objects. All these check functions should return a logical.
Usage

.is_symmetrical(x)
.is_comparable(...)
.are_HiCExperiment(...)
.is_same_seqinfo(...)
.is_same_resolution(...)
.is_same_bins(...)
.is_same_regions(...)

Arguments

x A HiCExperiment object
... HiCExperiment objects

Value

Logical

cisTransRatio cisTransRatio

description

Quickly computes a cis-trans ratio of interactions.

Usage

cisTransRatio(x)

Arguments

x A HiCExperiment object over the full genome

Value

a tibble, listing for each chr. the % of cis/trans interactions

Examples

library(HiContacts)
full_contacts_yeast <- contacts_yeast(full = TRUE)
cisTransRatio(full_contacts_yeast)
Description

This function has been deprecated in favor of the generic HiCExperiment() constructor (from HiCExperiment package).

Usage

```
Contacts(
  file,  
  resolution = NULL,  
  focus = NULL,  
  metadata = list(),  
  topologicalFeatures = S4Vectors::SimpleList(loops =  
    S4Vectors::Pairs(GenomicRanges::GRanges(), GenomicRanges::GRanges()), borders =  
    GenomicRanges::GRanges(), compartments = GenomicRanges::GRanges(), viewpoints =  
    GenomicRanges::GRanges(),  
  pairsFile = NULL  
)
```

Arguments

- **file**
 Path to a (m)cool file

- **resolution**
 Resolution to use with mcool file

- **focus**
 focus Chr. coordinates for which interaction counts are extracted from the .(m)cool file, provided as a character string (e.g. "II:4001-5000"). If not provided, the entire (m)cool file will be imported.

- **metadata**
 list of metadata

- **topologicalFeatures**
 topologicalFeatures provided as a named SimpleList

- **pairsFile**
 Path to an associated .pairs file

Value

a new HiCExperiment object.

Examples

```
library(HiContacts)
library(HiContactsData)
mcool_path <- HiContactsData::HiContactsData('yeast_wt', 'mcool')
Contacts(mcool_path, resolution = 1000)
```
distanceLaw

Compute the law of distance-dependent contact frequency, a.k.a. P(s)

Description

P(s) will be approximated if no pairs are provided, or the exact P(s) will be computed if a .pairs file is added to the HiCExperiment object using pairsFile(x) <- "...".

Usage

```r
distanceLaw(x, coords, ...)  
## S4 method for signature 'GInteractions,missing'
distanceLaw(x, by_chr = FALSE)  
## S4 method for signature 'HiCExperiment,missing'
distanceLaw(  
  x,  
  by_chr = FALSE,  
  filtered_chr = c("XII", "chrXII", "chr12", "12", "Mito", "MT", "chrM")  
)  
## S4 method for signature 'PairsFile,missing'
distanceLaw(  
  x,  
  by_chr = FALSE,  
  filtered_chr = c("XII", "chrXII", "chr12", "12", "Mito", "MT", "chrM"),  
  chunk_size = 1e+05  
)  
## S4 method for signature 'HiCExperiment,GRanges'
distanceLaw(x, coords, chunk_size = 1e+05)  
## S4 method for signature 'PairsFile,GRanges'
distanceLaw(x, coords, chunk_size = 1e+05)  

localDistanceLaw(x, coords = coords)
```

Arguments

- `x`: A HiCExperiment object
- `coords`: GRanges to specify which genomic loci to use when computing P(s)
- `...`: Arguments passed to corresponding method
- `by_chr`: `by_chr`
- `filtered_chr`: `filtered_chr`
- `chunk_size`: For pairs files which do not fit in memory, pick a number of pairs to parse by chunks (1e7 should be a good compromise)
getCompartments

Value

a tibble

Examples

```r
contacts_yeast <- contacts_yeast()
p <- distanceLaw(contacts_yeast)
local_p <- localDistanceLaw(
  contacts_yeast,
  GenomicRanges::GRanges(
    c("telomere" = "II:1-20000", "arm" = "II:300001-700000")
  )
)
local_p
```

getCompartments Contact map compartments

Description

Computes eigen vectors for each chromosome using cis contacts and extract chromosome compartments.

Usage

```r
getCompartments(
  x, 
  resolution = NULL, 
  genome = NULL, 
  chromosomes = NULL, 
  neigens = 3, 
  sort_eigens = FALSE, 
  BPPARAM = BiocParallel::bpparam()
)
```

Arguments

- `x` A HiCExperiment object over a full genome
- `resolution` Which resolution to use to compute eigen vectors
- `genome` a BSgenome of DNAStringSet object associated with the Hi-C contact matrix.
- `chromosomes` character or integer vector indicating which
- `neigens` Numver of eigen vectors to extract
- `sort_eigens` Can be FALSE or one of c('Spearman', 'Pearson')
- `BPPARAM` BiocParallel parallelization settings
getDiamondInsulation

Description

Computes diamond insulation score along the entire genome.

Usage

getDiamondInsulation(x, window_size = NULL, BPPARAM = BiocParallel::bpparam())

getBorders(x, weak_threshold = 0.2, strong_threshold = 0.5)

Arguments

x
A HiCExperiment object over a full genome

window_size
Which window size to use to compute diamond insulation score (default: 10 * resolution)

BPPARAM
BiocParallel parallelization settings

weak_threshold
Less stringent cutoff to call borders in the diamond insulation score

strong_threshold
More stringent cutoff to call borders in the diamond insulation score

Value

a HiCExperiment object with additional insulation metadata, containing the diamond insulation score computed

Examples

library(HiContacts)
hic <- contacts_yeast() |> refocus('II:1-300000') |> zoom(1000)
diams <- getDiamondInsulation(hic)
getDiamondInsulation(diams)
getLoops

Finding loops in contact map

Description

Find loops using chromosight.

This function is actually provided by the HiCool package rather than the HiContacts package. HiCool provides a self-managed conda environment, and this limits

Usage

`getLoops(...)`

Arguments

`...` Parameters passed to `HiCool::getLoops()`.

HiContacts-plots

HiContacts plotting functionalities

Description

Several plots can be generated in HiContacts:

- Hi-C contact matrices
- Distance-dependant interaction frequency decay (a.k.a. "Distance law" or "P(s)"
- Virtual 4C profiles
- Scalograms
- Saddle plots

palettes

Matrix palettes

Description

Matrix palettes
Usage

bwrColors()

bbrColors()

bgrColors()

afmhotrColors()

coolerColors()

rainbowColors()

Value

A vector of colours carefully picked for Hi-C contact heatmaps

Examples

bwrColors()

bbrColors()

bgrColors()

afmhotrColors()

coolerColors()

rainbowColors()

plot4C Plotting virtual 4C profiles

Description

Plotting virtual 4C profiles

Usage

plot4C(x, mapping = ggplot2::aes(x = center, y = score, col = seqnames))

Arguments

x GRanges, generally the output of virtual4C()

mapping aes to pass on to ggplot2 (default: ggplot2::aes(x = center, y = score, col = seqnames))

Value

ggplot
Examples

contacts_yeast <- contacts_yeast()
v4C <- virtual4C(contacts_yeast, GenomicRanges::GRanges('II:490001-510000'))
plot4C(v4C)

Description

Plotting a contact matrix

Usage

plotMatrix(x, ...)
montage(x, ...)

S4 method for signature 'HiCExperiment'
plotMatrix(
 x,
 compare.to = NULL,
 use.scores = "balanced",
 scale = "log10",
 maxDistance = NULL,
 loops = NULL,
 borders = NULL,
 tracks = NULL,
 limits = NULL,
 dpi = 500,
 rasterize = TRUE,
 symmetrical = TRUE,
 chrom_lines = TRUE,
 show_grid = FALSE,
 cmap = NULL,
 caption = TRUE
)

S4 method for signature 'GInteractions'
plotMatrix(
 x,
 use.scores = NULL,
 scale = "log10",
 maxDistance = NULL,
 loops = NULL,
 borders = NULL,
 tracks = NULL,
S4 method for signature 'matrix'

```
plotMatrix(x,
    scale = "log10",
    limits = NULL,
    dpi = 500,
    rasterize = TRUE,
    symmetrical = TRUE,
    chrom_lines = TRUE,
    show_grid = FALSE,
    cmap = NULL)
```

S4 method for signature 'AggrHiCExperiment'

```
plotMatrix(x,
    use.scores = "balanced",
    scale = "log10",
    maxDistance = NULL,
    loops = NULL,
    borders = NULL,
    limits = NULL,
    dpi = 500,
    rasterize = TRUE,
    chrom_lines = TRUE,
    show_grid = FALSE,
    cmap = NULL,
    caption = TRUE)
```

S4 method for signature 'AggrHiCExperiment'

```
montage(x,
    use.scores = "balanced",
    scale = "log10",
    limits = NULL,
    dpi = 500,
    rasterize = TRUE,
    cmap = NULL)
```
plotMatrix

Arguments

x A HiCExperiment object
...
compare.to Compare to a second HiC matrix in the lower left corner
use.scores Which scores to use in the heatmap
scale Any of ‘log10’, ‘log2’, ‘linear’, ‘exp0.2’ (Default: ‘log10’)
maxDistance maximum distance. If provided, the heatmap is plotted horizontally
loops Loops to plot on top of the heatmap, provided as GInteractions
borders Borders to plot on top of the heatmap, provided as GRanges
tracks Named list of bigwig tracks imported as Rle
limits color map limits
dpi DPI to create the plot (Default: 500)
rasterize Whether the generated heatmap is rasterized or vectorized (Default: TRUE)
symmetrical Whether to enforce a symmetrical heatmap (Default: TRUE)
chrom_lines Whether to display separating lines between chromosomes, should any be necessary (Default: TRUE)
show_grid Whether to display an underlying grid (Default: FALSE)
cmap Color scale to use. (Default: bgrColors() if limits are c(-1, 1) and coolerColors() otherwise)
caption Whether to display a caption (Default: TRUE)

Value

ggplot object

Examples

contacts_yeast <- contacts_yeast()
plotMatrix(
 contacts_yeast,
 use.scores = 'balanced',
 scale = 'log10',
 limits = c(-4, -1)
)
plotPs

Plotting a P(s) distance law

Description

Plotting a P(s) distance law

Usage

plotPs(x, mapping, xlim = c(5000, 499000), ylim = c(1e-08, 1e-04))

plotPsSlope(x, mapping, xlim = c(5000, 499000), ylim = c(-3, 0))

Arguments

x
the output data.frame of distanceLaw function

mapping
aes to pass on to ggplot2

xlim
xlim

ylim
ylim

Value

ggplot

Examples

Single P(s)

contacts_yeast <- contacts_yeast()
ps <- distanceLaw(contacts_yeast)
plotPs(ps, ggplot2::aes(x = binned_distance, y = norm_p))

Comparing several P(s)

contacts_yeast <- contacts_yeast()
contacts_yeast_eco1 <- contacts_yeast_eco1()
ps_wt <- distanceLaw(contacts_yeast)
ps_wt$sample <- 'WT'
ps_eco1 <- distanceLaw(contacts_yeast_eco1)
ps_eco1$sample <- 'eco1'
ps <- rbind(ps_wt, ps_eco1)
plotPs(ps, ggplot2::aes(x = binned_distance, y = norm_p, group = sample, color = sample))
plotPsSlope(ps, ggplot2::aes(x = binned_distance, y = slope, group = sample))
plotSaddle

Plotting saddle plots

Description

Plotting saddle plots

Usage

```r
plotSaddle(
  x,
  nbins = 50,
  limits = c(-1, 1),
  plotBins = FALSE,
  BPPARAM = BiocParallel::bpparam()
)
```

Arguments

- **x**: a HiCExperiment object with a stored eigens metadata
- **nbins**: Number of bins to use to discretize the eigenvectors
- **limits**: limits for color map being used
- **plotBins**: Whether to plot the distribution of bins on top of the plot
- **BPPARAM**: a BiocParallel registered method

Value

`ggplot`

plotScalogram

Plotting scalograms

Description

Plotting scalograms

Usage

```r
plotScalogram(x, ylim = c(500, 1e+05))
```

Arguments

- **x**: GRanges, the output of `scalogram()`
- **ylim**: Range of distances to use for y-axis in scalograms
Value

ggplot

Examples

```r
contacts_yeast <- HiCExperiment::contacts_yeast()
pairsFile(contacts_yeast) <- HiContactsData::HiContactsData('yeast_wt', format = 'pairs.gz')
scalo <- scalogram(contacts_yeast[['II']])
plotScalogram(scalo)
```

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

- **HiCExperiment** [contacts_yeast, contacts_yeast_ecol]

scalogram

Compute a scalogram of contacts

Description

Compute a scalogram of contacts

Usage

```r
scalogram(x, dist_min = 0, nbins = 250, probs = c(0.25, 0.5, 0.75))
```

Arguments

- `x`: A HiCExperiment object
- `dist_min`: Minimum distance for interactions to be considered.
- `nbins`: Number of bins to divide each chromosome
- `probs`: Quantiles of interactions

Value

- a tibble
- a tibble
Aligning tracks with HiCExperiment objects

Description

Aligning tracks with HiCExperiment objects

Usage

```r
## S4 method for signature 'HiCExperiment'
coverage(x, use.pairs = FALSE, bin.size = resolution(x))
```

Arguments

- `x`: A HiCExperiment object over a full genome
- `use.pairs`: logical. Whether to use pairsFile to compute Hi-C coverage
- `bin.size`: if `use.pairs == TRUE`, to which resolution

Value

A HiCExperiment object with 2 added columns in `regions(x)`

Examples

```r
mcool_file <- HiContactsData::HiContactsData('yeast_wt', format = 'mcool')
hic <- import(mcool_file, format = 'mcool', resolution = 1000)
coverage(hic)
```
virtual4C

Computing virtual 4C profiles

Description
From a (m)cool pre-imported in memory, computes a 4C profile using a user-specified viewpoint.

Usage
virtual4C(x, viewpoint, use.scores = "balanced")

Arguments
- `x`: a HiCExperiment object
- `viewpoint`: viewpoint, defined as a GRanges
- `use.scores`: use.scores

Value
A tibble with the contact frequency of the viewpoint, per bin along the imported genomic range.

Examples
```r
library(HiContacts)
contacts_yeast <- contacts_yeast()
v4C <- virtual4C(contacts_yeast, GenomicRanges::GRanges("II:490001-510000"))
v4C
```
Index

<table>
<thead>
<tr>
<th>internal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>checks, 5</td>
<td></td>
</tr>
<tr>
<td>reexports, 18</td>
<td></td>
</tr>
<tr>
<td>.are_HiCExperiment (checks), 5</td>
<td></td>
</tr>
<tr>
<td>.is_comparable (checks), 5</td>
<td></td>
</tr>
<tr>
<td>.is_same_bins (checks), 5</td>
<td></td>
</tr>
<tr>
<td>.is_same_regions (checks), 5</td>
<td></td>
</tr>
<tr>
<td>.is_same_resolution (checks), 5</td>
<td></td>
</tr>
<tr>
<td>.is_same_seqinfo (checks), 5</td>
<td></td>
</tr>
<tr>
<td>.is_symmetrical (checks), 5</td>
<td></td>
</tr>
<tr>
<td>afmhotrColors (palettes), 11</td>
<td></td>
</tr>
<tr>
<td>aggregate,HiCExperiment-method (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>arithmetics, 2</td>
<td></td>
</tr>
<tr>
<td>autocorrelate (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>bbrColors (palettes), 11</td>
<td></td>
</tr>
<tr>
<td>bgrColors (palettes), 11</td>
<td></td>
</tr>
<tr>
<td>boost (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>bwrColors (palettes), 11</td>
<td></td>
</tr>
<tr>
<td>checks, 5</td>
<td></td>
</tr>
<tr>
<td>cisTransRatio, 6</td>
<td></td>
</tr>
<tr>
<td>coarsen (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>Contacts, 7</td>
<td></td>
</tr>
<tr>
<td>contacts_yeast, 18</td>
<td></td>
</tr>
<tr>
<td>contacts_yeast (reexports), 18</td>
<td></td>
</tr>
<tr>
<td>contacts_yeast_ecol, 18</td>
<td></td>
</tr>
<tr>
<td>contacts_yeast_ecol (reexports), 18</td>
<td></td>
</tr>
<tr>
<td>coolerColors (palettes), 11</td>
<td></td>
</tr>
<tr>
<td>coverage,HiCExperiment-method (tracks), 19</td>
<td></td>
</tr>
<tr>
<td>despeckle (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>detrend (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>distanceLaw, 8</td>
<td></td>
</tr>
<tr>
<td>distanceLaw,HiCExperiment,missing-method (distanceLaw), 8</td>
<td></td>
</tr>
<tr>
<td>distanceLaw,PairsFile,GRanges-method (distanceLaw), 8</td>
<td></td>
</tr>
<tr>
<td>distanceLaw,PairsFile,missing-method (distanceLaw), 8</td>
<td></td>
</tr>
<tr>
<td>divide (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>getBorders (getDiamondInsulation), 10</td>
<td></td>
</tr>
<tr>
<td>getCompartments, 9</td>
<td></td>
</tr>
<tr>
<td>getDiamondInsulation, 10</td>
<td></td>
</tr>
<tr>
<td>getLoops, 11</td>
<td></td>
</tr>
<tr>
<td>HiContacts-plots, 11</td>
<td></td>
</tr>
<tr>
<td>localDistanceLaw (distanceLaw), 8</td>
<td></td>
</tr>
<tr>
<td>merge,HiCExperiment,HiCExperiment-method (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>montage (plotMatrix), 13</td>
<td></td>
</tr>
<tr>
<td>montage,AggrHiCExperiment-method (plotMatrix), 13</td>
<td></td>
</tr>
<tr>
<td>normalize,HiCExperiment-method (arithmetics), 2</td>
<td></td>
</tr>
<tr>
<td>palettes, 11</td>
<td></td>
</tr>
<tr>
<td>plot4C, 12</td>
<td></td>
</tr>
<tr>
<td>plotMatrix, 13</td>
<td></td>
</tr>
<tr>
<td>plotMatrix,AggrHiCExperiment-method (plotMatrix), 13</td>
<td></td>
</tr>
<tr>
<td>plotMatrix,GRanges-method (plotMatrix), 13</td>
<td></td>
</tr>
<tr>
<td>plotMatrix,HiCExperiment-method (plotMatrix), 13</td>
<td></td>
</tr>
<tr>
<td>plotMatrix,matrix-method (plotMatrix), 13</td>
<td></td>
</tr>
<tr>
<td>plotPs, 16</td>
<td></td>
</tr>
<tr>
<td>plotPsSlope (plotPs), 16</td>
<td></td>
</tr>
<tr>
<td>plotSaddle, 17</td>
<td></td>
</tr>
<tr>
<td>plotScalogram, 17</td>
<td></td>
</tr>
</tbody>
</table>
Ps (distanceLaw), 8
rainbowColors (palettes), 11
reexports, 18
scalogram, 18
subsample (arithmetics), 2
tracks, 19
virtual4C, 20