Package ‘HiContacts’

January 26, 2024

Title Analysing cool files in R with HiContacts
Version 1.4.0
Date 2022-08-16
Description HiContacts provides a collection of tools to
analyse and visualize Hi-C datasets imported in R by HiCExperiment.
License MIT + file LICENSE
URL https://github.com/js2264/HiContacts
BugReports https://github.com/js2264/HiContacts/issues
Depends R (>= 4.2), HiCExperiment
Imports InteractionSet, SummarizedExperiment, GenomicRanges, IRanges,
 GenomeInfoDb, S4Vectors, methods, BiocGenerics, BiocIO,
 BiocParallel, RSpectra, Matrix, tibble, tidyr, dplyr, readr,
 stringr, ggplot2, ggrastr, scales, stats, utils
Suggests HiContactsData, rtracklayer, GenomicFeatures, Biostrings,
 BSgenome.Scerevisiae.UCSC.sacCer3, WGCNA, Rfast, terra,
 patchwork, testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown
biocViews HiC, DNA3DStructure
Encoding UTF-8
VignetteBuilder knitr
LazyData false
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/HiContacts
git_branch RELEASE_3_18
git_last_commit 00956df
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-26
Author Jacques Serizay [aut, cre] (<https://orcid.org/0000-0002-4295-0624>)
Maintainer Jacques Serizay <jacquesserizay@gmail.com>
Description

Different arithmetic operations can be performed on Hi-C contact matrices:

- normalize a contact matrix using iterative correction;
- detrend a contact matrix, i.e. remove the distance-dependent contact trend;
- autocorrelate a contact matrix: this is typically done to highlight large-scale compartments;
- divide one contact matrix by another;
- merge multiple contact matrices;
- despeckle (i.e. smooth out) a contact matrix out;
- aggregate (average) a contact matrices over a set of genomic loci of interest;
- boost Hi-C signal by enhancing long-range interactions while preserving short-range interactions (this is adapted from Boost-HiC);
- subsample interactions using a proportion or a fixed number of final interactions.
- coarsen a contact matrix to a larger (coarser) resolution
Usage

S4 method for signature 'HiCExperiment'
aggregate(
 x,
 targets,
 flankingBins = 51,
 maxDistance = NULL,
 BPPARAM = BiocParallel::bpparam()
)
detrend(x, use.scores = "balanced")
autocorrelate(x, use.scores = "balanced", detrend = TRUE, ignore.ndiags = 3)
divide(x, by, use.scores = "balanced", pseudocount = 0)

S4 method for signature 'HiCExperiment,HiCExperiment'
merge(x, y, ..., use.scores = "balanced", FUN = mean)
despeckle(x, use.scores = "balanced", focal.size = 1)
boost(x, use.scores = "balanced", alpha = 1, full.replace = FALSE)
coarsen(x, bin.size)

S4 method for signature 'HiCExperiment'
normalize(
 object,
 use.scores = "count",
 niters = 200,
 min.nnz = 10,
 mad.max = 3
)

subsample(x, prop)

Arguments

x, y, object a HiCExperiment object
targets Set of chromosome coordinates for which interaction counts are extracted from the Hi-C contact file, provided as a GRanges object (for diagonal-centered loci) or as a GInteractions object (for off-diagonal coordinates).
flankingBins Number of bins on each flank of the bins containing input targets.
maxDistance Maximum distance to use when compiling distance decay
BPPARAM BiocParallel parameters
use.scores Which scores to use to perform operations
detrend Detrend matrix before performing autocorrelation
ignore_n_diags: Ignore N diagonals when calculating correlations by a HiCExperiment object.

pseudocount: Add a pseudocount when dividing matrices (Default: 0)

... HiCExperiment objects. For aggregate, targets (a set of GRanges or GInteractions).

FUN: Merging function

focal.size: Size of the smoothing rectangle

alpha: Power law scaling factor. As indicated in Boost-HiC documentation, the alpha parameter influences the weighting of contacts: if alpha < 1 long-range interactions are prioritized; if alpha » 1 short-range interactions have more weight when computing the distance matrix.

full.replace: Whether to replace the entire set of contacts, rather than only filling the missing interactions (count=0) (Default: FALSE)

bin.size: Bin size to coarsen a HiCExperiment at

n_iters: Number of iterations for ICE matrix balancing

min.nnz: Filter bins with less than min.nnz non-zero elements when performing ICE matrix balancing

mad.max: Filter out bins whose log coverage is less than mad.max median absolute deviations below the median bin log coverage.

prop: Float between 0 and 1, or integer corresponding to the # of

Value

a HiCExperiment object with extra scores

Examples

```
library(HiContacts)
contacts_yeast <- contacts_yeast()
normalize(contacts_yeast)
```

```
# Detrending a contact matrix
# ...
detrend(contacts_yeast)
```

```
# Auto-correlate a contact matrix
# ...
autocorrelate(contacts_yeast)
```
Divide 2 contact matrices

```r
contacts_yeast <- refocus(contacts_yeast, 'II')
contacts_yeast_eco1 <- contacts_yeast_eco1() |> refocus('II')
divide(contacts_yeast_eco1, by = contacts_yeast)
```

Merge 2 contact matrices

```r
merge(contacts_yeast_eco1, contacts_yeast)
```

Despeckle (smoothen) a contact map

```r
despeckle(contacts_yeast)
```

Aggregate a contact matrix over centromeres, at different scales

```r
contacts <- contacts_yeast() |> zoom(resolution = 1000)
centros <- topologicalFeatures(contacts, 'centromeres')
aggregate(contacts, targets = centros, flankingBins = 51)
```

Enhance long-range interaction signal

```r
contacts <- contacts_yeast() |> zoom(resolution = 1000) |> refocus('II')
boost(contacts, alpha = 1)
```

Subsample & "coarsen" contact matrix

```r
subcontacts <- subsample(contacts, prop = 100000)
coarsened_subcontacts <- coarsen(subcontacts, bin.size = 4000)
```

Description

Useful functions to validate the nature/structure of (m)cool files or HiCExperiment objects. All these check functions should return a logical.
cisTransRatio

Usage

.is_symmetrical(x)
.is_comparable(...)
.are_HiCExperiment(...)
.is_same_seqinfo(...)
.is_same_resolution(...)
.is_same_bins(...)
.is_same_regions(...)

Arguments

x A HiCExperiment object
... HiCExperiment objects

Value

Logical

cisTransRatio cisTransRatio
cisTransRatio

description

Quickly computes a cis-trans ratio of interactions.

Usage

cisTransRatio(x)

Arguments

x A HiCExperiment object over the full genome

Value

a tibble, listing for each chr. the % of cis/trans interactions

Examples

library(HiContacts)
full_contacts_yeast <- contacts_yeast(full = TRUE)
cisTransRatio(full_contacts_yeast)
Description

This function has been deprecated in favor of the generic HiCExperiment() constructor (from HiCExperiment package).

Usage

Contacts(
 file,
 resolution = NULL,
 focus = NULL,
 metadata = list(),
 topologicalFeatures = S4Vectors::SimpleList(loops =
 S4Vectors::Pairs(GenomicRanges::GRanges(), GenomicRanges::GRanges()), borders =
 GenomicRanges::GRanges(), compartments = GenomicRanges::GRanges(), viewpoints =
 GenomicRanges::GRanges(),
 pairsFile = NULL
)

Arguments

 file Path to a (m)cool file
 resolution Resolution to use with mcool file
 focus focus Chr. coordinates for which interaction counts are extracted from the .(m)cool file, provided as a character string (e.g. "II:4001-5000"). If not provided, the entire (m)cool file will be imported.
 metadata list of metadata
topologicalFeatures topologicalFeatures provided as a named SimpleList
 pairsFile Path to an associated .pairs file

Value

 a new HiCExperiment object.

Examples

library(HiContacts)
library(HiContactsData)
mcool_path <- HiContactsData::HiContactsData('yeast_wt', 'mcool')
Contacts(mcool_path, resolution = 1000)
distanceLaw

Compute the law of distance-dependent contact frequency, a.k.a. \(P(s) \)

Description

\(P(s) \) will be approximated if no pairs are provided, or the exact \(P(s) \) will be computed if a .pairs file is added to the HiCExperiment object using \(\text{pairsFile}(x) \leftarrow "..." \).

Usage

distanceLaw(x, coords, ...)

S4 method for signature 'GInteractions,missing'
distanceLaw(x, by_chr = FALSE)

S4 method for signature 'HiCExperiment,missing'
distanceLaw(
 x,
 by_chr = FALSE,
 filtered_chr = c("XII", "chrXII", "chr12", "12", "Mito", "MT", "chrM")
)

S4 method for signature 'PairsFile,missing'
distanceLaw(
 x,
 by_chr = FALSE,
 filtered_chr = c("XII", "chrXII", "chr12", "12", "Mito", "MT", "chrM"),
 chunk_size = 1e+05
)

S4 method for signature 'HiCExperiment,GRanges'
distanceLaw(x, coords, chunk_size = 1e+05)

S4 method for signature 'PairsFile,GRanges'
distanceLaw(x, coords, chunk_size = 1e+05)

localDistanceLaw(x, coords = coords)

Arguments

\(x \) A HiCExperiment object
\(\text{coords} \) GRanges to specify which genomic loci to use when computing \(P(s) \)
\(... \) Arguments passed to corresponding method
\(\text{bychr} \) by_chr
\(\text{filtered_chr} \) filtered_chr
\(\text{chunk_size} \) For pairs files which do not fit in memory, pick a number of pairs to parse by chunks (1e7 should be a good compromise)
getCompartments

Value

a tibble

Examples

contacts_yeast <- contacts_yeast()
ps <- distanceLaw(contacts_yeast)
ps
local_ps <- localDistanceLaw(
 contacts_yeast,
 GenomicRanges::GRanges(
 c("telomere" = "II:1-20000", "arm" = "II:300001-700000")
)
)
local_ps

getCompartments

Contact map compartments

Description

Computes eigen vectors for each chromosome using cis contacts and extract chromosome compart-
ments.

Usage

getCompartments(
x,
 resolution = NULL,
 genome = NULL,
 chromosomes = NULL,
 neigens = 3,
 sort_eigens = FALSE,
 BPPARAM = BiocParallel::bpparam()
)

Arguments

x
A HiCExperiment object over a full genome
resolution
Which resolution to use to compute eigen vectors
genoeme
a BSgenome of DNAStringSet object associated with the Hi-C contact matrix.
chromosomes
character or integer vector indicating which
neigens
Numver of eigen vectors to extract
sort_eigens
Can be FALSE or one of c('Spearman', 'Pearson')
BPPARAM
BiocParallel parallelization settings
Value

A HiCExperiment object with additional eigens metadata containing the normalized eigenvectors and a new "compartments" topologicalFeatures storing A and B compartments as a GRanges object.

Examples

```r
library(HiContacts)
full_contacts_yeast <- contacts_yeast(full = TRUE)
comps <- getCompartments(full_contacts_yeast)
metadata(comps)$eigens
```

getDiamondInsulation Contact map insulation

Description

Computes diamond insulation score along the entire genome

Usage

```r
getDiamondInsulation(x, window_size = NULL, BPPARAM = BiocParallel::bpparam())
getBorders(x, weak_threshold = 0.2, strong_threshold = 0.5)
```

Arguments

- `x` A HiCExperiment object over a full genome
- `window_size` Which window size to use to compute diamond insulation score (default: 10 * resolution)
- `BPPARAM` BiocParallel parallelization settings
- `weak_threshold` Less stringent cutoff to call borders in the diamond insulation score
- `strong_threshold` More stringent cutoff to call borders in the diamond insulation score

Value

A HiCExperiment object with additional insulation metadata, containing the diamond insulation score computed

Examples

```r
library(HiContacts)
hi <- contacts_yeast() |> refocus('II:1-300000') |> zoom(1000)
diams <- getDiamondInsulation(hi)
getDiamondInsulation(diams)
```
getLoops

Finding loops in contact map

Description

Find loops using chromosight.

This function is actually provided by the HiCool package rather than the HiContacts package. HiCool provides a self-managed conda environment, and this limits

Usage

getLoops(...)

Arguments

... Parameters passed to HiCool::getLoops().

HiContacts-plots HiContacts plotting functionalities

Description

Several plots can be generated in HiContacts:

- Hi-C contact matrices
- Distance-dependant interaction frequency decay (a.k.a. "Distance law" or "P(s)"
- Virtual 4C profiles
- Scalograms
- Saddle plots

palettes Matrix palettes

Description

Matrix palettes
Usage

bwrColors()
bbrColors()
bgrColors()
afmhotrColors()
coolerColors()
rainbowColors()

Value

A vector of colours carefully picked for Hi-C contact heatmaps

Examples

bwrColors()
bbrColors()
bgrColors()
afmhotrColors()
coolerColors()
rainbowColors()

plot4C Plotting virtual 4C profiles

Description

Plotting virtual 4C profiles

Usage

plot4C(x, mapping = ggplot2::aes(x = center, y = score, col = seqnames))

Arguments

x GRanges, generally the output of virtual4C()
mapping aes to pass on to ggplot2 (default: ggplot2::aes(x = center, y = score, col = seqnames))

Value

ggplot
Examples

```
contacts_yeast <- contacts_yeast()
v4C <- virtual4C(contacts_yeast, GenomicRanges::GRanges('II:490001-510000'))
plot4C(v4C)
```

plotMatrix

Plotting a contact matrix

Description

Plotting a contact matrix

Usage

```
plotMatrix(x, ...)
```

```
montage(x, ...)
```

```
## S4 method for signature 'HiCExperiment'
plotMatrix(
  x,
  compare.to = NULL,
  use.scores = "balanced",
  scale = "log10",
  maxDistance = NULL,
  loops = NULL,
  borders = NULL,
  tracks = NULL,
  limits = NULL,
  dpi = 500,
  rasterize = TRUE,
  symmetrical = TRUE,
  chrom_lines = TRUE,
  show_grid = FALSE,
  cmap = NULL,
  caption = TRUE
)
```

```
## S4 method for signature 'GInteractions'
plotMatrix(
  x,
  use.scores = NULL,
  scale = "log10",
  maxDistance = NULL,
  loops = NULL,
  borders = NULL,
  tracks = NULL,
```
plotMatrix

limits = NULL,
dpi = 500,
rasterize = TRUE,
symmetrical = TRUE,
chrom_lines = TRUE,
show_grid = FALSE,
cmap = NULL
)

S4 method for signature 'matrix'
plotMatrix(
 x,
 scale = "log10",
 limits = NULL,
 dpi = 500,
 rasterize = TRUE,
 cmap = NULL
)

S4 method for signature 'AggrHiCExperiment'
plotMatrix(
 x,
 use.scores = "balanced",
 scale = "log10",
 maxDistance = NULL,
 loops = NULL,
 borders = NULL,
 limits = NULL,
 dpi = 500,
 rasterize = TRUE,
 chrom_lines = TRUE,
 show_grid = FALSE,
 cmap = NULL,
 caption = TRUE
)

S4 method for signature 'AggrHiCExperiment'
montage(
 x,
 use.scores = "balanced",
 scale = "log10",
 limits = NULL,
 dpi = 500,
 rasterize = TRUE,
 cmap = NULL
)
Arguments

- **x**: A HiCExperiment object
- **...**: Extra arguments passed to the corresponding method.
- **compare.to**: Compare to a second HiC matrix in the lower left corner
- **use.scores**: Which scores to use in the heatmap
- **scale**: Any of 'log10', 'log2', 'linear', 'exp0.2' (Default: 'log10')
- **maxDistance**: maximum distance. If provided, the heatmap is plotted horizontally
- **loops**: Loops to plot on top of the heatmap, provided as GInteractions
- **borders**: Borders to plot on top of the heatmap, provided as GRanges
- **tracks**: Named list of bigwig tracks imported as Rle
- **limits**: color map limits
- **dpi**: DPI to create the plot (Default: 500)
- **rasterize**: Whether the generated heatmap is rasterized or vectorized (Default: TRUE)
- **symmetrical**: Whether to enforce a symmetrical heatmap (Default: TRUE)
- **chrom_lines**: Whether to display separating lines between chromosomes, should any be necessary (Default: TRUE)
- **show_grid**: Whether to display an underlying grid (Default: FALSE)
- **cmap**: Color scale to use. (Default: bgrColors() if limits are c(-1, 1) and coolerColors() otherwise)
- **caption**: Whether to display a caption (Default: TRUE)

Value
ggplot object

Examples

```r
contacts_yeast <- contacts_yeast()
plotMatrix(
  contacts_yeast,
  use.scores = 'balanced',
  scale = 'log10',
  limits = c(-4, -1)
)
```
plotPs

Plotting a P(s) distance law

Description
Plotting a P(s) distance law

Usage
plotPs(x, mapping, xlim = c(5000, 499000), ylim = c(1e-08, 1e-04))
plotPsSlope(x, mapping, xlim = c(5000, 499000), ylim = c(-3, 0))

Arguments
- x: the output data.frame of distanceLaw function
- mapping: aes to pass on to ggplot2
- xlim: xlim
- ylim: ylim

Value
- ggplot

Examples
Single P(s)
contacts_yeast <- contacts_yeast()
ps <- distanceLaw(contacts_yeast)
plotPs(ps, ggplot2::aes(x = binned_distance, y = norm_p))

Comparing several P(s)
contacts_yeast <- contacts_yeast()
contacts_yeast_eco1 <- contacts_yeast_eco1()
ps_wt <- distanceLaw(contacts_yeast)
ps_wt$sample <- 'WT'
ps_eco1 <- distanceLaw(contacts_yeast_eco1)
ps_eco1$sample <- 'eco1'
ps <- rbind(ps_wt, ps_eco1)
plotPs(ps, ggplot2::aes(x = binned_distance, y = norm_p, group = sample, color = sample))
plotPsSlope(ps, ggplot2::aes(x = binned_distance, y = slope, group = sample))
plotSaddle

Plotting saddle plots

Description

Plotting saddle plots

Usage

```r
plotSaddle(
  x,
  nbins = 50,
  limits = c(-1, 1),
  plotBins = FALSE,
  BPPARAM = BiocParallel::bpparam()
)
```

Arguments

- `x` a HiCExperiment object with a stored eigens metadata
- `nbin` Number of bins to use to discretize the eigenvectors
- `limits` limits for color map being used
- `plotBins` Whether to plot the distribution of bins on top of the plot
- `BPPARAM` a BiocParallel registered method

Value

`ggplot`

plotScalogram

Plotting scalograms

Description

Plotting scalograms

Usage

```r
plotScalogram(x, ylim = c(500, 1e+05))
```

Arguments

- `x` GRanges, the output of `scalogram()`
- `ylim` Range of distances to use for y-axis in scalograms
Value

ggplot

Examples

```r
contacts_yeast <- HiCExperiment::contacts_yeast()
pairsFile(contacts_yeast) <- HiContactsData::HiContactsData(
  'yeast_wt', format = 'pairs.gz'
)
scalo <- scalogram(contacts_yeast[['II']])
plotScalogram(scalo)
```

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

- **HiCExperiment** `contacts_yeast, contacts_yeast_ecol`

scalogram

Compute a scalogram of contacts

Description

Compute a scalogram of contacts

Usage

```r
scalogram(x, dist_min = 0, nbins = 250, probs = c(0.25, 0.5, 0.75))
```

Arguments

- `x` A HiCExperiment object
- `dist_min` Minimum distance for interactions to be considered.
- `nbins` Number of bins to divide each chromosome
- `probs` Quantiles of interactions

Value

- a tibble
- a tibble
tracks

Aligning tracks with HiCExperiment objects

Usage

S4 method for signature 'HiCExperiment'
coverage(x, use.pairs = FALSE, bin.size = resolution(x))

Arguments

x A HiCExperiment object over a full genome
use.pairs logical. Whether to use pairsFile to compute Hi-C coverage
bin.size if use.pairs == TRUE, to which resolution

Value

A HiCExperiment object with 2 added columns in regions(x)

Examples

mcool_file <- HiContactsData::HiContactsData('yeast_wt', format = 'mcool')
hic <- import(mcool_file, format = 'mcool', resolution = 1000)
coverage(hic)
virtual4C

Computing virtual 4C profiles

Description

From a (m)cool pre-imported in memory, computes a 4C profile using a user-specified viewpoint.

Usage

```r
virtual4C(x, viewpoint, use.scores = "balanced")
```

Arguments

- `x`: a HiCExperiment object
- `viewpoint`: viewpoint, defined as a GRanges
- `use.scores`: use.scores

Value

A tibble with the contact frequency of the viewpoint, per bin along the imported genomic range.

Examples

```r
library(HiContacts)
contacts_yeast <- contacts_yeast()
v4C <- virtual4C(contacts_yeast, GenomicRanges::GRanges('II:490001-510000'))
v4C
```
Index

* internal
 checks, 5
 reexports, 18
 .are_HiCExperiment (checks), 5
 .is_comparable (checks), 5
 .is_same_bins (checks), 5
 .is_same_regions (checks), 5
 .is_same_resolution (checks), 5
 .is_same_seqinfo (checks), 5
 .is_symmetrical (checks), 5
 afmhotrColors (palettes), 11
 aggregate,HiCExperiment-method
 (arithmetics), 2
 arithmetics, 2
 autocorrelate (arithmetics), 2
 bbrColors (palettes), 11
 bgrColors (palettes), 11
 boost (arithmetics), 2
 bwrColors (palettes), 11
 checks, 5
 cisTransRatio, 6
 coarsen (arithmetics), 2
 Contacts, 7
 contacts_yeast, 18
 contacts_yeast (reexports), 18
 contacts_yeast_ecol, 18
 contacts_yeast_ecol (reexports), 18
 coolerColors (palettes), 11
 coverage,HiCExperiment-method (tracks), 19
 despeckle (arithmetics), 2
 detrend (arithmetics), 2
 distanceLaw, 8
 distanceLaw, GInteractions, missing-method
 (distanceLaw), 8
 distanceLaw, HiCExperiment, GRanges-method
 (distanceLaw), 8
 distanceLaw, HiCExperiment, missing-method
 (distanceLaw), 8
 distanceLaw, PairsFile, GRanges-method
 (distanceLaw), 8
 distanceLaw, PairsFile, missing-method
 (distanceLaw), 8
 divide (arithmetics), 2
 getBorders (getDiamondInsulation), 10
 getCompartments, 9
 getDiamondInsulation, 10
 getLoops, 11
 HiContacts-plots, 11
 localDistanceLaw (distanceLaw), 8
 merge,HiCExperiment, HiCExperiment-method
 (arithmetics), 2
 montage (plotMatrix), 13
 montage, AggrHiCExperiment-method
 (plotMatrix), 13
 normalize, HiCExperiment-method
 (arithmetics), 2
 palettes, 11
 plot4C, 12
 plotMatrix, 13
 plotMatrix, AggrHiCExperiment-method
 (plotMatrix), 13
 plotMatrix, GInteractions-method
 (plotMatrix), 13
 plotMatrix, HiCExperiment-method
 (plotMatrix), 13
 plotMatrix, matrix-method (plotMatrix), 13
 plotPs, 16
 plotPsSlope (plotPs), 16
 plotSaddle, 17
 plotScalogram, 17
Ps (distanceLaw), 8
rainbowColors (palettes), 11
reexports, 18
scalogram, 18
subsample (arithmetics), 2
tracks, 19
virtual4C, 20