Package ‘InTAD’

April 3, 2024

Type Package

Title Search for correlation between epigenetic signals and gene expression in TADs

Version 1.22.0

Author Konstantin Okonechnikov, Serap Erkek, Lukas Chavez

Maintainer Konstantin Okonechnikov <k.okonechnikov@gmail.com>

Description The package is focused on the detection of correlation between expressed genes and selected epigenomic signals (i.e. enhancers obtained from ChIP-seq data) either within topologically associated domains (TADs) or between chromatin contact loop anchors. Various parameters can be controlled to investigate the influence of external factors and visualization plots are available for each analysis step.

License GPL (>=2)

LazyData TRUE

Depends R (>= 3.5), methods, S4Vectors, IRanges, GenomicRanges, MultiAssayExperiment, SummarizedExperiment, stats

Imports BiocGenerics, Biobase, rtracklayer, parallel, graphics, mclust, qvalue, ggplot2, utils, ggpubr

biocViews Epigenetics, Sequencing, ChIPSeq, RNASeq, HiC, GeneExpression, ImmunoOncology

VignetteBuilder knitr

Suggests testthat, BiocStyle, knitr, rmarkdown

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/InTAD

git_branch RELEASE_3_18

git_last_commit 1bb9d7a

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-03
R topics documented:

combineInTAD ... 2
combineWithLoops .. 3
enhSel ... 4
enhSelGR ... 4
exprs.InTADSig-method ... 5
filterGeneExpr ... 5
findCorFromLoops .. 6
findCorrelation ... 7
fnSE ... 7
geneCoords .. 8
get.enr.bg.normfit ... 9
InTADSig .. 9
loadSigInTAD ... 10
loopsDFSel .. 11
mbAnnData .. 11
newSigInTAD .. 12
plotCorAcrossRef .. 13
plotCorrelation .. 14
rpkmCountsSel .. 14
sigCoords ... 15
signals .. 15
tadGR ... 16
txsSel .. 16

date 2021-10-11

Index 18

Description

This function combines signals and genes in inside of Topologically Associated Domains (TADs)

Usage

combineInTAD(object, tadGR, selMaxTadOvlp = TRUE, closestGene = TRUE)

Arguments

object: InTADSig object
tadGR: TAD genomic regions
selMaxTadOvlp: If a signal overlaps 2 or more TADs by default only single TAD with max overlap is selected. All overlaps can be included by deactivating this option.
closestGene: By default closest to TAD genes are selected based on TSS location. Deactivate this option to use genes only lying within TAD.
combineWithLoops

Details

Each signal is checked if it is lying inside of TAD. Signals out of TADs are ignored. The genomic regions representing gene coordinates are converted to TSS. By default, the closest genes are assigned belonging to TAD. If this option deactivated, only those lying with TAD are collected. Result is a list of signals connected to tables with gene details.

Value

Updated InTADSig object containing genes connected to each signal

Examples

create sigInTAD object
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
combine signals and genes in TAD
inTadSig <- combineInTAD(inTadSig, tadGR)

combineWithLoops

Preparation for correlation analysis via loops

Description

This function combines signals and genes based on the usage of loops obtained from HiC data analysis

Usage

combineWithLoops(object, loopsInitDf, fragmentLength = 0, tssWidth = 2000, extSize = 0)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>InTADSig object</td>
</tr>
<tr>
<td>loopsInitDf</td>
<td>Data frame with loops. By default 6-column format (chr1,start1,end1,chr2,start2,pos2) is expected.</td>
</tr>
<tr>
<td>fragmentLength</td>
<td>In case the input format is 4-column (chr1,middlePos1, chr2, middlePos2) fragment length should be provided to extend the corresponding loci for loop start and end positions.</td>
</tr>
<tr>
<td>tssWidth</td>
<td>The transcription start site width is used to control overlaps with loop anchor. Default is 2000 base pairs.</td>
</tr>
<tr>
<td>extSize</td>
<td>The loop endings can be extended upstream and downstream with provided corresponding increase size in base pairs.</td>
</tr>
</tbody>
</table>
Details

The expected input is the loops data.frame applied to find connections of signals to genes. This data.frame could be in two formats: either (chr1,start1,end1,chr2,start2,end2) or (chr1,middlePos1,chr2,middlePos2) with fragment size.

Value

Updated InTADSig object containing genes connected to signals via loops

<table>
<thead>
<tr>
<th>enhSel</th>
<th>Enhancer signals subset detected from medulloblatoma samples</th>
</tr>
</thead>
</table>

Description

This data.frame contains 65 selected in chr15 normalized enhancers signals subset from 25 medulloblastoma samples.

Usage

 enhSel

Format

a data.frame instance

Value

NULL, but makes available the dataframe

<table>
<thead>
<tr>
<th>enhSelGR</th>
<th>Genomic coordinates of enhancer signals subset</th>
</tr>
</thead>
</table>

Description

This GRanges object contains the coordinates of 65 medulloblastoma enhancer signals in chr15 target region

Usage

 enhSelGR

Format

a GRanges object

Value

NULL, but makes available the dataset

exprs,InTADSig-method
Gene expression counts table

Description

This function returns gene expression counts table

Usage

```r
## S4 method for signature 'InTADSig'
exprs(object)
```

Arguments

- `object`
 InTADSig object with signals and genes

Value

Gene expression table

Examples

```r
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
head(exprs(inTadSig))
```

filterGeneExpr
Function to filter gene expression

Description

This function performs filtering of gene expression counts based on various parameters

Usage

```r
filterGeneExpr(obj, cutVal = 0, geneType = NA, checkExprDistr = FALSE, plotExprDistr = FALSE)
```

Arguments

- `obj`
 InTADSig object

- `cutVal`
 Exclude genes that have max expression less or equal to this value in all samples. Default: 0

- `geneType`
 Type of gene to select for filtering i.e. "protein_coding". Default:NA

- `checkExprDistr`
 Adjust cutVal based on gene expression distribution

- `plotExprDistr`
 Perform visualization of the distribution
Details

The function allows to stabilize the functional activity of the genes. By default all not expressed genes are filtered. It is also possible to set type of gene to take into account i.e. "protein_coding" only. This option requires additional metadata column "transcript_type". Also, special filtering option based on mclust library allows to analyze distribution of counts and adjust the cut value to exclude low expressed genes.

Value

InTADSig object with filtered counts table

Examples

```r
## perform analysis on test data
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
## default filtering
inTadSig <- filterGeneExpr(inTadSig)
## filter based on gene type
inTadSig <- filterGeneExpr(inTadSig, geneType = "protein_coding")
```

findCorFromLoops

Function to perform correlation analysis via loops.

Description

This function combines genes and signals using obtained loop connections.

Usage

```r
findCorFromLoops(object, method = "pearson", adj.pval = FALSE)
```

Arguments

- **object**: InTADSig object with signals and genes combined via loops
- **method**: Correlation method: "pearson" (default), "kendall", "spearman"
- **adj.pval**: Perform p-value adjustment and include q-values in result

Value

A table with correlation values for signal-gene pairs including correlation p-value and euclidian distance.
findCorrelation

Function to perform correlation analysis in TADs

Description
This function combines genes and signals in inside of TADs

Usage
findCorrelation(object, method = "pearson", adj.pval = FALSE, plot.proportions = FALSE)

Arguments
- object: InTADSig object with signals and genes combined in TADs
- method: Correlation method: "pearson" (default), "kendall", "spearman"
- adj.pval: Perform p-value adjustment and include q-values in result
- plot.proportions: Plot proportions of signals and genes in correlation

Value
A table with correlation values for signal-gene pairs including correlation p-value, euclidian distance and rank.

Examples
```r
## perform analysis on test data
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
inTadSig <- filterGeneExpr(inTadSig, geneType = "protein_coding")
inTadSig <- combineInTAD(inTadSig, tadGR)
corData <- findCorrelation(inTadSig, method="pearson")
```

fnSE
Preparation for correlation analysis for a signal

Description
This function collects all genes for signal genomic region inside of Topologically Associated Domains (TADs)

Usage
fnSE(id, sigList, tadGR, tss, pickMaxOvlp, nearestTad)
Arguments

- **id**: Id of signal from the list
- **sigList**: List of signal GRs and their names
- **tadGR**: TAD genomic regions
- **tss**: Gene transcription start sites
- **pickMaxOvlp**: Use TAD with max overlap
- **nearestTad**: The table listing TADs nearest to each TSS #'

Details

The signal is checked if it is lying inside of TAD. Then all genes in this TAD are collected.

Value

Data.frame containing genes connected to signal

geneCoords

Gene coords GRanges

Description

This function returns the gene GRanges

Usage

```r
geneCoords(object)
```

```
## S4 method for signature 'InTADSig'
geneCoords(object)
```

Arguments

- **object**: InTADSig object with signals and genes

Value

Gene GRanges

Examples

```r
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
head(geneCoords(inTadSig))
```
get.enr.bg.normfit Function to estimate gene expression

Description
This function uses mclust package to analyze gene expression distribution

Usage
get.enr.bg.normfit(x)

Arguments
x Full gene expression vector

Details
The function adjust filtering cut value based on mclust library to exclude low expressed genes. It is a part of filtering procedure.

Value
Distribution properties: mean and std

InTADSig The InTADSig Class

Description
The InTADSig object stores signals and gene expression data for the samples.

Details
It uses MultiAssayExperiment object to store information. Key slots to access are listed below.

Slots
sigMAE: "MultiAssayExperiment", MultiAssayExperiment object containg signals and gene counts
signalConnections: "list", The list of signals representing gene data frames in the same TAD
loopsDf: "data.frame", The data.frame containing details of provided input loops
loopConnections: "list", The list of connections between signals and genes via loops
ncore: "numeric", Number of cores to use for parallel computing #
loadSigInTAD

Load InTADSig object from text files

Description

The function loads the data tables to create an object that contains the signals and gene expression data frames along with their genomic coordinates for further processing.

Usage

```r
loadSigInTAD(signalsFile, countsFile, gtfFile, annFile = "", performLog = TRUE, logExprsOffset = 1, ncores = 1)
```

Arguments

- `signalsFile`: Tab-separated data table containing signals and their coordinates as row names.
- `countsFile`: Tab-separated counts table.
- `gtfFile`: GTF file containing all gene coordinates.
- `annFile`: Tab-delimited phenotype annotation of samples.
- `performLog`: Perform log2 conversion of expression values. Default: TRUE.
- `logExprsOffset`: Offset x for log2 gene expression i.e. log2(value + x). Default: 1.
- `ncores`: Number of cores to use for parallel computing.

Details

The function loads data from input files and creates an object that stores matrices of signals and gene expression values along with coordinates. The samples order and names of columns should match in both tables. It is expected that gene ids are applied in the validation of counts table.

Value

- Novel InTADSig object

Examples

```r
# create sigInTAD object
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
```
loopsDfSel

1 loopsDfSel
Data frame containing coordinates of loops

Description
The table contains genomic coordinates of chromatin loops in 6-column format derived from IMR90 cell line (focus : chr15)

Usage
loopsDfSel

Format
a data.frame object

Value
NULL, but makes available the dataset

mbAnnData

Data frame containing information about samples

Description
The table includes additional information about MB tumour samples (subgroup, gender, age, histology and M.Stage)

Usage
mbAnnData

Format
a data.frame object

Value
NULL, but makes available the dataset
newSigInTAD

Create InTADSig object

Description

The function generates an object that contains the signals and gene expression data.frames along with their genomic coordinates for further processing.

Usage

newSigInTAD(signalData = NULL, signalRegions = NULL, countsData = NULL, geneRegions = NULL, sampleInfo = NULL, performLog = TRUE, logExprsOffset = 1, ncores = 1)

Arguments

- signalData: data frame containing signals
- signalRegions: genomic regions of the signals
- countsData: data matrix containing count expression values
- geneRegions: gene coordinates
- sampleInfo: data frame containing additional sample info
- performLog: Perform log2 conversion of expression values. Default: TRUE.
- logExprsOffset: Offset x for log2 gene expression i.e. log2(value + x). Default: 1
- ncores: Number of cores to use for parallel computing

Details

InTADSig object stores matrices of signals and gene expression values along with coordinates. The order of samples and names of columns should match in both datasets. For gene coordinates GRanges "gene_id" and "gene_name" are required in metadata. These are typical markers of genes in GTF annotation format.

Value

Novel InTADSig object

Examples

```r
## create sigInTAD object
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
```
Function to plot correlation across genome

Description
This function creates a plot of correlation strength in target genomic region from the result table. The X-coordinates represent signals, Y-coords represent genes, while each dot represents -log10(P-value) from correlation test. Additionally all TAD boundaries can be visualized.

Usage
plotCorAcrossRef(obj, corRes, targetRegion, showCorVals = FALSE, symmetric = FALSE, tads = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>InTADSig object with signals and genes combined in TADS</td>
</tr>
<tr>
<td>corRes</td>
<td>Correlation result table created by function findCorrelation()</td>
</tr>
<tr>
<td>targetRegion</td>
<td>Target genomic region visualise.</td>
</tr>
<tr>
<td>showCorVals</td>
<td>Use this option to visualize positive correlation values instead of correlation strength</td>
</tr>
<tr>
<td>symmetric</td>
<td>Activate mirror symmetry for gene-signal connections</td>
</tr>
<tr>
<td>tads</td>
<td>TAD regions to visualize. By default only TADs present in correlation result table are applied (NULL value).</td>
</tr>
</tbody>
</table>

Value
A ggplot object for visualization or customization.

Examples
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
inTadSig <- combineInTAD(inTadSig, tadGR)
corData <- findCorrelation(inTadSig, method="pearson")
plotCorAcrossRef(inTadSig, corData, GRanges("chr15:25000000-28000000"))
plotCorrelation(function to plot correlation)

Description
This function creates a plot of selected pair signal-gene

Usage
plotCorrelation(obj, sId, geneName, xLabel = "Gene expression", yLabel = "Signal enrichment", colByPhenotype = "", corMethod = "pearson")

Arguments
- obj: InTADSig object with signals and genes combined in TADS
- sId: Signal id based on genomic coordinate i.e. "chr:start-end"
- geneName: Gene name to select. Based on "gene_name" attribute.
- xLabel: The label to mark signal X-axis. Default: "Gene expression"
- yLabel: The label to mark signal Y-axis. Default: "Signal enrichment"
- colByPhenotype: The pheno data column i.e. tumour type that can be use for colour
- corMethod: Correlation method. Default: Pearson

Value
A ggplot object for visualization or customization.

Examples
```r
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
inTadSig <- combineInTAD(inTadSig, tadGR)
plotCorrelation(inTadSig, "chr15:26372163-26398073", "GABRA5")
```

rpkmCountsSel (Gene expression subset from medulloblastoma samples)

Description
This data.frame contains RPKM gene expression values from chr15 for subset from 25 medulloblastoma samples.

Usage
rpkmCountsSel
sigCoords

Format

a data.frame instance

Value

NULL, but makes available the dataframe

<table>
<thead>
<tr>
<th>sigCoords</th>
<th>Signal coords GRanges</th>
</tr>
</thead>
</table>

Description

This function returns the signal GRanges

Usage

```r
sigCoords(object)
```

```r
## S4 method for signature 'InTADSig'

sigCoords(object)
```

Arguments

- `object`: InTADSig object with signals and genes

Value

Signal GRanges

Examples

```r
inTadSig <- newSigInTAD(enhSel, enhSelGR, rpkmCountsSel, txsSel)
head(sigCoords(inTadSig))
```

<table>
<thead>
<tr>
<th>signals</th>
<th>Signal values table</th>
</tr>
</thead>
</table>

Description

This function returns the signal values table

Usage

```r
signals(object)
```

```r
## S4 method for signature 'InTADSig'

signals(object)
```
Arguments

object
InTADSig object with signals and genes

Value

Signals table

Examples

\[
inTadSig <- \text{newSigInTAD}(\text{enhSel}, \text{enhSelGR}, \text{rpkmCountsSel}, \text{txsSel})
\]
\[
\text{head(signals(inTadSig))}
\]

<table>
<thead>
<tr>
<th>tadGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic coordiantes of topologically associated domains</td>
</tr>
</tbody>
</table>

Description

This GRanges object contains the coordinates of TADs revealed from IMR90 cell line (extracted from 0-indexed .bed file)

Usage

tadGR

Format

a GRanges object

Value

NULL, but makes available the dataset

<table>
<thead>
<tr>
<th>txsSel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic coordiantes of genes subset</td>
</tr>
</tbody>
</table>

Description

This GRanges object contains the coordinates of genes subset from chr15

Usage

txsSel

Format

a GRanges object
txsSel

Value

NULL, but makes available the dataset
Index

combineInTAD, 2
combineWithLoops, 3
enhSel, 4
enhSelGR, 4
eprs, InTADSig-method, 5
filterGeneExpr, 5
findCorFromLoops, 6
findCorrelation, 7
fnSE, 7
geneCoords, 8
geneCoords, InTADSig-method
 (geneCoords), 8
get.enr.bg.normfit, 9
InTADSig, 9
InTADSig-class (InTADSig), 9
loadSigInTAD, 10
loopsDFSel, 11
mbAnnData, 11
newSigInTAD, 12
plotCorAcrossRef, 13
plotCorrelation, 14
rpkmCountsSel, 14
sigCoords, 15
sigCoords, InTADSig-method (sigCoords), 15
signals, 15
signals, InTADSig-method (signals), 15
tadGR, 16
txsSel, 16