Package ‘IntEREst’

March 14, 2024

Title Intron-Exon Retention Estimator
Version 1.26.0
Date 2022-05-11
Author Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Dario Greco <dario.greco@helsinki.fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>
Maintainer Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>
Description This package performs Intron-Exon Retention analysis on RNA-seq data (.bam files).
Depends R (>= 3.5.0), GenomicRanges, Rsamtools, SummarizedExperiment, edgeR, S4Vectors, GenomicFiles
Imports seqLogo, Biostrings, GenomicFeatures (>= 1.39.4), IRanges, seqinr, graphics, grDevices, stats, utils, grid, methods, DBI, RMySQL, GenomicAlignments, BiocParallel, BiocGenerics, DEXSeq, DESeq2
Suggests clinfun, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19
VignetteBuilder knitr
LazyData true
biocViews Software, AlternativeSplicing, Coverage, DifferentialSplicing, Sequencing, RNASeq, Alignment, Normalization, DifferentialExpression, ImmunoOncology
License GPL-2
NeedsCompilation no
git_url https://git.bioconductor.org/packages/IntEREst
git_branch RELEASE_3_18
git_last_commit 759bac6
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-13
R topics documented:

IntEREst-package .. 3
addAnnotation .. 3
annotateU12 .. 4
applyOverlap .. 7
attributes ... 9
boxplot-method ... 10
buildSsTypePwms .. 11
counts-method ... 14
deseqInterest ... 16
DEXSeqIntEREst ... 17
effectTestIntERest .. 18
getRepeatTable .. 21
glmInterest ... 22
interest .. 23
interest.sequential .. 26
InterestResult .. 30
interestResultIntEx ... 32
intexIndex ... 33
lfc .. 34
mdsChr22ExObj ... 36
mdsChr22IntSpObj .. 37
mdsChr22Obj .. 38
mergeInterestResult ... 39
plot-method .. 41
psi .. 43
pwmU12db .. 45
qlfInterest .. 46
readInterestResults ... 47
referencePrepare .. 49
subInterestResult ... 52
treatInterest ... 54
u12 .. 55
u12Boxplot ... 57
u12BoxplotNb ... 58
u12DensityPlot ... 59
u12Index .. 62
u12NbIndex ... 63
unionRefTr ... 64
updateRowDataCol .. 65

Index 67
Description

Intron/Exon retention estimator quantifies and normalizes Intron retention and Exon junction read levels by analyzing mapped reads (.bam) files.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>IntEREst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2015-11-18</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

To run the pipeline use functions `interest()` or `interest.sequential()`, i.e. wrapper functions that run all the necessary functions.

Author(s)

Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Dario Greco <dario.greco@helsinki.fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>

Maintainer: Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>

addAnnotation

Adding sample annotations to a SummarizedExperiment object

Description

Adds a new sample annotation to the SummarizedExperiment object. In other words it adds and column with sample annotations to the colData of the SummarizedExperiment object.

Usage

```
addAnnotation(x, sampleAnnotationType, sampleAnnotation)
```

Arguments

- `x` Object of type `SummarizedExperiment`.
- `sampleAnnotationType` The name of the new column to be added to the colData table of `SummarizedExperiment` object.
- `sampleAnnotation` Vector with the same length as the row-size of the colData attribute of the `SummarizedExperiment` object, which includes the sample annotations.
annotateU12

Annotate the U12 (and U2) type introns

Description

Receives coordinates, a reference genome and PWMs of splice site of U12 and U2 type introns, and returns a data.frame with 2 columns. The first column shows whether the corresponding sequences matches U12, U2 or both (U12/U2) consensus sequences (based on their score when fitting the PWMs). The second column shows whether the match is on positive strand or negative when fitting the PWMs to the sequences.

Usage

annotateU12(pwmU12U2=c(), pwmSsIndex=c(), referenceChr, referenceBegin, referenceEnd, referenceIntronExon, intronExon='intron', matchWindowRelativeUpstreamPos=c(), matchWindowRelativeDownstreamPos=c(), minMatchScore='80%', refGenome='', setNaAs='U2', annotateU12Subtype=TRUE, includeMatchScores=FALSE, ignoreHybrid=TRUE, filterReference)
Arguments

pwmU12U2
A list containing position weight matrices of (in order): Donor site, branch point, and acceptor site of U12-type introns, and donor site and acceptor site of U2-type introns. If not provided, the information related to pwmU12db data is used.

pwmSsIndex
A list (or vector) that contains the column number in each element of pwmU12U2 that represents the 5' or 3' Splice Site; The order should be equivalent to the pwmU12U2. If not provided the information from pwmU12db data is used, i.e. pwmSsIndex=list(indexDonU12=1,indexBpU12=1,indexAccU12=3,indexDonU2=1,indexAccU2=3)

referenceChr
Chromosome names of the references (e.g. introns).

referenceBegin
A vector that corresponds to the begin coordinates of the reference (e.g. introns).

referenceEnd
A vector that corresponds to the end coordinates of the reference (e.g. introns). referenceEnd should be greater than or equal to referenceBegin.

referenceIntronExon
A vector with the same size as the referenceChr, referenceBegin and referenceEnd which contains 'intron' and 'exon' describing what (either intron or exon) each element of the 3 vectors represents.

intronExon
Should be assigned either 'intron' or 'exon' or c('intron','exon') based on whether match the PWM to the intronic, exonic, or intronic and exonic regions of the reference. By default it seeks matches in intronic regions (intronExon='intron').

matchWindowRelativeUpstreamPos
A vector the same size as the pwmU12U2 (and the same order of donor/acceptor sites' information in pwmU12U2) which consists of the upstream distance from the donor/acceptor site from which each PWM should be tested (to see if they match). If not provided, the information from pwmU12db data is used i.e. matchWindowRelativeUpstreamPos=c(NA, -29, NA, NA, NA).

matchWindowRelativeDownstreamPos
A vector the same size as the pwmU12U2 (and the same order of donor/acceptor sites' information in pwmU12U2) which consists of the downstream distance from the donor/acceptor site to which each PWM should be tested (to see if they match). If not provided, the information from pwmU12db data is used i.e. matchWindowRelativeDownstreamPos=c(NA,-9, NA, NA, NA).

minMatchScore
Min percentage match score, when scoring matching of a sequence to pwm. Different score thresholds could also be defined for the various sites (U12/U2 donors, the U12 branch point and U12/U2 acceptors); A vector with 5 elements can be assigned which each shows the match score to use for each PWM in pwmU12U2.

refGenome
The reference genome; Object of class BSgenome. Use available.genome() from the BSgenome package to see the available genomes. DNAStringSet objects (from Biostrings package) and fasta files are also accepted as input.

setNaAs
Defines that if reference (e.g. intron) did not match any of U12 or U2 type introns based on the scores obtained from PWM what should the function return. If an intron was not proven to be U12 or U2 based on PWM scores it can be considered as U2-type since the U12 type introns constitute for about 1% of
introns in human genome and they are much more conserved than the U2 type introns, hence the default is 'U2'; otherwise it is also possible to set it as NA or nan or 'U12/U2'.

annotateU12Subtype
Whether annotate the subtypes of the U12 type Introns. The value is TRUE by default.

includeMatchScores
If set as TRUE the final data frame result includes the PWM match scores (FALSE by default).

ignoreHybrid
Whether ignore the U12 hybrid subtypes, i.e. GT-AC and AT-AG (TRUE by default).

filterReference
Optional parameter that can be defined either as a GRanges or SummarizedExperiment object. If defined as the latter, the first 3 columns of the rowData must be: chr name, start and end of the coordinates. If the parameter is defined the introns/exon coordinates will be mapped against it and the intron type of all those that do not match will be set as NA.

Value
Data frame containing 3 columns representing (in order): intron type (U12, U2 or none), strand match indicating whether the PWM matches to the sequence (+ strand) or the reverse complement of the sequence (- strand) or none (NA), and the U12 subtype (GT-AC or AT-AC). If includeMatchScores is set as TRUE further columns that include the PWM match scores will also be included.

Author(s)
Ali Oghabian

See Also
buildSsTypePwms.

Examples

```r
# Improting genome
BSgenome.Hsapiens.UCSC.hg19 <-
BSgenome.Hsapiens.UCSC.hg19::BSgenome.Hsapiens.UCSC.hg19
# Choosing subset of rows
ind<- 69:94
# Annotate U12 introns with strong U12 donor site, branch point
# and acceptor site from the u12 data in the package
annoU12<-
annotateU12(pwmU12U2=list(pwmU12db[[1]][,11:17],pwmU12db[[2]]
,pwmU12db[[3]][,38:40],pwmU12db[[4]][,11:17],
pwmU12db[[5]][,38:40]),
pwmSsIndex=list(indexDonU12=1, indexBpU12=1, indexAccU12=3,
indexDonU2=1, indexAccU2=3),
```
applyOverlap

```r
referenceChr=u12[ind, 'chr'],
referenceBegin=u12[ind, 'begin'],
referenceEnd=u12[ind, 'end'],
referenceIntronExon=u12[ind, "int_ex"],
intronExon="intron",
matchWindowRelativeUpstreamPos=c(NA, -29, NA, NA, NA),
matchWindowRelativeDownstreamPos=c(NA, -9, NA, NA, NA),
minMatchScore=c(rep(paste(80, ",", sep=""), 2), "60",
paste(80, ",", sep=""), "60"),
refGenome=BSgenome.Hsapiens.UCSC.hg19,
setNaAs="U2",
annotateU12Subtype=TRUE)
```

How many U12 and U2 type introns with strong U12 donor sites,
acceptor sites (and branch points for U12-type) are there?
table(annoU12[,1])

applyOverlap
Apply function over counts

Description

Runs a function on columns of the counts (assay) of a `SummarizedExperiment` object (resulted by `interest()`, `interest.sequential()` or `readInterestResults()`) based on the overlap of its exon/intron coordinates with those of another `SummarizedExperiment` object. The number of the rows and the dimensions of the counts of the result are equal to those of the subject. The function is applied on the query based on it's overlap to the subject.

Usage

```r
applyOverlap(
  query,
  subject,
  type="any",
  replaceValues=FALSE,
  intExCol="int_ex",
  intronExon="intron",
  subjectGeneNamesCol,
  repeatsTableToFilter=c(),
  scaleFragment=TRUE,
  scaleLength=TRUE,
  unmapValue=0,
  FUN=mean,
  ...
)
```
applyOverlap

Arguments

query, subject SummarizedExperiment objects resulted by interest(), interest.sequential() or readInterestResults() functions.
type The type of overlap. By default it considers any overlap. See findOverlaps-methods for more info.
replaceValues Whether return a 'SummarizedExperiment' object with new counts (resulted by running function) replaced.
intExCol Column name (or number) in the rowData of the objects that represents whether each row of the assay is "intron" or "exon".
intronExon Should be assigned either 'intron' or 'exon' or c('intron','exon') based on whether match the PWM to the intronic, exonic, or intronic and exonic regions of the reference. By default it seeks matches in intronic regions (intronExon='intron').
sujectGeneNamesCol The column in the row data of the subject that includes the gene names.
repeatsTableToFilter A data.frame table that includes chr,begin and end columns. If defined, all reads mapped to the described regions will be ingnored.
scaleFragment Logical value, indicating whether the retention levels must be scaled by (ge
newide) fragment levels.
scaleLength Logical value, indicating whether the retention levels must be scaled by length of the introns/exons.
unmapValue The value to assign to unmapped rows (i.e. introns/exons).
FUN The function to apply.
... Other parameter settings from aggregate() function.

Value

The returned value is a data frame if replaceValues is FALSE and it is SummarizedExperiment if replaceValues is TRUE.

Author(s)

Ali Oghabian

See Also

readInterestResults interest interest.sequential

Examples

mdsChr22obj
tmp<- applyOverlap(
 query=mdsChr22obj,
 subject=mdsChr22obj,
attributes

Extracting values of useful attributes of SummarizedExperiment objects

Description

Several functions are provided that can extract various attributes from an object of class SummarizedExperiment generated by IntEREst functions, e.g. interest(), interest, and readInterestResults. It is possible to extract sample annotations using getAnnotation function. One can also extract the scaled retention levels of the introns/exons using scaledRetention() function. Notes that colData and rowData methods of SummarizedExperiment class can also be used to extract row and column data.

Usage

getAnnotation(x)
scaledRetention(x)

Arguments

x Object of type SummarizedExperiment.

Value

Various data types (data.frame/vector) dependent on the function used. See the "Description" for more information.

Author(s)

Ali Oghabian

See Also

SummarizedExperiment-class addAnnotation counts-method plot-method
Examples

Retrieve the sample annotations from mdsChr22Obj
getAnnotation(mdsChr22Obj)
Retrieving the scaled retention levels from mdsChr22Obj
head(scaledRetention(mdsChr22Obj))

for row and column data SummarizedExperiment methods can be used
head(rowData(mdsChr22Obj))
colData(mdsChr22Obj)

boxplot-method

Description

boxplot method for SummarizedExperiment objects.

Usage

S4 method for signature 'SummarizedExperiment'
boxplot(x, sampleAnnoCol=NA,
 intexTypeCol="int_type", intexType=c(), col="white", boxplotNames=c(),
 lasNames=3, outline=FALSE, addGrid=FALSE, ...)

Arguments

x Object of type SummarizedExperiment generated by either interest(), interest.sequential() or readInterestResults().
sampleAnnoCol Which column of colData in x to consider for plotting.
intexTypeCol Column name (or number) that represents what type of intron/exon each row of x assays represents.
intexType A vector of characters describing types of introns/exons to be plotted. They must be elements in the intexTypeCol column of the rowData of x. rowData of x is a dataframe that includes various annotations of the introns/exons.
col Vector showing box colours. It is either of size 1 or the same size as the number of groups to be plotted.
boxplotNames Names to write under boxes. If not defined, as names, it pastes the row (intron/exon) annotation names to the sample group annotations separated by a space " ".
lasNames Orientation of the box names.
outline If outline is TRUE the outlier points are drawn otherwise if FALSE (default) they are not.
addGrid Whether add a grid under the boxplots (FALSE by default).
... Other arguments to pass to the boxplot() and axis function.
Value

Returns NULL.

Author(s)

Ali Oghabian

See Also

Class: SummarizedExperiment-class Method: counts-method plot-method

Examples

Plotting U12- vs U2-type introns
par(mar=c(8,4,2,1))
boxplot(x=mdsChr22Obj, sampleAnnoCol="type", intexTypeCol="intron_type",
intexType=c("U2", "U12"),
col=rep(c("yellow", "orange"),3),
boxplotNames=c(), lasNames=3, outline=FALSE,
addGrid=TRUE)

buildSsTypePwms

Building Position Weight Matrices for Splice Sites of U12 and U2 type introns.

Description

Builds position Weight Matrices for the donor and acceptor sites of the U12 and U2 type introns, and the branchpoint of the U12 type introns. If pdfFileSeqLogos is defined a pdf is also produced that contains the sequence logos of the results. The result is a list that contains PWMs of the splice sites of U12 and U2 dependent introns.

Usage

buildSsTypePwms(cexSeqLogo=1, pdfWidth=35, pdfHeight=10, tmpDir="/",
u12dbSpecies="Homo_sapiens",
pwmSource="U12DB",
u12DonorBegin, u12BranchpointBegin, u12AcceptorBegin,
u12DonorBegin, u2AcceptorBegin, u12DonorEnd,
u12BranchpointEnd, u2AcceptorEnd, u2DonorEnd,
u2AcceptorEnd, pasteSites=FALSE,
splicerackSsLinks=list(U12_AT_AC_donor=
"http://katahdin.mssm.edu/splice/out/9606_logo_file.25",
U12_AT_AC_branchpoint=
"http://katahdin.mssm.edu/splice/out/9606_logo_file.26",
U12_AT_AC_acceptor=...
"http://katahdin.mssm.edu/splice/out/9606_logo_file.29",
U12_GT_AG_donor="http://katahdin.mssm.edu/splice/out/9606_logo_file.22",
U12_GT_AG_branchpoint="http://katahdin.mssm.edu/splice/out/9606_logo_file.27",
U12_GT_AG_acceptor="http://katahdin.mssm.edu/splice/out/9606_logo_file.21",
U2_GC_AG_donor="http://katahdin.mssm.edu/splice/out/9606_logo_file.24",
U2_GC_AG_acceptor="http://katahdin.mssm.edu/splice/out/9606_logo_file.30",
U2_GT_AG_donor="http://katahdin.mssm.edu/splice/out/9606_logo_file.23",
U2_GT_AG_acceptor="http://katahdin.mssm.edu/splice/out/9606_logo_file.28"),
u12dbLink="https://genome.crg.cat/pub/software/u12/u12db_v1_0.sql.gz",
u12dbName="u12db", u12dbDropDb=TRUE, pdfFileSeqLogos="",
removeTempFiles=TRUE, ...

Arguments

cexSeqLogo Font size of sequence logo plots; used only if pdfFileSeqLogos is defined.
pdfWidth, pdfHeight The width and height of the graphics region of the pdf in inches. The default values are 35 and 10.
tmpDir Path to directory used for storing temporary files.
u12dbSpecies What species data to use when getting the data from the U12DB database (pwmSource="U12DB").
pwmSource The source used to buildSplice Sites of U12 and U2 type introns the PWM for U12 and U2 dependent introns. Default is U12DB; but also accepts SpliceRack.
u12DonorBegin, u12DonorEnd Integer values. They correspond to the begin and end point of the donor sequences of U12-type introns to consider (optional).
u12BranchpointBegin, u12BranchpointEnd Integer values. Begin and end points of the branch point sequences of U12-type introns (optional).
u12AcceptorBegin, u12AcceptorEnd Integer values. Begin and end points of the acceptor sequences of U12-type introns (optional).
u2DonorBegin, u2DonorEnd Integer values. Begin and end points of the donor sequences of U2-type introns (optional).
u2AcceptorBegin, u2AcceptorEnd Integer values. Begin and end points of the acceptor sequences of U2-type introns (optional).
pasteSites Logical. If TRUE the donor, branch point and acceptor seqs are pasted before a PWM is built; then the PWMs of each (donor, acceptor and bp) are assigned. If FALSE (default) the PWMs for each is built separately.
splicerackSsLinks
A list (or vector) that contains the SpliceRack URL links to the text files that contain Position Weigh Matrices of the splice sites of U12 and U2 introns. This parameter is used only when pwmSource="SpliceRack". You can get the links to PWM files from this URL (choose logo files with "File" links): http://katahdin.mssm.edu/splice/splice_matrix.cgi?database=spliceNew. The links should be defined in the following order: U12_AT_AC_donor, U12_AT_AC_branchpoint, U12_AT_AC_acceptor, U12_GT_AG_donor, U12_GT_AG_branchpoint, U12_GT_AG_acceptor, U2_GC_AG_donor, U2_GC_AG_acceptor, U2_GT_AG_donor, and U2_GT_AG_acceptor.

u12dbLink
A character string containing the URL for downloading the zipped MySQL dump file of the U12DB. Used when pwmSource="U12DB".

u12dbDbName
Name of the database copy of the U12DB that is build locally. Used when pwmSource="U12DB".

u12dbDropDb
Drop (or remove) the local copy of the U12DB database at the end of the run. Used when pwmSource="U12DB".

pdfFileSeqLogos
Path to PDF file containing the sequence logos of the results. By default it does not produce a file.

removeTempFiles
Whether remove temporary files at the end of the run; accepts TRUE or FALSE values (default is TRUE).

... Authorization arguments needed by the DBMS instance. See the manual for dbConnect of the DBI package for more info.

Value
pwmDonorU12 Matrix (with 4 rows representing A, C, G, T and n columns representing the genomic coordinates) representing the Position Weight Matrix of donor site of U12-type introns.
pwmBpU12 Position Weight Matrix of branchpoint of U12-type introns.
pwmAccU12 Position Weight Matrix of acceptor site of U12-type introns.
pwmDonU2 Position Weight Matrix of donor site of U2-type introns.
pwmAccU2 Position Weight Matrix of acceptor site of U2-type introns.

Author(s)
Ali Oghabian

See Also
annotateU12.

Examples
Time demanding function
Not run:
#Build temp directory
tmpDir<- tempdir()

Creating subdirectory for storing u12db temp files
dir.create(paste(tmpDir, "u12dbTmp", sep="/"))

Extracting PWMs of Splice Sites of U12 and U2 type introns -
based on u12db
u12dbPwm<- buildSsTypePwms(
 tmpDir=paste(tmpDir, "u12dbTmp", sep="/"),
 u12dbSpecies="Homo_sapiens",
 resource="U12DB",
 u12dbDbName="u12db",
 u12dbDropDb=TRUE,
 removeTempFiles=TRUE)

Creating subdirectory for storing SpliceRack temp files
dir.create(paste(tmpDir, "splicerackTmp", sep="/"))

Extracting PWMs of Splice Sites of U12 and U2 type introns -
based on SpliceRack
spliceRackPwm<- buildSsTypePwms(
 tmpDir= paste(tmpDir, "splicerackTmp", sep="/"),
 resource="SpliceRack",
 removeTempFiles=TRUE)

End(Not run)

counts-method
Counts - method

Description

Returns the (row) number of reads that are mapped to introns/exons in various samples.

Usage

```r
## S4 method for signature 'SummarizedExperiment'
counts(object)
```

Arguments

- **object**: Object of type SummarizedExperiment.

Value

Returns a numeric matrix.
counts-method

Author(s)
Ali Oghabian

See Also
Class: `SummarizedExperiment-class`
Method: `plot-method`.

Examples

```r
# Show contents of a InterestResults object included in IntEREst
head(counts(mdsChr22Obj))

# Make a test InterestResults object
geneId <- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)),
sep="_")
readCnt1 <- sample(1:100, 20)
readCnt2 <- sample(1:100, 20)
readCnt3 <- sample(1:100, 20)
readCnt4 <- sample(1:100, 20)
fpkm1 <- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2 <- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3 <- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4 <- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

# Creating object using test data
interestDat <- data.frame(
  int_ex=c(rep(c("exon","intron"),2),"exon"),4),
  int_ex_num= rep(c(1,1,2,2,3),4),
  gene_id=geneId,
  sam1_readCnt=readCnt1,
  sam2_readCnt=readCnt2,
  sam3_readCnt=readCnt3,
  sam4_readCnt=readCnt4,
  sam1_fpkm=fpkm1,
  sam2_fpkm=fpkm2,
  sam3_fpkm=fpkm3,
  sam4_fpkm=fpkm4
)
readFreqColIndex <- grep("._readCnt\$",colnames(interestDat))
scaledRetentionColIndex <- grep("._fpkm\$",colnames(interestDat))
scaledRetTmp <- as.matrix(interestDat[,scaledRetentionColIndex])
colnames(scaledRetTmp) <- gsub("._fpkm\$","", colnames(scaledRetTmp))
frqTmp <- as.matrix(interestDat[,readFreqColIndex])
colnames(frqTmp) <- gsub("._readCnt\$","", colnames(frqTmp))

InterestResultObj <- InterestResult(
  resultFiles=paste("file",1:4, sep="_"),
  rowData= interestDat[, -c(readFreqColIndex,}
### deseqInterest

**DESeq2 analysis for IntEREst object**

**Description**

Differential intron retention test adapted from the DESeq2 package.

**Usage**

```r
deseqInterest(x, design, pAdjustMethod = "BH",
sizeFactor = c(), contrast, bpparam, ...)
```

**Arguments**

- `x`: Object of type `SummarizedExperiment`.
- `design`: Formula specifying the design of the experiment. It must specify an interaction term between variables from column names of `sampleData(x)`.
- `pAdjustMethod`: What adjustment method to be used on the p-values. See `p.adjust` for more information.
- `sizeFactor`: Numeric vector with the same size as the column size of the count matrix in `x`, if defined it will be used for scaling of the count matrix.
- `contrast`: Argument specifying the comparison to extract from `x`. See `results` function in the DESeq2 package for more information.
- `bpparam`: An optional `BiocParallelParam` instance defining the parallel back-end to be used. If not defined the function will run sequentially (on a single computing core).
- `...`: Other parameter settings for the `results` function in the DESeq2 package.

**Value**

A `DESeqResults` object.
DEXSeqIntEREst

Author(s)
Ali Oghabian

See Also

exactTestInterest qlfInterest, treatInterest DEXSeqIntEREst

Examples

mdsChr22IntObj<- mdsChr22Obj[rowData(mdsChr22Obj)$int_ex=="intron",]
deseqRes<- deseqInterest(x=mdsChr22IntObj,
  design="test_ctrl", contrast=list("test_ctrl_test_vs_ctrl"))

# Number of U12/U2 type significantly differential retained introns in chr22
  table(rowData(mdsChr22Obj)[which(deseqRes$padj<.01), "intron_type"])

---

DEXSeqIntEREst

**DEXSeq test for IntEREst object**

Description

Genewise differential exon usage or intron retention test adapted from the DEXSeq package.

Usage

DEXSeqIntEREst (x, design, reducedModel = ~ sample + intex, fitExpToVar,
  intExCol, geneIdCol, bpparam, silent=TRUE,...)

Arguments

- **x**: Object of type SummarizedExperiment.
- **design**: Formula specifying the design of the experiment. It must specify an interaction term between a variable from columns of sampleData(x) with one of the 'exon', 'intron' or 'intex' (i.e. intron and exon) variables; based on which of these variables are used (exon, intron , or 'intex') the x will be filtered relatively to include exons, introns , or introns and exons. See DEXSeqDataSet for more information.
- **reducedModel**: The null model formula. By default it is `~ sample + intex`.
- **fitExpToVar**: A variable name contained in the column data (i.e. column names of colData(x)). See DEXSeq for more information.
- **intExCol**: Column name (or number) that represents whether each row is "intron" or "exon" in rowData of x.
- **geneIdCol**: Column name (or number of column) in rowData of x, i.e. SummarizedExperiment object, that represents the gene ID of the introns and exons in x.
- **bpparam**: An optional BiocParallelParam instance defining the parallel back-end to be used.
silent

Whether run the DEXSeq function silently (if TRUE) or allow it to print messages at each step (if FALSE).

...  

Other parameter settings for the DEXSeqDataSet function in the DEXSeq package.

Details

The design and reduceModel accept formula that specify the design of the experiment. The formula must describe an interaction between variables from columns of sampleData(x) with one of the 'exon', 'intron' or 'intex' (i.e. intron and exon) variables; Based on which of these variables are used (exon, intron , or 'intex') the input object (x) will be filtered relatively to include exons, introns , or introns and exons. Hence the number of the rows of the returned value is equal to the number of the rows of the filtered object, i.e. the number of the exons, introns or both based on the design formula.

Value

A DEXSeqResults object.

Author(s)

Ali Oghabian

See Also

exactTestInterest

Examples

dexseqExRes<-DEXSeqIntEREst (x=mdsChr22ExObj,  
design= ~ sample + exon + test_ctrl:exon,  
reducedModel = ~ sample + exon, fitExpToVar="test_ctrl",  
intExCol="int_ex", geneIdCol="transcripts_id", silent=TRUE)  
head(dexseqExRes)

exactTestInterest

Exact test

Description

Compute genewise exact test between two groups of read counts, using the edgeR package.

Usage

exactTestInterest(x, sampleAnnoCol=c(), sampleAnnotation=c(),  
geneIdCol, silent=TRUE, group=c(), rejection.region="doubletail",  
big.count=900, prior.count=0.125, disp="common", ...)

exactTestInterest

Exact test
Arguments

- **x**: Object of type `SummarizedExperiment`.
- **sampleAnnoCol**: Which column in `colData` of `x` to consider for the analysis.
- **sampleAnnotation**: A vector of size 2 containing values from `colData` of `SummarizedExperiment` object; e.g. `if getAnnotation(x)[, sampleAnnoCol] = c("test", "test", "ctrl", "ctrl", ...)`, and the goal is to compare "test" and "ctrl" samples, `sampleAnnotation` should either be `c("test", "ctrl")` or `c("ctrl", "test")`.
- **geneIdCol**: Column name (or number of column) in `rowData` of `x`, i.e. `SummarizedExperiment` object, that represents the gene ID of the introns and exons in `x`.
- **silent**: Whether run the function silently, i.e. without printing the top differential expression tags.
- **group**: Vector to manually define the sample groups (or annotations). It is ignored if `sampleAnnoCol` is defined.
- **rejection.region**: The `rejection.region` parameter in `exactTest` from `edgeR` package.
- **big.count**: The `big.count` parameter in `exactTest` from `edgeR` package.
- **prior.count**: The `prior.count` parameter in `exactTest` from `edgeR` package.
- **disp**: The type of estimating the dispersion in the data. Available options are: "tag-wise", "trended", "common" and "genewise". It is also possible to assign a number for manually setting the `disp`.
- **...**: Other parameter settings for the `estimateDisp` function (e.g. the `design` parameter) in the `edgeR` package.

Value

- **table**: Data frame containing columns for the log2 fold-change (logFC), the average of log2 counts-per-million (logCPM), and the two-sided p-value (PValue).
- **comparison**: The name of the two compared groups.
- **dispersionType**: The name of the type of dispersion used.
- **dispersion**: The estimated dispersion values.

Author(s)

- Ali Oghabian

See Also

- `lfc`, `glmInterest`, `qlfInterest`, `treatInterest`, `DEXSeqIntEREst`
```r
Examples

geneId <- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)), sep="_")
readCnt1 <- sample(1:100, 20)
readCnt2 <- sample(1:100, 20)
readCnt3 <- sample(1:100, 20)
readCnt4 <- sample(1:100, 20)
fpkm1 <- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2 <- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3 <- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4 <- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

Creating object using test data
interestDat <- data.frame(
 int_ex=rep(c(rep("exon","intron"),2),"exon"),4),
 int_ex_num= rep(c(1,1,2,2,3),4),
 gene_id= geneId,
 sam1_readCnt= readCnt1,
 sam2_readCnt= readCnt2,
 sam3_readCnt= readCnt3,
 sam4_readCnt= readCnt4,
 sam1_fpkm= fpkm1,
 sam2_fpkm= fpkm2,
 sam3_fpkm= fpkm3,
 sam4_fpkm= fpkm4
)
readFreqColIndex <- grep("_readCnt$", colnames(interestDat))
scaledRetentionColIndex <- grep("_fpkm$", colnames(interestDat))

scalRetTmp <- as.matrix(interestDat[, scaledRetentionColIndex])
colnames(scalRetTmp) <- gsub("_fpkm$", "", colnames(scalRetTmp))

frqTmp <- as.matrix(interestDat[, readFreqColIndex])
colnames(frqTmp) <- gsub("_readCnt$", "", colnames(frqTmp))

InterestResultObj <- InterestResult(
 resultFiles=paste("file",1:4, sep="_"),
 rowData= interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
 counts= frqTmp,
 scaledRetention= scalRetTmp,
 scaleLength=TRUE,
 scaleFragment=FALSE,
 sampleAnnotation=data.frame(
 sampleName= paste("sam", 1:4, sep=""),
 gender= c("M","M","F","F"),
 row.names= paste("sam", 1:4, sep=""))
)

res <- exactTestInterest(InterestResultObj, sampleAnnoCol="gender",
...)
```

---

The code above demonstrates how to use the `exactTestInterest` function. It starts by defining gene identifiers and read counts for each sample, followed by the calculation of FPKM values. Then, it creates a data frame `interestDat` with additional columns for read counts and FPKM values. After selecting the relevant columns, it passes this data to the `InterestResult` function, along with other parameters like file names and sample annotations, to create an object. Finally, it applies the `exactTestInterest` function to this object, passing the desired sample annotation column for the test.
getRepeatTable

```r
generateAnnotation=c("F","M"), geneIdCol= "gene_id",
silent=TRUE, disp="common")
```

---

**getRepeatTable**  
*Get table of regions with repetitive DNA sequences*

**Description**

This function returns a data.frame that includes regions with repetitive DNA sequences. These sequences can bias the mapping of the reads to the genome excluding them will remove the bias.

**Usage**

```r
generateRepeatTable(dbUser="genome",
dbHost="genome-mysql.cse.ucsc.edu", ucscGenome="hg19",
ucscTable="rmsk", minLength=0, repFamilyFil="Alu",
repFamilyCol="repFamily", repChrCol="genoName",
repBegCol="genoStart", repEndCol="genoEnd",
repStrandCol="strand", repNameCol="repName",
repClassCol="repClass")
```

**Arguments**

- **dbUser**: Database user name; set as "genome" by default.
- **dbHost**: Database host address; set as "genome-mysql.cse.ucsc.edu" by default.
- **ucscGenome**: The UCSC genome.
- **ucscTable**: The UCSC table name. The table with repetitive sequences by default it is set as "rmsk".
- **minLength**: the minimum length criteria to consider the repetitive sequences. the default setting is 0.
- **repFamilyFil**: A vector including the repeats family to consider. By default the "Alu" elements are considered.
- **repFamilyCol**: The name of the column of the input table (ucscTable) that represents the repeats family.
- **repChrCol**: The column (either name or the number of the column) of the input table that represents the Chromosome names.
- **repBegCol**: The column of the table that represents the start coordinates.
- **repEndCol**: The column of the table that represents the end coordinates.
- **repStrandCol**: The column of the table that represents the strand.
- **repNameCol**: The column of the table representing the repeats' names.
- **repClassCol**: The column of the table representing the repeats' classes.
**glmInterest**

**Value**

Data frame with columns representing coordinates and annotations of repetitive DNA elements.

**Author(s)**

Ali Oghabian

**Examples**

```r
Not run:
Download table for Alu elements in the human genome
suppressWarnings(repTable<- getRepeatTable(repFamilyFil="Alu",
ucscGenome="hg19"))
End(Not run)
```

---

**glmInterest**

*generalized linear model likelihood ratio tests*

**Description**

Compute generalized linear model likelihood ratio tests using edgeR package. For more information see `glmfit` and `glmLRT()` functions in edgeR package.

**Usage**

```r
glmInterest(x, design=c(), silent=TRUE, disp="common",
coef=c(), contrast=NULL, ...)
```

**Arguments**

- `x` Object of type `SummarizedExperiment`.
- `design` Design matrix.
- `silent` Whether run the function silently, i.e. without printing the top differential expression tags. Default is TRUE.
- `disp` The method of estimating the dispersion in the data. Available options are: "common", "trended", "tagwiseInitCommon" and "tagwiseInitTrended". It is also possible to assign a number.
- `coef` Integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. See `glmLRT()` in edgeR for more information.
- `contrast` Numeric vector or matrix specifying contrasts of the linear model coefficients to be tested equal to zero. See `glmLRT()` in edgeR for more information.
- `...` Other parameter settings for the `glmLRT()` function in the edgeR package.
**Value**

All values produced by glmLRT in edgeR package plus following:

- **dispersionType**  The name of the type of dispersion used.
- **dispersion**  The estimated dispersion values.

**Author(s)**

Ali Oghabian

**See Also**

exactTestInterest, qlfInterest, treatInterest

**Examples**

```
Test retention differentiation across the 3 types of samples
group <- getAnnotation(mdsChr22Obj)[, "type"]
glmRes <- glmInterest(x=mdsChr22Obj,
design=model.matrix(~group), silent=TRUE,
disp="tagwiseInitTrended", coef=2:3, contrast=NULL)
```

---

**Description**

A read summarization function that counts all the reads mapping to the introns/exons based on the users detailed parameter settings. The process can be run in parallel on multiple computing cores to improve its performance.

**Usage**

```
interest(bamFileYieldSize=1000000, bamFile, isPaired,
isPairedDuplicate=FALSE, isSingleReadDuplicate= NA, reference,
referenceGeneNames, referenceIntronExon, repeatsTableToFilter=c(),
junctionReadsOnly=FALSE, outFile, logFile="",
returnObj= FALSE, method=c("ExEx", "IntRet", "IntSpan", "ExSkip"),
strandSpecific,
bpparam, appendLogFile=FALSE, sampleName="",
scaleLength= c(TRUE,FALSE), scaleFragment= c(TRUE,TRUE),
limitRanges=GRanges(),
excludeFusionReads=FALSE,
loadLimitRangesReads=FALSE,...)
```
Arguments

bamFileYieldSize
Maximum number of pair reads in the temporary files created as the result of
dividing the input .bam file.

bamFile
Path of the input bam file.

isPaired
Whether the bam file is the result of a paired end sequencing read mapping
(TRUE) or not (FALSE).

isPairedDuplicate
Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR
duplicates for paired mapped reads. It uses the FLAG field in the bam file
to filter the duplicate read. If the mapping software does not support detection
and flagging the duplicate reads dedup tool of BamUtil or MarkDuplicates of
Picard tools could be used.

isSingleReadDuplicate
Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR
duplicates for single mapped reads.

reference
Dataframe to be used as reference; It should at least contain three same-size
vectors with the tag names chr, begin, and end which describe the exons and
introns genome coordinates. It also accepts a GRanges object. To build a new
reference check the referencePrepare function.

referenceGeneNames
A vector with the same size as the row-size of the reference which includes the
gene names of the reference.

referenceIntronExon
A vector with the same size as the row-size of the reference with values "in-
tron" and "exon" describing which (intron or exon) each row of the reference
represents.

repeatsTableToFilter
A data.frame table with similar structure to the reference. It includes chr,
begin, and end columns. If defined, all reads mapped to the described regions
would be ingnored and the Intron/exon lengths would be corrected to exclude the
to exclude the regions with repetitive DNA sequences. See getRepeatTable.

junctionReadsOnly
The parameter is considered if the method is set as IntRet or ExEx (NOT
IntSpan). It declares whether only consider the Intron-Exon or Exon-Exon
junction reads and ignore the reads that fully map to exons or introns. By de-
fault this argument is set as FALSE.

outFile
The name or path of the result file.

logFile
The log file path; if defined log information are written to the log file.

returnObj
If set TRUE in addition to making result text files, the results would also be re-
turned as an object of class SummarizedExperiment.

method
A vector describing the summarization methods to use; i.e. whether count reads
mapping to the introns (IntRet), reads mapping to the exons (ExEx), reads span-
ning the introns (IntSpan), or reads that skip the exons (ExSkip). In IntSpan
mode the introns in the reference are taken into account only; whilst in IntRet
the introns and their spanning exons, and in ExEx and ExSkip mode only the exons in the reference are taken into account.

**strandSpecific**
The description for strand specificity of the RNAseq data. The values are either "unstranded", "stranded", or "reverse". If the reads are not strand specific or directional use "unstranded". If the first read in paired-read sequencing or the reads single-read sequencing is in the same direction as the the transcript strand use "stranded". If the first read in paired-read sequencing or the reads in single-read sequencing is in the opposite direction to the transcript strand use "reverse".

**bpparam**
An optional BiocParallelParam instance defining the parallel back-end to be used.

**appendLogFile**
Whether log information should be appended to the logfile. It is set FALSE by default.

**sampleName**
The name of the sample being analyzed. It will be included in the returned object if returnObj is TRUE.

**scaleLength**
A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to their lengths.

**scaleFragment**
A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to the sum of retention levels (i.e. mapped fragments) over the genes.

**limitRanges**
A GRanges object. If defined it loads sequencing reads that fall in the defined coordinates. It is similar to which parameter in ScanBamParam.

**excludeFusionReads**
Only valid if limitRanges is defined. It filters the defined by limitRanges. It also filters the read pairs if each read pair maps reads pairs where one of the reads either do not fall into one of the regions to a different region defined in limitRanges. It is useful to ignore analyzing the chimeric reads and fusion reads, i.e. reads that map to fusion genes. To filter properly, limitRanges must include coordinates of all genes.

**loadLimitRangesReads**
Boolean (TRUE/FALSE) variable. If set as TRUE only the reads in the limitRanges are loaded from bam file (and bamFileYieldSize parameter will be ignored).

... Other parameter settings specific to BamFile-class function in the Rsamtools package. Parameters qnamePrefixEnd and qnameSuffixStart are in particular useful to modify qnames in the BAM files.

**Value**

If returnObj is set TRUE in addition to making result text files, dependant on whether a single or two method is defined, the results would be returned as a single object of class SummarizedExperiment or as a list of size 2 which includes 2 objects of class SummarizedExperiment one for Int Ret and the other for ExEx.
**Examples**

```r
Creating temp directory to store the results
outDir <- file.path(tempdir(), "interestFolder")
dir.create(outDir)
outDir <- normalizePath(outDir)

Loading suitable bam file
bamF <- system.file("extdata", "small_test_SRR1691637_ZRSR2Mut_RHBDD3.bam", package="IntEREst", mustWork=TRUE)

Choosing reference for the gene RHBDD3
ref <- u12[, "gene_name" == "RHBDD3",]

test <- interest(
bamFileYieldSize=10000,
bamFile=bamF,
isPaired=TRUE,
isPairedDuplicate=FALSE,
isSingleReadDuplicate=NA,
reference=ref,
referenceGeneNames=ref[,"ens_gene_id"],
referenceIntronExon=ref[,"int_ex"],
repeatsTableToFilter=c(),
outFile=paste(outDir, "interestRes.tsv", sep="/"),
logFile=paste(outDir, "log.txt", sep="/"),
method=c("IntRet", "IntSpan"),
strandSpecific="unstranded",
junctionReadsOnly=FALSE,
returnObj=TRUE,
scaleLength= c(TRUE,FALSE),
scaleFragment= c(TRUE,TRUE))

test
```

**interest.sequential**

Wrapup function: Sequential running
Description

A read summarization function that counts all the reads mapping to the introns/exons based on
the users detailed parameter settings. The process runs on a single computing core.

Usage

```r
interest.sequential(bamFileYieldSize=1000000, bamFile, isPaired,
 isPairedDuplicate=FALSE, isSingleReadDuplicate=NA,
 reference, referenceGeneNames,
 referenceIntronExon, repeatsTableToFilter=c(),
 junctionReadsOnly=FALSE, outFile, logFile="",
 returnObj= FALSE, method=c("ExEx", "IntRet", "IntSpan", "ExSkip"),
 strandSpecific, appendLogFile=FALSE, sampleName="",
 scaleLength= c(TRUE,FALSE), scaleFragment= c(TRUE,TRUE),
 limitRanges=GRanges(),
 excludeFusionReads=FALSE,
 loadLimitRangesReads=FALSE, ...)
```

Arguments

- **bamFileYieldSize**: Maximum number of paired Reads in the temporary files created as the result of dividing the input .bam file.
- **bamFile**: Path of the input bam file.
- **isPaired**: Whether the bam file is the result of a paired end sequencing read mapping (TRUE) or not (FALSE).
- **isPairedDuplicate**: Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR duplicates for paired mapped reads. It uses the FLAG field in the bam file to filter the duplicate read. If the mapping software does not support detection and flaging the duplicate reads dedup tool of BamUtil or MarkDuplicates of Picard tools could be used.
- **isSingleReadDuplicate**: Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR duplicates for single mapped reads.
- **reference**: Dataframe to be used as reference; It should at least contain three same-size vectors with the tag names chr, begin, and end which describe the genome coordinates of the introns and exons. It also accepts a GRanges object as input. To build a new reference check the referencePrepare function.
- **referenceGeneNames**: A vector with the same size as the row-size of the reference which include the gene names.
- **referenceIntronExon**: A vector with the same size as the row-size of the reference with values "intron" and "exon" describing which (intron or exon) each row of the reference represents.
repeatsTableToFilter
A data frame with similar structure as the reference, i.e. includes chr, begin, and end columns. If defined, all reads mapped to the described regions would be ignored and the Intron/exon lengths would be corrected to exclude the regions with repetitive DNA sequences. See getRepeatTable.

junctionReadsOnly
The parameter is considered if the method is set as IntRet or ExEx (NOT IntSpan). It declares whether only consider the Intron-Exon or Exon-Exon junction reads and ignore the reads that fully map to exons or introns. By default this argument is set as FALSE.

 outFile
The name or path of the result file.

 logFile
The log file path; if defined log information are written to the log file.

 returnObj
If set TRUE in addition to producing result text files, the results would also be returned as an object of class SummarizedExperiment.

 method
A vector describing the summarization methods to use; i.e. whether count reads mapping to the introns (IntRet), reads mapping to the exons (ExEx), reads spanning the introns (IntSpan), or reads that skip the exons (ExSkip). In IntSpan mode the introns in the reference are taken into account only; whilst in IntRet the introns and their spanning exons, and in ExEx and ExSkip mode only the exons in the reference are taken into account.

 strandSpecific
The description for strand specificity of the RNAseq data. The values are either "unstranded", "stranded", or "reverse". If the reads are not strand specific or directional use "unstranded". If the first read in paired-read sequencing or the reads single-read sequencing is in the same direction as the the transcript strand use "stranded". If the first read in paired-read sequencing or the reads in single-read sequencing is in the opposite direction to the transcript strand use "reverse".

 appendLogFile
Whether log information should be appended to the logFile. It is FALSE by default.

 sampleName
The name of the sample being analyzed. It will be included in the returned object if returnObj is TRUE.

 scaleLength
A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to their lengths.

 scaleFragment
A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to the sum of retention levels (i.e. mapped fragments) over the genes.

 limitRanges
A GRanges object. If defined it only loads sequencing read if they fall in the defined coordinates. It is similar to which parameter in ScanBamParam.

 excludeFusionReads
Only valid if limitRanges is defined. It filters the defined by limitRanges. It also filters the read pairs if each read pair maps reads pairs where one of the reads either do not fall into one of the regions to a different region defined in limitRanges. It is useful to ignore analyzing the chimeric reads and fusion reads, i.e. reads that map to fusion genes. To filter properly, limitRanges must include coordinates of all genes.
loadLimitRangesReads

Boolean (TRUE/FALSE) variable. If set as TRUE only the reads in the limitRanges are loaded from bam file (and bamFileYieldSize parameter will be ignored).

Other parameter settings specific to BamFile-class function in the Rsamtools package. Parameters qnamePrefixEnd and qnameSuffixStart are in particular useful to modify qnames in the BAM files.

Value

If returnObj is set TRUE in addition to making result text files, dependant on whether a single or two method is defined, the results would be returned as a single object of class SummarizedExperiment or as a list of size 2 which includes 2 objects of class SummarizedExperiment one for IntRet and the other for ExEx.

Author(s)

Ali Oghabian

See Also

interest.

Examples

# Creating temp directory to store the results
outDir<- file.path(tempdir(),"interestFolder")
dir.create(outDir)
outDir<- normalizePath(outDir)

# Loading suitable bam file
bamF <- system.file("extdata","small_test_SRR1691637_ZRSR2Mut_RHBDD3.bam", package="IntEREst", mustWork=TRUE)

# Choosing reference for the gene RHBDD3
ref=u12[u12[,"gene_name"]=='RHBDD3',]

test= interest.sequential(
bamFileYieldSize=10000,
bamFile=bamF,
isPaired=TRUE,
isPairedDuplicate=FALSE,
isSingleReadDuplicate=NA,
reference=ref,
referenceGeneNames=ref[,"ens_gene_id"],
referenceIntronExon=ref[,"int_ex"],
repeatsTableToFilter=c(),
outFile=paste(outDir,
"interestRes.tsv", sep="/"),
logFile=paste(outDir,"interest.log"),
outDir=outDir,
returnObj=TRUE)

...
```
"log.txt", sep="/"),
method=c("IntRet","IntSpan"),
strandSpecific="unstranded",
returnObj=TRUE,
scaleLength= c(TRUE,FALSE),
scaleFragment= c(TRUE,TRUE)
)

test
```

---

### InterestResult

**Building SummarizedExperiment object from results in IntEREst.**

**Description**

Calls the constructors and creates a `SummarizedExperiment` object. For more information on the resulted object and the class see `SummarizedExperiment-class`.

**Usage**

```r
InterestResult(resultFiles=c(), counts, scaledRetention,
scaleLength, scaleFragment, sampleAnnotation, rowData)
```

**Arguments**

- `resultFiles`: Vector of link to the result files of interest.
- `counts`: Numeric Matrix that includes the read counts.
- `scaledRetention`: Matrix that includes the scaled retention values.
- `scaleLength`: Logical value, indicating whether the intron/exon retention levels are scaled to the length of the introns/exons.
- `scaleFragment`: Logical value, indicating whether the intron/exon retention levels are scaled to the fragments mapped to the genes.
- `sampleAnnotation`: Data frame with the row-size equal to the size of `resultFiles` and `sampleAnnotation`. Each column of the matrix represents annotations for the samples. Column name represents annotation name.
- `rowData`: Data frame with Intron/Exon annotations and read count and scaled retention values for each sample.

**Value**

Returns an object of class `SummarizedExperiment`.

**Author(s)**

Ali Oghabian


**See Also**

SummarizedExperiment-class attributes addAnnotation counts-method plot-method

**Examples**

geneId <- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)), sep="_")
readCnt1 <- sample(1:100, 20)
readCnt2 <- sample(1:100, 20)
readCnt3 <- sample(1:100, 20)
readCnt4 <- sample(1:100, 20)
fpkms1 <- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkms2 <- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkms3 <- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkms4 <- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

# Creating object using test data
interestDat <- data.frame(
  int_ex=rep(c(rep(c("exon","intron"),2),"exon"),4),
  int_ex_num= rep(c(1,1,2,2,3),4),
  gene_id= geneId,
  sam1_readCnt= readCnt1,
  sam2_readCnt= readCnt2,
  sam3_readCnt= readCnt3,
  sam4_readCnt= readCnt4,
  sam1_fpkm=fpkms1,
  sam2_fpkm=fpkms2,
  sam3_fpkm=fpkms3,
  sam4_fpkm=fpkms4
)
readFreqColIndex <- grep("_readCnt$", colnames(interestDat))
scaledRetentionColIndex <- grep("_fpkm$", colnames(interestDat))
scaledRet TMP <- as.matrix(interestDat[, scaledRetentionColIndex])
colnames(scalRet TMP) <- gsub("_fpkm$", "", colnames(scalRet TMP))
frq TMP <- as.matrix(interestDat[, readFreqColIndex])
colnames(frq TMP) <- gsub("_readCnt$", "", colnames(frq TMP))

InterestResultObj <- InterestResult(
  resultFiles=paste("file",1:4, sep="_"),
  rowData= interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
  counts= frq TMP,
  scaledRetention= scalRet TMP,
  scaleLength=TRUE,
  scaleFragment=FALSE,
  sampleAnnotation=data.frame(
    sampleName= paste("sam",1:4, sep=""),
    gender=c("M","M","F","F"), row.names=paste("sam", 1:4, sep="")
)
interestResultIntEx

Building results object that contains Intron-retention and exon-exon junction information

Description

Building `SummarizedExperiment-class` object from an intron retention and an exon-exon junction results in IntEREst. The average of the junction levels are added to the `SummarizedExperiment` object of the intron retentions.

Usage

```r
interestResultIntEx (intObj, exObj, intExCol=c(), mean.na.rm=TRUE, postExName="ex_junc")
```

Arguments

- `intObj` A `SummarizedExperiment` including intron retention information.
- `exObj` A `SummarizedExperiment` including exon-exon junction information.
- `intExCol` Column name (or number) in the `rowData` of the intron object that represents whether each row of x assays is "intron" or "exon".
- `mean.na.rm` Whether exclude missing values when measuring the mean.
- `postExName` The postfix to use for the column names of the exons junction values in the

Value

Returns an object of class `SummarizedExperiment`.

Author(s)

Ali Oghabian

See Also

- `SummarizedExperiment-class`
- `attributes`
- `addAnnotation`
- `counts-method`
- `plot-method`
Examples

testIntObj <- InterestResult(
  resultFiles= paste(paste("testFile",1:3, sep="_"),"bam", sep="."),
  counts= matrix(1:15, ncol=3, nrow=5, byrow=TRUE, 
  dimnames= list(c(), paste("s", 1:3, sep="_"))), 
  scaledRetention= matrix(1:15, ncol=3, nrow=5, byrow=TRUE, 
  dimnames= list(c(), paste("s", 1:3, sep="_"))), 
  scaleLength= FALSE, 
  scaleFragment= FALSE, 
  sampleAnnotation= data.frame( 
    files=paste(paste("testFile",1:3, sep="_"),"bam", sep="."), 
    names=paste("s", 1:3, sep="_"), 
    row.names=paste("s", 1:3, sep="_"), 
    rowData=data.frame(id= paste("i", 1:5, sep="_"), 
      chr= rep("chr1", 5), 
      begin=seq(100, by=100, length.out=5 ), 
      end=seq(110, by=100, length.out=5 ), 
      strand=rep("+",5) 
  )
)

testExObj <- InterestResult(
  resultFiles= paste(paste("testFile",1:3, sep="_"),"bam", sep="."),
  counts= matrix(1:30, ncol=3, nrow=10, byrow=TRUE, 
  dimnames= list(c(), paste("s", 1:3, sep="_"))), 
  scaledRetention= matrix(1:30, ncol=3, nrow=10, byrow=TRUE, 
  dimnames= list(c(), paste("s", 1:3, sep="_"))), 
  scaleLength= FALSE, 
  scaleFragment= FALSE, 
  sampleAnnotation= data.frame( 
    files=paste(paste("testFile",1:3, sep="_"),"bam", sep="."), 
    names=paste("s", 1:3, sep="_"), 
    row.names=paste("s", 1:3, sep="_"), 
    rowData=data.frame(id= paste("e", 1:10, sep="_"), 
      chr= rep("chr1", 10), 
      begin= c(seq(90, by=100, length.out=5), 
      seq(111, by=100, length.out=5)), 
      end= c(seq(99, by=100, length.out=5), 
      seq(120, by=100, length.out=5 )), 
      strand=rep("+",10) 
  )
)

(testIntExObj<- interestResultIntEx(intObj=testIntObj, exObj=testExObj, 
  mean.na.rm=TRUE, postExName="ex_junc") )

intexIndex

Extract index of intron or exon rows
Description

Extract row numbers where introns (or exons dependant on user's request) are located in an object of type SummarizedExperiment.

Usage

intexIndex(x, intExCol="int_ex", what="intron")

Arguments

- **x**: Object of type SummarizedExperiment.
- **intExCol**: Column name (or number) that represents whether each row is "intron" or "exon" in rowData of x.
- **what**: A character string that defines whether the index for the introns or exons should be returned. Accepts either "exon" or "intron" (default) as values.

Value

A numeric vector which includes the index of the introns/exons.

Author(s)

Ali Oghabian

See Also

u12NbIndex

Examples

# Show the few first index of rows that represent the introns
head(intexIndex(mdsChr22Obj, what="intron"))

---

lfc

*Log fold change*

Description

Log fold change estimation and normalized log fold change using edgeR package.

Usage

lfc(x, fcType="edgeR", sampleAnnoCol=c(), sampleAnnotation=c(), silent=TRUE, group=c(), rejection.region="doubletail", pseudoCnt=1, log2=TRUE, ...)

---
Arguments

x Object of type SummarizedExperiment.

fcType Available as "scaledRetention" or "edgeR" (as default) corresponding to either log fold change of scaled retention values or degeR normalized log fold change values.

sampleAnnoCol Which column of colData of x to consider for the analysis.

sampleAnnotation A vector of size 2 which contains values from colData of SummarizedExperiment object: e.g. if getAnnotation(x)[, sampleAnnoCol] = c("test", "test", "ctrl", "ctrl", ...), and the goal is to compare "test" and "ctrl" samples, sampleAnnotation should either be c("test", "ctrl") or c("ctrl", "test").

silent Whether run exactTestInterest silently, without warnings.

group Vector to manually define the sample groups (or annotations). It is ignored if sampleAnnoCol is defined.

rejection.region The rejection.region parameter in exactTest, considered only if fcType is "edgeR".

pseudoCnt Pseudo count for log transformation (default=1).

log2 Logical value either TRUE (default) or FALSE indicating whether the fold-changes should be log 2 transformed.

... Other parameter settings from the exactTestInterest function.

Value
Vector including fold change values.

Author(s)
Ali Oghabian

See Also
exactTestInterest, u12DensityPlotIntron

Examples
lfcFpkm<- lfc(mdsChr22Obj, fcType="scaledRetention", sampleAnnoCol="test_ctrl", sampleAnnotation=c("ctrl", "test"), silent=TRUE, group=c(), pseudoFpkm=1, log2=TRUE)

lfcEdgeRFpkm<- lfc(mdsChr22Obj, fcType="edgeR", sampleAnnoCol="test_ctrl", sampleAnnotation=c("ctrl", "test"), silent=TRUE, group=c(), pseudoFpkm=1, log2=TRUE)
Object of `SummarizedExperiment` type for exon-exon junction of MDS data

Description

The results of `interest()` analysis in exon-exon junction mode, for the genes that feature U12-type introns and are located on Chr22 in MDS data.

Usage

```r
data(mdsChr22ExObj)
```

Format

An object of class `SummarizedExperiment` that contains intron retention results generated by `interest()` function on MDS data consisting of bone-marrow samples of 8 MDS patients with ZRSR2 mutations, 4 patients without the mutation and 4 healthy individuals.

@colData A "DataFrame" (from "S4Vectors" package) that its rownames can be set as the sample identification names and the other columns are various annotations for the samples. Its column names are characters that describe the annotations.

@assays List of size 2 that includes two numeric matrices: `counts` that includes raw read counts of the sequencing reads mapped to introns and exons, and (2) `scaledRetention`, i.e. the normalized read counts.

@NAMES A NULL value.

@elementMetadata A "DataFrame" (from "S4Vectors" package) that include intron and exon annotations.

@metadata A list of size 2 that includes parameter settings for the `interest()` and `interest.sequential()` runs.

Value

Object of class `SummarizedExperiment`.

Source

Madan, V., et al., Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Communication 2015 Jan 14;6:6042. doi: 10.1038/ncomms7042.
mdsChr22IntSpObj

Object of SummarizedExperiment type for intron spanning reads of MDS data

Description

The Results of interest() analysis in intron-spanning mode, for the genes that feature U12-type introns and are located on Chr22 in MDS data.

Usage

data(mdsChr22ExObj)

Format

An Object of class SummarizedExperiment that contains intron retention results generated by interest() function on MDS data consisting of bone-marrow samples of 8 MDS patients with ZRSR2 mutations, 4 patients without the mutation and 4 healthy individuals.

@colData A "DataFrame" (from "S4Vectors" package) that its rownames can be set as the sample identification names and the other columns are various annotations for the samples. Its column names are characters that describe the annotations.

@assays List of size 2 that includes two numeric matrices: counts that includes raw read counts of the sequencing reads mapped to introns and exons, and (2) scaledRetention, i.e. the normalized read counts.

@NAMES A NULL value.

@elementMetadata A "DataFrame" (from "S4Vectors" package) that include intron and exon annotations.

@metadata A list of size 2 that includes parameter settings for the interest() and interest.sequential() runs.

Value

Object of class SummarizedExperiment.

Source

Madan, V., et.al., Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Communication 2015 Jan 14;6:6042. doi: 10.1038/ncomms7042.
mdsChr22Obj

Object of SummarizedExperiment type for intron retention MDS data

Description

The Results of interest() analysis in Intron-retention mode, for the genes that feature U12-type introns and are located on Chr22 in MDS data.

Usage

data(mdsChr22Obj)

Format

An Object of class SummarizedExperiment that contains intron retention results generated by interest() function on MDS data consisting of bone-marrow samples of 8 MDS patients with ZRSR2 mutations, 4 patients without the mutation and 4 healthy individuals.

@colData A "DataFrame" (from "S4Vectors" package) that its rownames can be set as the sample identification names and the other columns are various annotations for the samples. Its column names are characters that describe the annotations.

@assays List of size 2 that includes two numeric matrices: counts that includes raw read counts of the sequencing reads mapped to introns and exons, and (2) scaledRetention, i.e. the normalized read counts.

@NAMES A NULL value.

@elementMetadata A "DataFrame" (from "S4Vectors" package) that include intron and exon annotations.

@metadata A list of size 2 that includes parameter settings for the interest() and interest.sequential() runs.

Value

Object of class SummarizedExperiment.

Source

Madan, V., et.al., Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Communication 2015 Jan 14;6:6042. doi: 10.1038/ncomms7042.
mergeInterestResult

merge two SummarizedExperiment objects into one

Description

Build a new object by merging data of two SummarizedExperiment objects.

Usage

mergeInterestResult(x, y)

Arguments

x Object of type SummarizedExperiment.
y Object of type SummarizedExperiment.

Value

An object of class SummarizedExperiment.

Author(s)

Ali Oghabian

See Also

interest, InterestResult.

Examples

geneId <- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)),
sep="_")
readCnt1 <- sample(1:100, 20)
readCnt2 <- sample(1:100, 20)
readCnt3 <- sample(1:100, 20)
readCnt4 <- sample(1:100, 20)
fpkm1 <- readCnt1 / (tapply(readCnt1, geneId, sum))[geneId]
fpkm2 <- readCnt2 / (tapply(readCnt2, geneId, sum))[geneId]
fpkm3 <- readCnt3 / (tapply(readCnt3, geneId, sum))[geneId]
fpkm4 <- readCnt4 / (tapply(readCnt4, geneId, sum))[geneId]

# Creating object using test data
interestDat <- data.frame(
  int_ex=rep(c(rep(c("exon","intron"),2),"exon"),4),
  int_ex_num= rep(c(1,1,2,2,3),4),
  gene_id= geneId,
  sam1_readCnt= readCnt1,
  sam2_readCnt= readCnt2,
mergeInterestResult

sam3_readCnt=readCnt3,
sam4_readCnt=readCnt4,
sam1_fpkm=fpkm1,
sam2_fpkm=fpkm2,
sam3_fpkm=fpkm3,
sam4_fpkm=fpkm4
)
readFreqColIndex<- grep("_readCnt$",colnames(interestDat))
scaledRetentionColIndex<- grep("_fpkm$",colnames(interestDat))

scalRetTmp<- as.matrix(interestDat[,scaledRetentionColIndex])
colnames(scalRetTmp)<-gsub("_fpkm$","",colnames(scalRetTmp))
frqTmp<- as.matrix(interestDat[,readFreqColIndex])
colnames(frqTmp)<-gsub("_readCnt$","",colnames(frqTmp))

#Object including data for Males
interestResObjM<-InterestResult(resultFiles=paste("file",1:2, sep="-_"),
rowData= interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
counts= frqTmp[,1:2],
scaledRetention= scalRetTmp[,1:2],
scaleLength=TRUE,
scaleFragment=FALSE,
sampleAnnotation=data.frame(sampleName=paste("sam",1:2, sep=""),
gender=c("M","M"),
health=c("healthy","unhealthy"),
row.names=paste("sam", 1:2, sep="")
)

#Object including data for Females
interestResObjF<-InterestResult(resultFiles=paste("file",3:4, sep="-_"),
rowData= interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
counts= frqTmp[,3:4],
scaledRetention= scalRetTmp[,3:4],
scaleLength=TRUE,
scaleFragment=FALSE,
sampleAnnotation=data.frame(sampleName=paste("sam",3:4, sep=""),
gender=c("F","F"),
health=c("healthy","unhealthy"),
row.names=paste("sam", 3:4, sep="")
)

#Build new object
newObj<- mergeInterestResult(interestResObjM, interestResObjF)
plot-method

#View newObj
print(newObj)

plot-method  plot - method

Description

plot method for SummarizedExperiment objects.

Usage

## S4 method for signature 'SummarizedExperiment,ANY'
plot(x, summary="none",
    subsetRows=NULL, what="scaled", intronExon="intron",
    logScaleBase=NULL, logPseudoCnt=1, plotLoess=TRUE,
    loessCol="red", loessLwd=1, loessLty=1, cexText=1,
    marPlot=c(2,2,2,2), mgpPlot=c(1, 1, 0), cexAxis=1,
    writeCor=TRUE, corCex=1, corMethod="pearson", corCol="grey63",
    upperCorXY=c("topleft", NULL), lowerCorXY=c("topleft", NULL),
    na.rm=TRUE, cex=1, sampleAnnoCol=c(), lowerPlot=FALSE,
    upperPlot=TRUE, ...)  

Arguments

x          Object of type SummarizedExperiment generated by either interest(), interest.sequential() or readInterestResults().  
summary    Whether to plot the mean or median of the values over the sample with the same annotations, or plot the values for each individual sample separately. The available options are "mean", "median", or "none".  
subsetRows Vector either constructed of TRUE/FALSE values or constructed of numeric values that could be used to choose rows of x i.e. the SummarizedExperiment object.  
what       Whether plot "scaled" (default) or read counts ("counts").  
intronExon  Whether plot intron retention, i.e. "intron" (default) or exon-junction "exon".  
logScaleBase Base of the log transform of the values, if defined. By default the value is NULL meaning that the values would not be log transformed.  
logPseudoCnt Pseudocount for the log transformation (default=1).  
plotLoess   Whether fit and plot LOESS curve line (default="red").  
loessCol    loess line colour (default="red").  
loessLwd    loess line width (default=1).  
loessLty    loess line type (default=1).  
cexText    Size of the text for sample names or annotations (default=1).  

marPlot  Plot margins (default=c(2,2,2,2)). See ?par for more information.
mgpPlot  Plotting mgp parameter (default=c(1, 1, 0)). See ?par for more information.
cexAxis  Size of the text for the axis (default=1).
writeCor Write correlation values (default=TRUE).
corCex  Text size of correlation values (default=1).
corMethod Method used for correlation calculation. For more information see cor from stats package of R.
corCol  Color of the text of correlation (default="grey").
upperCorXY The coordinates of the correlation text in the upper panel plots (default= c("topleft", NULL)).
lowerCorXY The coordinates of the correlation text in the lower panel plots (default= c("topleft", NULL)).
na.rm  whether remove the rows with missing values (default=TRUE).
cex  size of the plot text and symbols (default=1).
sampleAnnoCol Which column of colData of object SummarizedExperiment to consider for plotting.
lowerPlot  Whether plot the lower panel (default=FALSE).
upperPlot  Whether plot the upper panel (default=TRUE).
...  Other arguments to pass to the plot() function.

Value
Returns NULL.

Author(s)
Ali Oghabian

See Also
Class: SummarizedExperiment-class Method: counts-method boxplot-method

Examples

geneId<-' paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)), sep="_")
readCnt1<-' sample(1:100, 20)
readCnt2<-' sample(1:100, 20)
readCnt3<-' sample(1:100, 20)
readCnt4<-' sample(1:100, 20)
fpkm1<-' readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<-' readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<-' readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<-' readCnt4/(tapply(readCnt4, geneId, sum))[geneId]
# Creating object using test data
interestDat<- data.frame(
  int_ex=rep(c(rep(c("exon","intron"),2),"exon"),4),
  int_ex_num= rep(c(1,1,2,2,3),4),
  gene_id= geneId,
  sam1_readCnt=readCnt1,
  sam2_readCnt=readCnt2,
  sam3_readCnt=readCnt3,
  sam4_readCnt=readCnt4,
  sam1_fpkm=fpkm1,
  sam2_fpkm=fpkm2,
  sam3_fpkm=fpkm3,
  sam4_fpkm=fpkm4
)
readFreqColIndex<- grep("_readCnt$",colnames(interestDat))
scaledRetentionColIndex<- grep("_fpkm$",colnames(interestDat))

scalRetTmp<- as.matrix(interestDat[,scaledRetentionColIndex])
rownames(scalRetTmp)<- gsub("_fpkm$","",rownames(scalRetTmp))

frqTmp<- as.matrix(interestDat[,readFreqColIndex])
rownames(frqTmp)<- gsub("_readCnt$","",rownames(frqTmp))

InterestResultObj<- InterestResult(
  resultFiles=paste("file",1:4, sep="_"),
  rowData= interestDat[, -c(readFreqColIndex,
                          scaledRetentionColIndex)],
  counts= frqTmp,
  scaledRetention= scalRetTmp,
  scaleLength=TRUE,
  scaleFragment=FALSE,
  sampleAnnotation=data.frame(
    sampleName=paste("sam",1:4, sep=""),
    gender=c("M","M","F","F"),
    row.names=paste("sam", 1:4, sep="")
  )
)

InterestResultObj2<- addAnnotation(x=InterestResultObj,
   sampleAnnotationType="health",
   sampleAnnotation=c("healthy","unhealthy","healthy","unhealthy")
)

# Plotting
plot(InterestResultObj)
plot(InterestResultObj, sampleAnnoCol="gender", summary="mean")
plot(InterestResultObj2, sampleAnnoCol=3, summary="mean")
plot(InterestResultObj2, summary="none")

---

**psi**  
**Psi values estimation**
Description

Calculating the relative inclusion level of intron or Psi values base on two count matrices from a single or two separate objects. The values for each intron is in the range of [0,1], where 0 means complete splicing or no retention of the intron and 1 represents complete 100%

Usage

psi(x, y, intCol, exCol, pseudoCnt=0)

Arguments

x Object of type SummarizedExperiment.
y Optional; i.e. an object of type SummarizedExperiment.
intCol Column numbers or column names in counts matrix of x which include the number of reads mapped to the introns.
exCol Column numbers or column names in counts matrix of x (or if defined y) which include the number of reads spanning the introns (or mapping exons flanking the introns).
pseudoCnt Pseudo counts to sum to the denominator of the division to avoid division to zero.

Value

data.frame with column size equal to the size of intCol parameter, and row size equal to the number of rows in x. It contains the psi values (i.e. values between 0 and 1 showing the fraction of spliced in transcripts).

Author(s)

Ali Oghabian

See Also

interestResultIntEx

Examples

mdsChr22IntObj<- mdsChr22Obj[which(rowData(mdsChr22Obj)$int_ex=="intron"), ]

#Build object including intron-retention and exon-junction results
mdsChr22RefIntExObj<- interestResultIntEx(intObj=mdsChr22Obj,
exObj=mdsChr22ExObj, mean.na.rm=TRUE, postExName="ex_junc",
intExCol="int_ex" )
# Calculate Psi
psiRes<- psi(mdsChr22RefIntExObj,
intCol=which(colData(mdsChr22RefIntExObj)$intronExon=="intron"),
exCol=which(colData(mdsChr22RefIntExObj)$intronExon=="exon"))
# show Psi results
head(psiRes)
**Description**

PWM of U12 and U2-type introns splice sites and it is based on the U12DB database.

**Usage**

```r
data("pwmU12db")
```

**Format**

A list that contains Position Weight Matrices (PWM) of donor site, branch point and acceptor site of U12-type introns and the PWMs of donor site and acceptor site of U2-type introns. It is based on the U12DB database.

- `pwmDonU12` A position weigh matrix for the donor site of the U12-type introns, with 4 rows and 46 columns. The rows of the matrix represent "A", "C", "G", and "T" nucleotides and the columns represent the positions in the genome. Each position in the matrix include a weight (i.e. number between 0 and 1) which indicates how common the corresponding base (represented by the row of the matrix) is observed in the corresponding position (represented by the column of the matrix).

- `pwmBpU12` A position weigh matrix for the branch point of the U12-type introns, with 4 rows and 9 columns.

- `pwmAccU12` A position weigh matrix for the acceptor site of the U12-type introns, with 4 rows and 46 columns.

- `pwmDonU2` A position weigh matrix for the donor site of the U2-type introns, with 4 rows and 25 columns.

- `pwmAccU2` A position weigh matrix for the acceptor site of the U12-type introns, with 4 rows and 46 columns.

**Value**

List of 5 numeric matrices representing the PWMs of donor site of U12-type introns, branch point site of U12-type introns, acceptor site of U12-type introns, donor site of U2-type introns, and acceptor site of U2-type introns.

**Source**

qlfInterest (quasi-likelihood F-test)

Description

Compute quasi-likelihood F-test using edgeR package. For more information see glmQLFit and glmQLFTest functions in edgeR package.

Usage

qlfInterest(x, design=c(), silent=TRUE, disp="common", coef=c(), contrast=NULL, poisson.bound=TRUE, ...)

Arguments

- **x**: Object of type SummarizedExperiment.
- **design**: Design matrix.
- **silent**: Whether run silently, i.e. without printing the top differential expression tags. The default is TRUE.
- **disp**: The method of estimating the dispersion in the data. Available options are: "common", "trended", "tagwiseInitCommon" and "tagwiseInitTrended". It is also possible to assign a number.
- **coef**: Integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. See glmQLFTest for more information.
- **contrast**: Numeric vector or matrix specifying contrasts of the linear model coefficients to be tested equal to zero. See glmQLFTest for more information.
- **poisson.bound**: Logical value, if TRUE (i.e. default) the pvalue would be higher than when obtained from likelihood ratio test while Negative Binomial dispersion is zero.
- **...**: Other parameter settings for the glmQLFTest function in the edgeR package.

Value

All values produced by glmQLFTest plus the following:

- **dispersionType**: The name of the type of dispersion used.
- **dispersion**: The estimated dispersion values.

Author(s)

Ali Oghabian

See Also

exactTestInterest, glmInterest, treatInterest
Examples

# Test retention differentiation across the 3 types of samples

group <- getAnnotation(mdsChr22obj)[,"type"]

qlfRes <- qlfInterest(x=mdsChr22obj,
design=model.matrix(~group), silent=TRUE,
disp="tagwiseInitTrended", coef=2:3, contrast=NULL)

qlfRes

readInterestResults  Read interest/interest.sequential results text files

Description

Reads one or multiple text file results generated by the `interest` or `interest.sequential` functions and builds an object of `SummarizedExperiment-class` class.

Usage

```
readInterestResults(resultFiles, sampleNames,
sampleAnnotation, commonColumns, freqCol, scaledRetentionCol,
scaleLength, scaleFragment, reScale=FALSE, geneIdCol,
repeatsTableToFilter=c())
```

Arguments

- `resultFiles`: Vector of character strings which includes the path to the tab-separated files resulted by the `interest` function.
- `sampleNames`: Vector of character strings which includes the name of the samples. It should be the same size as the `resultFiles` parameter.
- `sampleAnnotation`: Data frame with the same row number as the size of `resultFiles` and `sampleNames` parameter. The column names represent the annotation names and values in each column represent the annotations of the samples.
- `commonColumns`: Columns in the result file which include intron/exon annotations and are common across all files defined in `resultFiles`.
- `freqCol`: Column in the result file which include the read counts for introns/exons.
- `scaledRetentionCol`: Column in the result file which include the scaled retention values for introns/exons.
- `scaleLength`: Logical value, indicating whether the intron/exon retention levels are scaled to the length of the introns/exons. If `reScale` is `TRUE` the scaled retention levels would be rescaled when reading the data.
- `scaleFragment`: Logical value, indicating whether the intron/exon retention levels are scaled to the fragments mapped to the genes. If `reScale` is `TRUE` the scaled retention levels would be rescaled when reading the data.
**readInterestResults**

- **reScale**: Logical value, indicating whether the scaled retention levels would be recalculated when reading the data. By default it does not calculate and trusts the user to set the `scaleLength` and `scaleFragment` parameters correctly, i.e. as it was set in the `interest()` or `interest.sequential()` analysis.

- **geneIdCol**: The number or name of the column in `resultFiles` which represents the gene/transcript names. It would be used for summing up the number of mapped fragments to the genes when scaling the retention levels. It is only used if `reScale` and `scaleFragment` arguments are set `TRUE`.

- **repeatsTableToFilter**: A data.frame table with similar structure to the reference. It includes `chr`, `begin`, and `end` columns. If defined, all reads mapped to the described regions would be ignored and the Intron/exon lengths would be corrected to exclude the to exclude the regions with repetitive DNA sequences. See `getRepeatTable`. It is only used if `reScale` and `scaleLength` arguments are set `TRUE`.

**Value**

An object of class `SummarizedExperiment-class`.

**Author(s)**

Ali Oghabian

**See Also**

`interest`, `InterestResult`.

**Examples**

```r
geneId<- paste("gene", c(rep(1,7), rep(2,7), rep(3,7), rep(4,7)), sep="_")
readCnt1<- sample(1:100, 28)
readCnt2<- sample(1:100, 28)
readCnt3<- sample(1:100, 28)
readCnt4<- sample(1:100, 28)
fpkm1<- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

#Create tmp director
tmpDir=file.path(tempdir(),'InterestResult')
dir.create(tmpDir)

Build text files similar to files resulted by interest
dfTmp=data.frame(
 int_ex=rep(c(rep("exon","intron"),3),"exon"),4),
 int_ex_num= rep(c(1,1,2,3,3,4),4),
 int_type=rep(c(NA,"U2"),NA,"U12",NA,"U2",NA),4),
 strand=rep("x",28),
```
referencePrepare

Creates reference file

Description

Creates reference file for IntEREst functions, e.g. interest(). The function uses functions of biomaRt library.

Usage

referencePrepare( outFileTranscriptsAnnotation="", annotateGeneIds=TRUE,
  u12IntronsChr=c(), u12IntronsBeg=c(), u12IntronsEnd=c(),
  u12IntronsRef, collapseExons=TRUE, sourceBuild="UCSC",
  gene_id= geneId,
  sam1_readCnt=readCnt1,
  sam2_readCnt=readCnt2,
  sam3_readCnt=readCnt3,
  sam4_readCnt=readCnt4,
  sam1_fpkm=fpkm1,
  sam2_fpkm=fpkm2,
  sam3_fpkm=fpkm3,
  sam4_fpkm=fpkm4
)
Arguments

outFileTranscriptsAnnotation
   If defined outputs transcripts annotations.
annotateGeneIds
   Whether annotate and add the gene ids information.
collapseExons
   Whether collapse (i.e. reduce) the exonic regions. TRUE by default.
sourceBuild
   The source to use to build the reference data, "UCSC", "biomaRt", and "file"
   (for GFF3 or GTF files) are supported.
ucscGenome
   The genome to use. "hg19" is the default. See genome parameter of makeTxDbFromUCSC
   function of GenomicFeatures library for more information.
ucscTableName
   The UCSC table name to use. See tablename parameter of makeTxDbFromUCSC
   function of GenomicFeatures library for more information.
ucscUrl
   The UCSC URL address. See url parameter of makeTxDbFromUCSC function of
   GenomicFeatures library for more information.
u12IntronsChr
   A vector of character strings that includes chromosomal locations of the U12
   type introns. If defined together with u12IntronsBeg and u12IntronsEnd, they
   would be used to annotate the U12-type introns.
u12IntronsBeg
   A vector of numbers that defines the begin (or start) coordinates of the u12-type
   introns.
u12IntronsEnd
   A vector of numbers that defines the end coordinates of the u12-type introns.
u12IntronsRef
   A GRanges object that includes the coordinates of the U12 type introns. If
   defined, it would be used to annotate the U12-type introns.
biomart
   BioMart database name. See biomart parameter of makeTxDbFromBiomart
   function of GenomicFeatures library for more information.
biomartDataset
   BioMart dataset name; default is "hsapiens_gene_ensembl". See dataset parameter
   of makeTxDbFromBiomart function of GenomicFeatures library for more information.
biomartTranscriptIds
   optional parameter to only retrieve transcript annotation results for a defined
   set of transcript ids. See transcript_ids parameter of makeTxDbFromBiomart
   function of GenomicFeatures library for more information.
biomartExtraFilters
A list of names; i.e. additional filters to use in the BioMart query. See filters parameter of makeTxDbFromBiomart function of GenomicFeatures library for more information.

biomartIdPrefix
A list of names; i.e. additional filters to use in the BioMart query. See id_prefix parameter of makeTxDbFromBiomart function of GenomicFeatures library for more information.

biomartHost
Host to connect to; the default is "www.ensembl.org". For older versions of the GRCH you can provide the archive websites, e.g. for GRCH37 you can use "grch37.ensembl.org".

biomartPort
The port to use in the HTTP communication with the host. Default is 80.

circSeqs
A character vector that includes chromosomes that should be marked as circular. See circ_seq parameter of makeTxDbFromBiomart and makeTxDbFromUCSC functions of GenomicFeatures library for more information.

miRBaseBuild
Set appropriate build Information from mirbase.db to use for microRNAs (default=NA). See miRBaseBuild parameter of makeTxDbFromBiomart and makeTxDbFromUCSC functions of GenomicFeatures library for more information.

taxonomyId
This parameter can be used to provide taxonomy Ids. It is set to NA by default. You can check the taxonomy Ids with the available.species() function in GenomeInfoDb package. For more information see taxonomyId parameter of makeTxDbFromBiomart and makeTxDbFromUCSC functions of GenomicFeatures library.

filePath
Character string i.e. the path to file. Used if sourceBuild is "file".

fileFormat
The format of the input file. "auto", "gff3" and "gtf" is supported.

fileDatSrc
Character string describing the source of the data file. Used if sourceBuild is "file".

fileOrganism
The genus and species name of the organism. Used if sourceBuild is "file".

fileChrInf
Dataframe that includes information about the chromosome. The first column represents the chromosome name and the second column is the length of the chromosome. Used if sourceBuild is "file".

fileDbXrefTag
A vector of chracter strings which if defined it would be used as feature names. Used if sourceBuild is "file".

addCollapsedTranscripts
Whether add a column that includes the collapsed transcripts information. Used if collapseExons is TRUE.

ignore.strand
Whether consider the strands in the reference. If set TRUE the strands would be ignored.

Value
Data frame that includes the coordinates and annotations of the introns and exons of the transcripts, i.e. the reference.

Author(s)
Ali Oghabian
Examples

```r
Build test gff3 data
tmpGen<- u12[u12[,"ens_trans_id"]=='ENST00000413811',]
tmpEx<-tmpGen[tmpGen[,"int_ex"]=='exon',]
exonDat<- cbind(tmpEx[,3], ".", tmpEx[,c(7,4,5)], ".", paste("ID=exon", tmpEx[,11], "; Parent=ENST00000413811", sep=""))
trDat<- c(tmpEx[1,3], ".", "mRNA", as.numeric(min(tmpEx[,4])), as.numeric(max(tmpEx[,5])), ".", tmpEx[1,6], ".", "ID=ENST00000413811")

outDir<- file.path(tempdir(),"tmpFolder")
dir.create(outDir)
outDir<- normalizePath(outDir)
gff3File=paste(outDir, "gffFile.gff", sep="/")
cat("##gff-version 3\n",file=gff3File, append=FALSE)
cat(paste(paste(trDat, collapse="\t"),"\n", sep=""),
file=gff3File, append=TRUE)
write.table(exonDat, gff3File,
row.names=FALSE, col.names=FALSE,
sep='\t', quote=FALSE, append=TRUE)

Selecting U12 introns info from 'u12' data
u12Int<-u12[u12$int_ex=='intron'&u12$int_type=='U12',]

Test the function
refseqRef<- referencePrepare (sourceBuild="file",
filePath=gff3File, u12IntronsChr=u12Int[,"chr"],
u12IntronsBeg=u12Int[,"begin"],
u12IntronsEnd=u12Int[,"end"], collapseExons=TRUE,
fileFormat="gff3", annotateGeneIds=FALSE)
```

subInterestResult  Extract subset of object

Description

Build a new object using subset of data in an SummarizedExperiment object.

Usage

```r
subInterestResult(x, selectRow, selectCol,
sampleAnnoCol, sampleAnnotation=c())
```
subInterestResult

Arguments

x  Object of type SummarizedExperiment.
selectRow  Numeric or TRUE/FALSE Vector indicating what rows to extract.
selectCol  A vector with Numeric values, character strings (sample names) or TRUE/FALSE Vector indicating what columns to extract.
sampleAnnoCol  Which columnn of colData of object x to consider for subset data extraction.
sampleAnnotation  Vector including the annotations to consider for subset data extraction. They should be present in the sampleAnnoCol column of the colData of x.

Value

An object of calss SummarizedExperiment.

Author(s)

Ali Oghabian

See Also

interest, InterestResult.

Examples

geneId<- paste("gene", c(rep(1,7), rep(2,7), rep(3,7), rep(4,7)), sep="_")
readCnt1<- sample(1:100, 28)
readCnt2<- sample(1:100, 28)
readCnt3<- sample(1:100, 28)
readCnt4<- sample(1:100, 28)
fpkm1<- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

# Creating object using test data
interestDat<-data.frame(
  int_ex=rep(c(rep(c("exon","intron"),3),"exon"),4),
  int_ex_num= rep(c(1,2,3,4),4),
  int_type=rep(c("U2","U12","U2","U2"),4),
  strand=rep("*",28),
  gene_id= geneId,
  sam1_readCnt=readCnt1,
  sam2_readCnt=readCnt2,
  sam3_readCnt=readCnt3,
  sam4_readCnt=readCnt4,
  sam1_fpkm=fpkm1,
  sam2_fpkm=fpkm2,
  sam3_fpkm=fpkm3,
  sam4_fpkm=fpkm4)
```r
treatInterest <- function(x, design=c(), silent=TRUE, disp="common", coef=c(), contrast=NULL, lfc=0, ...) {
 resultfiles=paste("file",1:4, sep="_")
 rowData= interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
 counts= frqTmp,
 scaledRetention= sclTmp ,
 scaleLength=TRUE,
 scaleFragment=FALSE,
 sampleAnnotation=data.frame(
 sampleName=paste("sam",1:4, sep=""),
 gender=c("M","M","F","F"),
 health=c("healthy","unhealthy","healthy","unhealthy"),
 row.names=samNames
)
)
}

#Build new object
newObj<- subInterestResult(interestResObj, selectRow=1:20)

#View newObj
print(newObj)
```

---

**treatInterest**

**Differential retention test relative to a threshold**

**Description**

Compute a genewise statistical test relative to a fold-change threshold using edgeR package. For more information see `glmTreat` function in edgeR package.

**Usage**

```r
treatInterest(x, design=c(), silent=TRUE, disp="common",
 coef=c(), contrast=NULL, lfc=0, ...)
```

**Arguments**

- `x` Object of class `SummarizedExperiment`
- `design` Design matrix.
silent  Whether run silently, i.e. without printing the top differential expression tags. Default is TRUE.

disp  The method of estimating the dispersion in the data. Available options are: "common", "trended", "tagwiseInitCommon" and "tagwiseInitTrended". It is also possible to assign a number.

coeff Integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. See glmTreat for more information.

contrast Numeric vector or matrix specifying contrasts of the linear model coefficients to be tested equal to zero. See glmTreat for more information.

lfc Numeric scalar i.e. the log fold change threshold.

... Other parameter settings for the glmFit function in the edgeR package.

Value

All values produced by glmTreat plus the following:

dispersionType  The name of the type of dispersion used.

dispersion  The estimated dispersion values.

Author(s)

Ali Oghabian

See Also

exactTestInterest, qlfInterest, glmInterest

Examples

group <- getAnnotation(mdsChr22Obj)[,"type"]

# Test retention differentiation across the 3 types of samples
# The log fold change threshold is 0

treatRes <- treatInterest(x=mdsChr22Obj,
design=model.matrix(~group), silent=TRUE,
disp="tagwiseInitTrended", coef=2:3, contrast=NULL, lfc=0)
treatRes

u12

u12  U12 data

Description

Intron/exon annotations of genes featuring U12 introns. It is based on HG19/GRCh37 (converted from hg17/NCBI35). Moreover the u12 genes are based on the U12DB database.
Usage

data("u12")

Format

A data frame with 22713 observations on the following 17 variables.

id a numeric vector
int_ex_id a character vector
chr a character vector
begin a numeric vector
end a numeric vector
strand a numeric vector
int_ex a character vector
trans_type a character vector
ens_gene_id a character vector
ens_trans_id a character vector
int_ex_num a numeric vector
gene_name a character vector
trans_name a character vector
overlap_no a numeric vector
int_type a character vector
int_subtype a character vector

Value

Data frame that includes the coordinates and annotations of the introns and exons of the transcripts, i.e. the reference.

Source

u12Boxplot

Description

A boxplot method for U12 and U2-type introns of SummarizedExperiment objects.

Usage

u12Boxplot(x, sampleAnnoCol=NA, intExCol="int_ex",
intTypeCol="int_type", intronExon, col="white",
boxplotNames=c(), lasNames=3, outline=FALSE, addGrid=FALSE, ...)

Arguments

x  Object of type SummarizedExperiment.
sampleAnnoCol  Which column of colData in x to consider for plotting.
intExCol  Column name (or number) that represents whether each row of x assays is "intron" or "exon".
intTypeCol  Column name (or number) that represents what type of intron each row of x assays represents.
intronExon  Whether plot intron retention (set intronExon="intron") or exon-exon junction (set intronExon="exon") levels.
col  Vector showing box colours. It is either of size 1 or the same size as the number of groups to be plotted.
boxplotNames  Names to write under boxes. If not defined, as names, it pastes U12/U2 (intron annotation) to the sample group annotations separated by a space " ".
lasNames  Orientation of the box names.
outline  If outline is TRUE the outlier points are drawn otherwise if FALSE (default) they are not.
addGrid  Whether add a grid under the boxplots (FALSE by default).
...  Other arguments to pass to the boxplot() function.

Value

A SummarizedExperiment object.

Author(s)

Ali Oghabian

See Also

u12BoxplotNb
Examples

```r
u12Boxplot(mdsChr22Obj, sampleAnnoCol="type", intExCol="int_ex", intTypeCol="intron_type", intronExon="intron", col=rep(c("orange", "yellow"),3), lasNames=3, outline=FALSE, ylab="FPKM", cex.axis=0.8)
```

### Description

Boxplot U12 introns retention levels (or flanking exons junction levels) and (up/down)stream U2 introns (or exons junction levels)

### Usage

```r
u12BoxplotNb(x, sampleAnnoCol=2, intExCol="int_ex", intTypeCol="int_type", intronExon, strandCol="strand", geneIdCol, col=c(), names=c(), lasNames=1, outline=FALSE, plotLegend=TRUE, cexLegend=1, xLegend="topright", yLegend=NULL, bgLegend="transparent", legend=c(), addGrid=FALSE, ...)
```

### Arguments

- **x**: Object of type `SummarizedExperiment`.
- **sampleAnnoCol**: Which column of `colData` of `x` to consider for plotting.
- **intExCol**: Column name (or number) that represents whether each row of `x` assays is "intron" or "exon".
- **intTypeCol**: Column name (or number) that represents what type of intron each row of `x` assays represents.
- **intronExon**: Whether plot intron retention (set `intronExon="intron"`) or exon-exon junction (set `intronExon="exon"`) levels.
- **strandCol**: Column name (or number) that represents the strand of each row of assays in `x`. The values in the column are either "+", "." or "+-".
- **geneIdCol**: Column name (or number) that represents the gene ID of each row of assays in `x`.
- **col**: Vector containing box colours. It is either of size 1 or the same size as the number of boxes resulted based on the grouping of the samples defined by `sampleAnnoCol`.
- **names**: Names to write under group of boxes.
- **lasNames**: Orientation of the box names.
u12DensityPlot

Outline

If outline is TRUE the outlier points are drawn otherwise if FALSE (default) they are not.

plotLegend

Whether show legend (TRUE by default).

cexLegend

Size of the text in legend.

xLegend, yLegend

Position of legend in the plot. For more info see x and y parameters in legend.

bgLegend

Background colour of the legend box. It is "transparent" by default.

legend

The replacement texts to be used in legend.

addGrid

Whether add a grid under the boxplots (FALSE by default).

... Other arguments to pass to the boxplot() function.

Value

Returns NULL

Author(s)

Ali Oghabian

See Also

u12Boxplot

Examples

u12BoxplotNb(mdsChr22Obj, sampleAnnoCol="type", lasNames=1, intExCol="int_ex", intTypeCol="intron_type", intronExon="intron", boxplotNames=c(), outline=FALSE, plotLegend=TRUE, geneIdCol="collapsed_transcripts_id", xLegend="topleft", col=c("pink", "lightblue", "lightyellow"), ylim=c(0,600000), ylab="FPKM", cex.axis=0.8)

Description

Density plot of fold changes of intron retention and exon-exon junction levels of the flanking exons. For the density plot of the fold change of intron retention levels the u12DensityPlotIntron() function or u12DensityPlot() function with intronExon= "intron" can be used. For density plot of the fold change of exon-exon junction levels use u12DensityPlot() function with intronExon= "exon".
Usage

\texttt{u12DensityPlot(x, type=c("U12", "U2Up", "U2Dn", "U2UpDn", "U2Rand"), fcType="edgeR", sampleAnno=\texttt{c()}, sampleAnnoCol=\texttt{c()}, group=\texttt{c()}, intExCol="int_ex", intTypeCol="int_type", intronExon, strandCol="strand", geneIdCol="collapsed_transcripts", naUnstrand=FALSE, col=1, lty=1, lwd=1, plotLegend=\texttt{TRUE}, cexLegend=1, xLegend="topright", yLegend=NULL, legend=\texttt{c()}, randomSeed=NULL, xlab="", \ldots\))}

\texttt{u12DensityPlotIntron(x, type=c("U12", "U2Up", "U2Dn", "U2UpDn", "U2Rand"), fcType="edgeR", sampleAnno=\texttt{c()}, sampleAnnoCol=\texttt{c()}, group=\texttt{c()}, intExCol="int_ex", intTypeCol="int_type", strandCol="strand", geneIdCol="collapsed_transcripts", naUnstrand=FALSE, col=1, lty=1, lwd=1, plotLegend=\texttt{TRUE}, cexLegend=1, xLegend="topright", yLegend=NULL, legend=\texttt{c()}, randomSeed=NULL, xlab="", \ldots\))}

Arguments

\texttt{x}\quad \text{Object of type SummarizedExperiment.}

\texttt{type}\quad \text{A vector that includes the type of introns to plot. Available options are U12 introns "U12", U2 introns at downstream of U12 introns "U2Dn", U2 introns at upstream of U12 introns "U2Up", U2 introns at upstream or downstream of U12 introns suitable for when the coordinates in object x are unstranded (their strand is "*") "U2UpDn", random U2 introns from object x "U2Rand". Settings "U2Up", "U2Dn" and "U2UpDn" are useful only if the reference is linearly ordered. References with exons only resulted by referencePrepare and unionRefTr are NOT necessarily linearly ordered.}

\texttt{fcType}\quad \text{Available as "fpkm" or "edgeR" (as default) corresponding to either log fold change of fpkm values or degeR normalized log fold change values.}

\texttt{sampleAnnoCol}\quad \text{Which column of \texttt{colData} of \texttt{x} to consider for plotting.}

\texttt{sampleAnno}\quad \text{A vector of size 2 which contains values from \texttt{colData} of \texttt{SummarizedExperiment} object: e.g. if \texttt{getAnnotation(x)[, sampleAnnoCol]=c("test", "test", "ctrl", "ctrl", \ldots\), and the goal is to compare "test" and "ctrl" samples, \texttt{sampleAnnotation} should either be \texttt{c("test", "ctrl")} or \texttt{c("ctrl", "test").}}

\texttt{group}\quad \text{Vector to manually define the sample groups (or annotations). It is ignored if \texttt{sampleAnnoCol} is defined.}

\texttt{intExCol}\quad \text{Column name (or number) that represents whether each row of \texttt{x} assays is "intron" or "exon".}

\texttt{intTypeCol}\quad \text{Column name (or number) that represents what type of intron each row of \texttt{x} assays represents.}

\texttt{intronExon}\quad \text{Whether plot intron retention (set \texttt{intronExon="intron"}) or exon-exon junction (set \texttt{intronExon="exon"}) levels.}
strandCol  Column name (or number) that represents the strand of each row of assays in x. The values in the column are either "+", "-" or "*".

geneIdCol  Column name (or number) that represents the gene ID of each row of assays in x.

naUnstrand Replace unstranded results, i.e. introns or exons with "*" strand, with NA (to be excluded).

col  A vector with the size of 1 or the same size as the type parameter which includes the colour/colours of the plotted density lines (default=1).

lty  A vector with the size of 1 or the same size as the type parameter which includes the type of the plotted density lines (default=1).

lwd  A vector with the size of 1 or the same size as the type parameter which includes the width of the plotted density lines (default=1).

plotLegend  Whether show legend (TRUE by default).

cexLegend  Size of the text in legend.

xLegend, yLegend  Position of legend in the plot. For more info see x and y parameters in legend.

legend  The replacement texts to be used in legend.

randomSeed  Seed value for random number generator.

xlab  The label of the X axis of the plot; by default it is "".

...  Other parameter settings from the plot function.

Value

Returns NULL.

Author(s)

Ali Oghabian

See Also

exactTestInterest.lfc

Examples

u12DensityPlotIntron(mdsChr22Obj, 
    type= c("U12", "U2Up", "U2Dn", "U2UpDn", "U2Rand"), 
    fcType= "edgeR", sampleAnnoCol="test_ctrl", 
    sampleAnnotation=c("ctrl","test"), intExCol="int_ex", 
    intTypeCol="intron_type", strandCol= "strand", 
    geneIdCol= "collapsed_transcripts_id", naUnstrand=FALSE, col=c(2,3,4,5,6), 
    lty=c(1,2,3,4,5), lwd=1, plotLegend=TRUE, cexLegend=0.7, 
    xLegend= "topright", yLegend=NULL, legend=c(), randomSeed=10, 
    ylim=c(0,0.6), xlab=expression("log[2]^*" fold change FPKM"))
**u12Index**

*Extract index of U12 introns rows*

**Description**

Extract row numbers of U12 introns in an object of class `SummarizedExperiment`.

**Usage**

```r
u12Index(x, intExCol="int_ex", intTypeCol="int_type", intronExon="intron")
```

**Arguments**

- `x`: Object of type `SummarizedExperiment`.
- `intExCol`: Column name (or number) that represents whether each row of `x` assays is "intron" or "exon".
- `intTypeCol`: Column name (or number) that represents what type of intron each row of `x` assays represents.
- `intronExon`: Whether extract U12 type introns (set `intronExon="intron"`) or exon-exon junction (set `intronExon="exon"`) flanking U12 introns.

**Value**

A numeric vector which includes the index of U12 introns.

**Author(s)**

Ali Oghabian

**See Also**

- `u12NbIndex`

**Examples**

```r
head(u12Index(mdsChr22Obj, intTypeCol="intron_type"))
```
u12NbIndex

Extract index of U2 introns (up/down)stream of U12 introns rows

Description

Extract row numbers of U2-type introns (up/down)stream of U12-type introns (in the @interestDf
attribute of an object of class SummarizedExperiment).

Usage

u12NbIndex(x, intExCol="int_ex", intTypeCol="int_type",
strandCol="strand", geneIdCol="collapsed_transcripts",
naUnstrand=FALSE)

Arguments

x
Object of type SummarizedExperiment.
intExCol Column name (or number) that represents whether each row of x assays is "in-
tron" or "exon".
intTypeCol Column name (or number) that represents what type of intron each row of x
assays represents.
strandCol Column name (or number) that represents the strand of each row of assays in x. The values
in the column are either "+", "," or ",".
geneIdCol Column name (or number) that represents the gene ID of each row of assays in x.
naUnstrand Replace unstranded results, i.e. introns or exon with "," strand, with NA. If set
as FALSE (default) "," strand would be same as "+" strand.

Value

upIntron A numeric vector which includes the index of U2-type intron upstream the U12-
type introns.
downIntron A numeric vector which includes the index of U2-type intron downstream the
U12-type introns.
upExon A numeric vector which includes the index of exon upstream the U12-type in-
trons.
downExon A numeric vector which includes the index of exon downstream the U12-type
introns.

Author(s)

Ali Oghabian

See Also

u12Index
Examples

head(u12NbIndex(mdsChr22Obj, intExCol="int_ex", intTypeCol="intron_type", strandCol="strand", geneIdCol="collapsed_transcripts_id", naUnstrand=FALSE))
# Return NA if no strand information available
head(u12NbIndex(mdsChr22Obj, intExCol="int_ex", intTypeCol="intron_type", strandCol="strand", geneIdCol="collapsed_transcripts_id", naUnstrand=TRUE))

unionRefTr

Union introns/exons of transcripts

Description

Performs union on the overlapping introns/exons so that the final merged transcripts would feature from each exon or intron, one copy.

Usage

unionRefTr( referenceChr, referenceBegin, referenceEnd, referenceTr, referenceIntronExon, intronExon="exon", silent=FALSE)

Arguments

- **referenceChr**: Chromosome names of the references (e.g. introns).
- **referenceBegin**: A vector that corresponds to the begin coordinates of the reference.
- **referenceEnd**: A vector that corresponds to the end coordinates of the reference.
- **referenceTr**: A character vector that includes transcription IDs.
- **referenceIntronExon**: A vector with the same size as the referenceChr, referenceBegin and referenceEnd which contains 'intron' and 'exon' describing what (either intron or exon) each element of the 3 vectors represents.
- **intronExon**: Should be assigned either 'intron' or 'exon' or c('intron', 'exon') based on whether match the PWM to the intronic, exonic, or intronic and exonic regions of the reference. By default it seeks matches in intronic regions (intronExon='intron').
- **silent**: Whether run silently.

Value

Data frame containing merged transcripts structure. The merged transcripts feature from each intron or exon, one copy ONLY.
**updateRowDataCol**

**Author(s)**

Ali Oghabian

**See Also**

annotateU12.

**Examples**

```r
unU12Ex<-unionRefTr(referenceChr=u12[1:94,"chr"],
 referenceTr=u12[1:94,"trans_name"],
 referenceIntronExon=u12[1:94,"int_ex"], intronExon="exon", silent=TRUE)

unU12Int<-unionRefTr(referenceChr=u12[1:94,"chr"],
 referenceTr=u12[1:94,"trans_name"],
 referenceIntronExon=u12[1:94,"int_ex"], intronExon="intron", silent=TRUE)

unU12IntEx<-unionRefTr(referenceChr=u12[1:94,"chr"],
 referenceTr=u12[1:94,"trans_name"],
 referenceIntronExon=u12[1:94,"int_ex"], intronExon=c("intron","exon"),
 silent=TRUE)
```

---

**updateRowDataCol**  
*Updating contents of rowData of SummarizedExperiment objects*

**Description**

Updates the values in a single column of the rowData of SummarizedExperiment objects.

**Usage**

```r
updateRowDataCol(x, updateCol, value)
```

**Arguments**

- `x`: Object of type SummarizedExperiment.
- `updateCol`: Name or the number of the column in the rowData of `x` to be updated with the new values. If the `updateCol` does not match to any column names it will be added as a new column.
- `value`: The new Replacing values.

**Value**

Returns an object of type SummarizedExperiment.
Author(s)
Ali Oghabian

See Also
annotateU12

Examples

```r
Set the testing object
test <- mdsChr22Obj
See the frequency of each intron type annotation
table(rowData(test)$intron_type)

Change U2 to u2
newIntType <- as.character(rowData(test)$intron_type)
newIntType[newIntType == "U2" & !is.na(newIntType == "U2")]<- "u2"

Updating values
test <- updateRowDataCol(test, updateCol = "intron_type",
value = newIntType)
See the frequency of the updated intron type annotations
table(rowData(test)$intron_type)

Adding a new column
newCol <- rep(NA, nrow(rowData(test)))
test <- updateRowDataCol(test, updateCol = "new_column",
value = newCol)
head(rowData(test))
```

Index

* datasets
  mdsChr22ExObj, 36
  mdsChr22IntSpObj, 37
  mdsChr22Obj, 38
  pwmU12db, 45
  u12, 55
* expression
  IntEREst-package, 3
* intron
  IntEREst-package, 3
* package
  IntEREst-package, 3
* retention
  IntEREst-package, 3
* rna-seq
  IntEREst-package, 3
* sequencing
  IntEREst-package, 3
* splicing
  IntEREst-package, 3

addAnnotation, 3, 9, 31, 32
annotateU12, 4, 13, 65, 66
applyOverlap, 7
attributes, 9, 31, 32

boxplot, SummarizedExperiment-method (boxplot-method), 10
boxplot-method, 10
buildSsTypePwms, 6, 11
cor, 42
counts, SummarizedExperiment-method (counts-method), 14
counts-method, 14
counts.InterestResults (counts-method), 14
deseqInterest, 16
DexSeq, 17

DEXSeqDataSet, 17, 18
DEXSeqIntEREst, 17, 17, 19

estimateDisp, 19
exactTest, 19, 35
exactTestInterest, 17, 18, 18, 23, 35, 46, 55, 61

findOverlaps-methods, 8
getAnnotation, 4
getAnnotation (attributes), 9
getRepeatTable, 21, 24, 28, 48
glmfit, 22
glmInterest, 19, 22, 46, 55
glmQLFTest, 46
glmTreat, 54, 55

IntEREst (IntEREst-package), 3
interest, 8, 23, 29, 39, 47, 48, 53
IntEREst-package, 3
interest.sequential, 8, 26, 26, 47
InterestResult, 30, 39, 48, 53
interestResultIntEx, 32, 44
intexBoxplot (boxplot-method), 10
intexIndex, 33

legend, 59, 61
lfc, 19, 34, 61

makeTxDbFromBiomart, 50, 51
makeTxDbFromUCSC, 50, 51
mdsChr22ExObj, 36
mdsChr22IntSpObj, 37
mdsChr22Obj, 38
mergeInterestResult, 39

p.adjust, 16
plot, 61
plot, SummarizedExperiment, ANY-method (plot-method), 41
plot-method, 41
plot.InterestResult (plot-method), 41
psi, 43
pwmU12db, 45
qlfInterest, 17, 19, 23, 46, 55
readInterestResults, 8, 47
referencePrepare, 24, 27, 49
results, 16
scaledRetention (attributes), 9
ScanBamParam, 25, 28
subInterestResult, 52
treatInterest, 17, 19, 23, 46, 54
u12, 55
u12Boxplot, 57, 59
u12BoxplotNb, 57, 58
u12DensityPlot, 59
u12DensityPlotIntron, 35
u12DensityPlotIntron (u12DensityPlot), 59
u12Index, 62, 63
u12NbIndex, 34, 62, 63
unionRefTr, 64
updateRowDataCol, 65