Package ‘MAGeCKFlute’

May 28, 2024

Type Package
Title Integrative Analysis Pipeline for Pooled CRISPR Functional Genetic Screens
Version 2.8.0
Date `r Sys.Date()`
Author Binbin Wang, Wubing Zhang, Feizhen Wu, Wei Li & X. Shirley Liu
Maintainer Wubing Zhang <Watson5bZhang@gmail.com>
Description CRISPR (clustered regularly interspaced short palindromic repeats) coupled with nuclease Cas9 (CRISPR/Cas9) screens represent a promising technology to systematically evaluate gene functions. Data analysis for CRISPR/Cas9 screens is a critical process that includes identifying screen hits and exploring biological functions for these hits in downstream analysis. We have previously developed two algorithms, MAGeCK and MAGeCK-VISPR, to analyze CRISPR/Cas9 screen data in various scenarios. These two algorithms allow users to perform quality control, read count generation and normalization, and calculate beta score to evaluate gene selection performance. In downstream analysis, the biological functional analysis is required for understanding biological functions of these identified genes with different screening purposes. Here, We developed MAGeCKFlute for supporting downstream analysis. MAGeCKFlute provides several strategies to remove potential biases within sgRNA-level read counts and gene-level beta scores. The downstream analysis with the package includes identifying essential, non-essential, and target-associated genes, and performing biological functional category analysis, pathway enrichment analysis and protein complex enrichment analysis of these genes. The package also visualizes genes in multiple ways to benefit users exploring screening data. Collectively, MAGeCKFlute enables accurate identification of essential, non-essential, and targeted genes, as well as their related biological functions. This vignette explains the use of the package and demonstrates typical workflows.

License GPL (>=3)
VignetteBuilder knitr
Depends R (>= 4.1)
Imports Biobase, gridExtra, ggplot2, ggrepel, grDevices, grid, reshape2, stats, utils, DOSE, clusterProfiler, pathview, enrichplot, msigdbr, depmap
Suggests biomaRt, BiocStyle, dendextend, graphics, knitr, pheatmap,
 png, scales, sva, BiocManager

LazyData TRUE

NeedsCompilation no

biocViews FunctionalGenomics, CRISPR, PooledScreens, QualityControl,
 Normalization, GeneSetEnrichment, Pathways, Visualization,
 GeneTarget, KEGG

Encoding UTF-8

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/MAGeCKFlute

git_branch RELEASE_3_19

git_last_commit cf8b1d4

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-28

Contents

 arrangePathview 3
 BarView 5
 BatchRemove 6
 ConsistencyView 7
 CutoffCalling 8
 DensityDiffView 9
 DensityView 10
 enrich.GSE 11
 enrich.HGT 12
 enrich.ORT 14
 EnrichAB 15
 EnrichAnalyzer 16
 EnrichedFilter 18
 EnrichedGeneView 18
 EnrichedView 20
 EnrichSquare 21
 FluteMLE 22
 FluteRRA 25
 getCols 27
 getGeneAnn 28
 getOrg 28
 getOrtAnn 29
 gsGetter 30
 hclustView 31
 HeatmapView 32
 IdentBarView 33
arrangePathview

IncorporateDepmap .. 34
loadDepmap .. 35
MapRatesView ... 36
MAView ... 37
noEnrichPlot .. 38
normalize.loess ... 39
NormalizeBeta ... 40
OmitCommonEssential .. 41
RankView .. 42
ReadBeta ... 44
ReadGMT ... 44
ReadRRA ... 45
ReadsgRRA ... 46
reexports ... 46
ResembleDepmap ... 47
retrieve_gs .. 48
ScatterView .. 48
Selector ... 51
sgRankView ... 51
SquareView .. 51
TransGeneID .. 53
ViolinView ... 55
VolcanoView ... 56
writeGMT .. 57

Index

arrangePathview Kegg pathway view and arrange grobs on page

Description

Kegg pathway view and arrange grobs on page.

Usage

arrangePathview(
 genelist,
 pathways = c(),
 top = 4,
 ncol = 2,
 title = NULL,
 sub = NULL,
 organism = "hsa",
 output = ".",
 path.archive = ".",
 kegg.native = TRUE,
 verbose = TRUE
)
Arguments

- **genelist**: a data frame with columns of ENTREZID, Control and Treatment. The columns of Control and Treatment represent gene score in Control and Treatment sample.

- **pathways**: character vector, the KEGG pathway ID(s), usually 5 digit, may also include the 3 letter KEGG species code.

- **top**: integer, specifying how many top enriched pathways to be visualized.

- **ncol**: integer, specifying how many column of figures to be arranged in each page.

- **title**: optional string, or grob.

- **sub**: optional string, or grob.

- **organism**: character, either the kegg code, scientific name or the common name of the target species. This applies to both pathway and gene.data or cpd.data. When KEGG ortholog pathway is considered, species="ko". Default species="hsa", it is equivalent to use either "Homo sapiens" (scientific name) or "human" (common name).

- **output**: Path to save plot to.

- **path.archive**: character, the directory of KEGG pathway data file (.xml) and image file (.png). Users may supply their own data files in the same format and naming convention of KEGG’s (species code + pathway id, e.g. hsa04110.xml, hsa04110.png etc) in this directory. Default kegg.dir="." (current working directory).

- **kegg.native**: logical, whether to render pathway graph as native KEGG graph (.png) or using graphviz layout engine (.pdf). Default kegg.native=TRUE.

- **verbose**: Boolean

Value

- plot on the current device

Author(s)

Wubing Zhang

Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"), "testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
colnames(dd)[2:3] = c("Control", "Treatment")
# arrangePathview(dd, c("hsa00534"), title=NULL, sub=NULL, organism="hsa")
```
BarView

Bar plot

Description

Bar plot

Usage

```r
BarView(
  df,
  x = "x",
  y = "y",
  fill = "#FC6665",
  bar.width = 0.8,
  position = "dodge",
  dodge.width = 0.8,
  main = NA,
  xlab = NULL,
  ylab = NA,
  ...
)
```

Arguments

- `df` A data frame.
- `x` A character, specifying the x-axis.
- `y` A character, specifying the y-axis.
- `fill` A character, specifying the fill color.
- `bar.width` A numeric, specifying the width of bar.
- `position` "dodge" (default), "stack", "fill".
- `dodge.width` A numeric, set the width in position_dodge.
- `main` A character, specifying the figure title.
- `xlab` A character, specifying the title of x-axis.
- `ylab` A character, specifying the title of y-axis.
- `...` Other parameters in geom_bar

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang
Examples

```r
mdata = data.frame(group=letters[1:5], count=sample(1:100,5))
BarView(mdata, x = "group", y = "count")
```

BatchRemove

Batch effect removal

Description

Batch effect removal

Usage

```r
BatchRemove(
  mat,
  batchMat,
  log2trans = FALSE,
  pca = TRUE,
  positive = FALSE,
  cluster = FALSE,
  outdir = NULL
)
```

Arguments

- **mat**: A data frame, each row is a gene, and each column is a sample.
- **batchMat**: A data frame, the first column should be ‘Samples’(matched colnames of mat) and the second column is ‘Batch’. The remaining columns could be Covariates.
- **log2trans**: Boolean, specifying whether do logarithmic transformation before batch removal.
- **pca**: Boolean, specifying whether return pca plot.
- **positive**: Boolean, specifying whether all values should be positive.
- **cluster**: Boolean, specifying whether perform hierarchical clustering.
- **outdir**: Output directory for hierarchical cluster tree.

Value

A list contains two objects, including data and p.

Author(s)

Wubing Zhang

See Also

ComBat
Examples

```r
edata = matrix(c(rnorm(2000, 5), rnorm(2000, 8)), 1000)
colnames(edata) = paste0("s", 1:4)
batchMat = data.frame(sample = colnames(edata), batch = rep(1:2, each = 2))
edata1 = BatchRemove(edata, batchMat)
print(edata1$p)
```

ConsistencyView

Visualize the estimate cell cycle compared to control.

Description

Estimate cell cycle time in different samples by linear fitting of beta scores.

Usage

```r
ConsistencyView(
  dat,
  ctrlname,
  treatname,
  main = NULL,
  filename = NULL,
  width = 5,
  height = 4,
  ...
)
```

Arguments

dat A data frame.
ctrlname A character, specifying the names of control samples.
treatname A character, specifying the names of treatment samples.
main A character, specifying title.
filename A character, specifying a file name to create on disk. Set filename to be "NULL", if don’t want to save the figure.
width Numeric, specifying width of figure.
height Numeric, specifying height of figure.
... Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.
Author(s)

Wubing Zhang

Examples

file3 = file.path(system.file("extdata", package = "MAGeCKFlute"), "testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
ConsistencyView(dd, ctrlname = "Pmel1_Ctrl", treatname = "Pmel1")

CutoffCalling

Quantile of normal distribution.

Description

Compute cutoff from a normal-distributed vector.

Usage

CutoffCalling(d, scale = 2)

Arguments

d A numeric vector.

scale Boolean or numeric, specifying how many standard deviation will be used as cutoff.

Value

A numeric value.

Examples

CutoffCalling(rnorm(10000))
Description

Plot the distribution of score differences between treatment and control.

Usage

DensityDiffView(
 dat,
 ctrlname = "Control",
 treatname = "Treatment",
 main = NULL,
 filename = NULL,
 width = 5,
 height = 4,
 ...
)

Arguments

dat A data frame.
ctrlname A character, specifying the control samples.
treatname A character, specifying the treatment samples.
main A character, specifying title.
filename A character, specifying a file name to create on disk. Set filename to be "NULL", if don't want to save the figure.
width Numeric, specifying width of figure.
height Numeric, specifying height of figure.
... Other parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang
DensityView

Examples

```r
file3 <- file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd <- ReadBeta(file3)
# Density plot of beta score deviation between control and treatment
DensityDiffView(dd, ctrlname = "Pmel1_Ctrl", treatname = "Pmel1")
```

DensityView

Density plot

Description

Plot the distribution of numeric vectors with the same length.

Usage

```r
DensityView(
  dat,
  samples = NULL,
  main = NULL,
  xlab = "Score",
  filename = NULL,
  width = 5,
  height = 4,
  ...  
)
```

Arguments

- `dat`
 A data frame.

- `samples`
 A character vector, specifying columns in `dat` for plotting.

- `main`
 A character, specifying title.

- `xlab`
 A character, specifying title of x-axis.

- `filename`
 A character, specifying a file name to create on disk. Set `filename` to be "NULL", if don’t want to save the figure.

- `width`
 Numeric, specifying width of figure.

- `height`
 Numeric, specifying height of figure.

- `...`
 Other available parameters in ggsave.

Value

An object created by `ggplot`, which can be assigned and further customized.
enrich.GSE

Author(s)
Wubing Zhang

See Also
ViolinView

Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
DensityView(dd, samples=c("Pmel1_Ctrl", "Pmel1"))
# or
DensityView(dd[,-1])
```

enrich.GSE

Gene set enrichment analysis

Description

A universal gene set enrichment analysis tools

Usage

```r
enrich.GSE(
  geneList,
  keytype = "Symbol",
  type = "GOBP",
  organism = "hsa",
  pvalueCutoff = 1,
  limit = c(2, 100),
  gmtpath = NULL,
  by = "fgsea",
  verbose = TRUE,
  ...
)
```

Arguments

geneList

A order ranked numeric vector with geneid as names

keytype

"Entrez", "Ensembl", or "Symbol"

type

Molecular signatures for testing. available datasets include Pathway (KEGG, REACTOME, C2_CP), GO (GOBP, GOCC, GOMF), MSIGDB (C1, C2 (C2_CP (C2_CP_PID, C2_CP_BIOCARTA), C2_CGP), C3 (C3_MIR, C3_TFT), C4, C6, C7, HALLMARK) and Complex (CORUM). Any combination of them are also accessible (e.g. 'GOBP+GOMF+KEGG+REACTOME')
enrich.HGT

Do enrichment analysis using hypergeometric test

Description

Do enrichment analysis using hypergeometric test

organism 'hsa' or 'mmu'
pvalueCutoff FDR cutoff
limit A two-length vector, specifying the minimal and maximal size of gene sets for enrichent analysis
gmtpath The path to customized gmt file
by One of 'fgsea' or 'DOSE'
verbose Boolean
... Other parameter

Value

An enrichResult instance

Author(s)

Wubing Zhang

See Also

enrich.HGT
enrich.ORT
EnrichAnalyzer

Examples

data(geneList, package = "DOSE")
Not run:
enrichRes = enrich.GSE(geneList, keytype = "entrez")
head(slot(enrichRes, "result"))
End(Not run)
Usage

```
enrich.HGT(
  geneList,
  keytype = "Symbol",
  type = "GOBP",
  organism = "hsa",
  pvalueCutoff = 1,
  limit = c(2, 100),
  universe = NULL,
  gmtpath = NULL,
  verbose = TRUE,
  ...
)
```

Arguments

- **geneList**: A numeric vector with gene names
- **keytype**: "Entrez", "Ensembl", or "Symbol" (default is "Symbol")
- **type**: Molecular signatures for testing, available datasets include Pathway (KEGG, REACTOME, C2_CP), GO (GOBP, GOCC, GOMF), MSIGDB (C1, C2 CP (C2_CP_PID, C2_CP_BIOCARTA), C2_CGP), C3 (C3_MIR, C3_TFT), C4, C6, C7, HALLMARK) and Complex (CORUM). Any combination of them are also accessible (e.g. 'GOBP+GOMF+KEGG+REACTOME')
- **organism**: 'hsa' or 'mmu'
- **pvalueCutoff**: FDR cutoff
- **limit**: A two-length vector, specifying the minimal and maximal size of gene sets for enrichment analysis
- **universe**: A character vector, specifying the background genelist, default is whole genome
- **gmtpath**: The path to customized gmt file
- **verbose**: Boolean
- **...**: Other parameter

Value

An enrichResult instance.

Author(s)

Wubing Zhang

See Also

- `enrich.GSE`
- `enrich.ORT`
- `EnrichAnalyzer`
- `enrichResult-class`
Examples

data(geneList, package = "DOSE")
gen <- geneList[1:300]
enrichRes <- enrich.HGT(genes, type = "KEGG", keytype = "entrez")
head(slot(enrichRes, "result"))

enrich.ORT

Enrichment analysis using over-representation test

Description

Enrichment analysis using over-representation test

Usage

enrich.ORT(
genelist,
keytype = "Symbol",
type = "GOBP",
organism = "hsa",
pvalueCutoff = 1,
limit = c(2, 100),
universe = NULL,
gmtpath = NULL,
verbose = TRUE,
...
)

Arguments

genelist A numeric vector with gene as names.
keytype "Entrez" or "Symbol".
type Molecular signatures for testing, available datasets include Pathway (KEGG, REACTOME, C2_CP), GO (GOBP, GOMF), MSIGDB (C1, C2 (C2_CP (C2_CP_PID, C2_CP_BIOCARTA), C2_CGP), C3 (C3_MIR, C3_TFT), C4, C6, C7, HALLMARK) and Complex (CORUM). Any combination of them are also accessible (e.g. 'GOBP+GOMF+KEGG+REACTOME').
organism 'hsa' or 'mmu'.
pvalueCutoff FDR cutoff.
limit A two-length vector, specifying the minimal and maximal size of gene sets for enrichment analysis.
universe A character vector, specifying the background genelist, default is whole genome.
gmtpath The path to customized gmt file.
verbose Boolean
...
Other parameter
Value

An enrichedResult instance.

Author(s)

Wubing Zhang

See Also

- enrich.HGT
- enrich.GSE
- EnrichAnalyzer

Examples

```r
data(geneList, package = "DOSE")
gen <- geneList[1:100]
enrichedRes <- enrich.ORT(gen, keytype = "entrez")
head(slot(enrichedRes, "result"))
```

EnrichAB
Enrichment analysis for Positive and Negative selection genes

Description

Do enrichment analysis for selected genes, in which positive selection and negative selection are termed as Positive and Negative

Usage

```r
EnrichAB(
  data, 
enrich_method = "HGT", 
top = 10, 
limit = c(2, 100), 
filename = NULL, 
out.dir = 
width = 6.5, 
height = 4, 
verbose = TRUE, 
...)
```
EnrichAnalyzer

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A data frame.</td>
</tr>
<tr>
<td>enrich_method</td>
<td>One of "ORT" (Over-Representing Test) and "HGT" (HyperGemetric test).</td>
</tr>
<tr>
<td>top</td>
<td>An integer, specifying the number of pathways to show.</td>
</tr>
<tr>
<td>limit</td>
<td>A two-length vector, specifying the min and max size of pathways for enrichent analysis.</td>
</tr>
<tr>
<td>filename</td>
<td>Suffix of output file name.</td>
</tr>
<tr>
<td>out.dir</td>
<td>Path to save plot to (combined with filename).</td>
</tr>
<tr>
<td>width</td>
<td>As in ggsave.</td>
</tr>
<tr>
<td>height</td>
<td>As in ggsave.</td>
</tr>
<tr>
<td>verbose</td>
<td>Boolean</td>
</tr>
<tr>
<td>...</td>
<td>Other available parameters in ggsave.</td>
</tr>
</tbody>
</table>

Value

A list containing enrichment results for each group genes. This list contains eight items, which contain subitems of `gridPlot` and `enrichRes`.

Author(s)

Wubing Zhang

Description

Enrichment analysis

Usage

```r
EnrichAnalyzer(
  geneList,
  keytype = "Symbol",
  type = "Pathway+GOBP",
  method = "HGT",
  organism = "hsa",
  pvalueCutoff = 1,
  limit = c(2, 100),
  universe = NULL,
  filter = FALSE,
  gmtpath = NULL,
  verbose = TRUE
)
```
Arguments

- **geneList**: A numeric vector with gene as names.
- **keytype**: "Entrez" or "Symbol".
- **type**: Molecular signatures for testing, available datasets include Pathway (KEGG, REACTOME, C2_CP), GO (GOBP, GOCC, GOMF), MSIGDB (C1, C2 (C2_CP (C2_CP_PID, C2_CP_BIOCARTA), C2_CP), C3 (C3_MIR, C3_TFT), C4, C6, C7, HALLMARK) and Complex (CORUM). Any combination of them are also accessible (e.g. 'GOBP+GOMF+KEGG+REACTOME').
- **method**: One of "ORT" (Over-Representing Test), "GSEA" (Gene Set Enrichment Analysis), and "HGT" (HyperGemetric test).
- **organism**: 'hsa' or 'mmu'.
- **pvalueCutoff**: FDR cutoff.
- **limit**: A two-length vector (default: c(2, 200)), specifying the minimal and maximal size of gene sets for enrichent analysis.
- **universe**: A character vector, specifying the background genelist, default is whole genome.
- **filter**: Boolean, specifying whether filter out redundancies from the enrichment results.
- **gmtpath**: The path to customized gmt file.
- **verbose**: Boolean

Value

- **enrichRes**: is an enrichResult instance.

Author(s)

- Wubing Zhang

See Also

- enrich.GSE
- enrich.ORT
- enrich.HGT
- enrichResult-class

Examples

```r
data(geneList, package = "DOSE")
## Not run:
keggA = EnrichAnalyzer(geneList[1:500], keytype = "entrez")
head(keggA@result)
## End(Not run)
```
EnrichedFilter

Simplify the enrichment results based on Jaccard index

Description

Simplify the enrichment results based on Jaccard index

Usage

```
EnrichedFilter(enrichment = enrichment, cutoff = 0.8)
```

Arguments

- `enrichment`: A data frame of enrichment result or an enrichResult object.
- `cutoff`: A numeric, specifying the cutoff of Jaccard index between two pathways.

Value

A data frame.

Author(s)

Yihan Xiao

Examples

```r
data(geneList, package = "DOSE")
## Not run:
enrichRes <- enrich.HGT(geneList, keytype = "entrez")
EnrichedFilter(enrichRes)
## End(Not run)
```

EnrichedGeneView

Visualize enriched pathways and genes in those pathways

Description

Visualize enriched pathways and genes in those pathways
Usage

EnrichedGeneView(
 enrichment,
 geneList,
 rank_by = "p.adjust",
 top = 5,
 bottom = 0,
 keytype = "Symbol",
 gene_cutoff = c(-log2(1.5), log2(1.5)),
 custom_gene = NULL,
 charLength = 40,
 filename = NULL,
 width = 7,
 height = 5,
 ...
)

Arguments

 enrichment A data frame of enrichment result or an enrichResult object.
 geneList A numeric geneList used in enrichment analysis.
 rank_by "p.adjust" or "NES", specifying the indices for ranking pathways.
 top An integer, specifying the number of positively enriched terms to show.
 bottom An integer, specifying the number of negatively enriched terms to show.
 keytype "Entrez" or "Symbol".
 gene_cutoff A two-length numeric vector, specifying cutoff for genes to show.
 custom_gene A character vector (gene names), customizing genes to show.
 charLength Integer, specifying max length of enriched term name to show as coordinate lab.
 filename Figure file name to create on disk. Default filename="NULL", which means no output.
 width As in ggsave.
 height As in ggsave.
 ... Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang
EnrichedView

Examples

data(geneList, package = "DOSE")

Not run:
enrichRes <- enrich.GSE(geneList, keytype = "Entrez")
EnrichedGeneView(enrichment=slot(enrichRes, "result"), geneList, keytype = "Entrez")

End(Not run)

EnrichedView

View enriched terms

Description

Grid plot for enriched terms

Usage

EnrichedView(
enrichment,
rank_by = "pvalue",
mode = 1,
subset = NULL,
top = 0,
bottom = 0,
x = "LogFDR",
charLength = 40,
filename = NULL,
width = 7,
height = 4,
...)

Arguments

enrichment A data frame of enrichment result, with columns of ID, Description, p.adjust and NES.
rank_by "pvalue" or "NES", specifying the indices for ranking pathways.
mode 1 or 2.
subset A vector of pathway ids.
top An integer, specifying the number of upregulated terms to show.
bottom An integer, specifying the number of downregulated terms to show.
x Character, "NES", "LogP", or "LogFDR", indicating the variable on the x-axis.
charLength Integer, specifying max length of enriched term name to show as coordinate lab.
filename Figure file name to create on disk. Default filename="NULL".
width As in ggsave.
height As in ggsave.
... Other available parameters in ggsave.
Value

An object created by `ggplot`, which can be assigned and further customized.

Author(s)

Wubing Zhang

See Also

`EnrichedView`

Examples

```r
data(geneList, package = "DOSE")
## Not run:
enrichRes = enrich.GSE(geneList, organism="hsa")
EnrichedView(enrichRes, top = 5, bottom = 5)
## End(Not run)
```

EnrichSquare

Enrichment analysis for selected treatment related genes

Description

Do enrichment analysis for selected treatment related genes in 9-squares

Usage

```r
EnrichSquare(
  beta,
  id = "GeneID",
  keytype = "Entrez",
  x = "Control",
  y = "Treatment",
  enrich_method = "ORT",
  top = 5,
  limit = c(2, 100),
  filename = NULL,
  out.dir = ".",
  width = 6.5,
  height = 4,
  verbose = TRUE,
  ...
)
```
Arguments

beta Data frame, with columns of "GeneID", "group", and "Diff".
{id} A character, indicating the gene column in the data.
keytype A character, "Symbol" or "Entrez".
x A character, indicating the x-axis in the 9-square scatter plot.
y A character, indicating the y-axis in the 9-square scatter plot.
enrich_method One of "ORT"(Over-Representing Test) and "HGT"(HyperGeometric test).
top An integer, specifying the number of pathways to show.
limit A two-length vector, specifying the min and max size of pathways for enrichment analysis.
filename Suffix of output file name. NULL(default) means no output.
out.dir Path to save plot to (combined with filename).
width As in ggsave.
height As in ggsave.
verbose Boolean.
... Other available parameters in ggsave.

Value

A list containing enrichment results for each group genes. Each item in the returned list has two sub items:

gridPlot an object created by ggplot, which can be assigned and further customized.
enrichRes a enrichRes instance.

Author(s)

Wubing Zhang
Usage

FluteMLE(
 gene_summary,
 treatname,
 ctrlname = "Depmap",
 keytype = "Symbol",
 organism = "hsa",
 incorporateDepmap = FALSE,
 cell_lines = NA,
 lineages = "All",
 norm_method = "cell_cycle",
 posControl = NULL,
 omitEssential = TRUE,
 top = 10,
 toplabels = NA,
 scale_cutoff = 2,
 limit = c(0, 200),
 enrich_method = "ORT",
 proj = NA,
 width = 10,
 height = 7,
 outdir = ".",
 pathview.top = 4,
 verbose = TRUE
)

Arguments

gene_summary A data frame or a file path to gene summary file generated by MAGeCK-MLE.
treatname A character vector, specifying the names of treatment samples.
ctrlname A character vector, specifying the names of control samples. If there is no controls in your CRISPR screen, you can specify "Depmap" as ctrlname and set 'incorporateDepmap=TRUE'.
keytype "Entrez" or "Symbol".
organism "hsa" or "mmu".
incorporateDepmap Boolean, indicating whether incorporate Depmap data into analysis.
cell_lines A character vector, specifying the cell lines in Depmap to be considered.
lineages A character vector, specifying the lineages in Depmap to be considered.
norm_method One of "none", "cell_cycle" (default) or "loess".
posControl A character vector, specifying a list of positive control gene symbols.
omitEssential Boolean, indicating whether omit common essential genes from the downstream analysis.
top An integer, specifying the number of top selected genes to be labeled in rank figure and the number of top pathways to be shown.
Details

MAGeCK-MLE can be used to analyze screen data from multi-conditioned experiments. MAGeCK-MLE also normalizes the data across multiple samples, making them comparable to each other. The most important output of MAGeCK MLE is 'gene_summary' file, which includes the beta scores of multiple conditions and the associated statistics. The 'beta score' for each gene describes how the gene is selected: a positive beta score indicates a positive selection, and a negative beta score indicates a negative selection.

The downstream analysis includes identifying essential, non-essential, and target-associated genes, and performing biological functional category analysis and pathway enrichment analysis of these genes. The function also visualizes genes in the context of pathways to benefit users exploring screening data.

Value

All of the pipeline results is output into the `out.dir/MAGeCKFlute_proj`, which includes a pdf file and many folders. The pdf file 'FluteMLE_proj_norm_method.pdf' is the summary of pipeline results. For each section in this pipeline, figures and useful data are outputed to corresponding subfolders.

- **QC**: Quality control
- **Selection**: Positive selection and negative selection.
- **Enrichment**: Enrichment analysis for positive and negative selection genes.
- **PathwayView**: Pathway view for top enriched pathways.

Author(s)

Wubing Zhang

See Also

FluteRRA
Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
## Not run:
# functional analysis for MAGeCK MLE results
FluteMLE(file3, treatname = "Pmel1", ctrlname = "Pmel1_Ctrl", proj = "Pmel1")
## End(Not run)
```

FluteRRA
Downstream analysis based on MAGeCK-RRA result

Description

Integrative analysis pipeline using the gene summary table in MAGeCK RRA results

Usage

```r
FluteRRA(
  gene_summary,
  sgrna_summary = NULL,
  keytype = "Symbol",
  organism = "hsa",
  incorporateDepmap = FALSE,
  cell_lines = NA,
  lineages = "All",
  omitEssential = TRUE,
  top = 5,
  toplabels = NULL,
  scale_cutoff = 2,
  limit = c(2, 100),
  proj = NA,
  width = 12,
  height = 6,
  outdir = ".",
  verbose = TRUE
)
```

Arguments

- `gene_summary`: A file path or a data frame of gene summary data.
- `sgrna_summary`: A file path or a data frame of sgRNA summary data.
- `keytype`: "Entrez" or "Symbol".
- `organism`: "hsa" or "mmu".
- `incorporateDepmap`: Boolean, indicating whether incorporate Depmap data into analysis.
FluteRRA

cell_lines A character vector, specifying the cell lines in Depmap to be considered.
lineages A character vector, specifying the lineages in Depmap to be considered.
omitEssential Boolean, indicating whether omit common essential genes from the downstream analysis.
top An integer, specifying the number of top selected genes to be labeled in rank figure and the number of top pathways to be shown.
toplabels A character vector, specifying interested genes to be labeled in rank figure.
scale_cutoff Boolean or numeric, specifying how many standard deviation will be used as cutoff.
limit A two-length vector, specifying the minimal and maximal size of gene sets for enrichment analysis.
proj A character, indicating the prefix of output file name.
width The width of summary pdf in inches.
height The height of summary pdf in inches.
outdir Output directory on disk.
verbose Boolean

Details

MAGECK RRA allows for the comparison between two experimental conditions. It can identify genes and sgRNAs are significantly selected between the two conditions. The most important output of MAGECK RRA is the file 'gene_summary.txt'. MAGECK RRA will output both the negative score and positive score for each gene. A smaller score indicates higher gene importance. MAGECK RRA will also output the statistical value for the scores of each gene. Genes that are significantly positively and negatively selected can be identified based on the p-value or FDR.

The downstream analysis of this function includes identifying positive and negative selection genes, and performing biological functional category analysis and pathway enrichment analysis of these genes.

Value

All of the pipeline results is output into the out.dir/proj_Results, which includes a pdf file and a folder named 'RRA'.

Author(s)

Wubing Zhang

See Also

FluteMLE
getCols

Examples

file1 = file.path(system.file("extdata", package = "MAGeCKFlute"),
 "testdata/rra.gene_summary.txt")
file2 = file.path(system.file("extdata", package = "MAGeCKFlute"),
 "testdata/rra.sgrna_summary.txt")

Not run:
Run the FluteRRA pipeline
FluteRRA(file1, file2, proj="Pmel", organism="hsa", incorporateDepmap = FALSE,
 scale_cutoff = 1, outdir = "./"

End(Not run)

getCols Map values to colors

Description

Map values to colors

Usage

getCols(x, palette = 1)

Arguments

x A numeric vector.

palette diverge, rainbow, sequential

Value

A vector of colors corresponding to input vector.

Author(s)

Wubing Zhang

Examples

getCols(1:4)
getGeneAnn

Retrieve gene annotations from the NCBI, HNSC, and Uniprot databases.

Description
Retrieve gene annotations from the NCBI, HNSC, and Uniprot databases.

Usage
getGeneAnn(org = "hsa", update = FALSE)

Arguments
- org: Character, hsa (default), bta, cfa, mmu, ptr, rno, ssc are optional.
- update: Boolean, indicating whether download current annotation.

Value
A data frame.

Author(s)
Wubing Zhang

Examples
Not run:
ann = getGeneAnn("hsa")
head(ann)
End(Not run)

getOrg
Get the kegg code of specific mammalia organism.

Description
Get the kegg code of specific mammalia organism.

Usage
getOrg(organism)
getOrtAnn

Arguments

organism Character, KEGG species code, or the common species name. For all potential values check: data(bods); bods. Default org="hsa", and can also be "human" (case insensitive).

Value

A list containing three elements:

org species pkg
annotation package name

Author(s)

Wubing Zhang

Examples

ann = getOrg("human")
print(ann$pkg)

getOrtAnn

Retrieve reference orthologs annotation.

Description

Retrieve reference orthologs annotation.

Usage

getOrtAnn(fromOrg = "mmu", toOrg = "hsa", update = FALSE)

Arguments

fromOrg Character, hsa (default), bta, cfa, mmu, ptr, rno, ssc are optional.
toOrg Character, hsa (default), bta, cfa, mmu, ptr, rno, ssc are optional.
update Boolean, indicating whether download recent annotation from NCBI.

Value

A data frame.

Author(s)

Wubing Zhang
Examples

```r
## Not run:
ann = getOrtAnn("mmu", "hsa")
head(ann)

## End(Not run)
```

gsGetter

Extract pathway annotation from GMT file.

Description

Extract pathway annotation from GMT file.

Usage

```r
gsGetter(
  gmtpath = NULL,
  type = "All",
  limit = c(0, Inf),
  organism = "hsa",
  update = FALSE
)
```

Arguments

- `gmtpath`: The path to customized gmt file.
- `type`: Molecular signatures for testing, available datasets include Pathway (KEGG, REACTOME, C2_CP:PID, C2_CP:BIOCARTA), GO (GOBP, GOCC, GOMF), MSIGDB (C1, C2 (C2_CP (C2_CP:PID, C2_CP:BIOCARTA), C2_CGP), C3 (C3_MIR, C3_TFT), C4 (C4_CGN, C4_CM), C5 (C5_BP, C5_CC, C5_MF), C6, C7, H) and Complex (CORUM). Any combination of them are also accessible (e.g. 'GOBP+GOMF+KEGG+REACTOME').
- `limit`: A two-length vector, specifying the minimal and maximal size of gene sets to load.
- `organism`: 'hsa' or 'mmu'.
- `update`: Boolean, indicating whether update the gene sets from source database.

Value

A three-column data frame.

Author(s)

Wubing Zhang
hclustView

Examples

```r
gene2path = gsGetter(type = "REACTOME+KEGG")
head(gene2path)
```

Description

Cluster and view cluster tree

Usage

```r
hclustView(
  d,
  method = "average",
  label_cols = NULL,
  bar_cols = NULL,
  main = NA,
  xlab = NA,
  horiz = TRUE,
  ...
)
```

Arguments

- `d` A dissimilarity structure as produced by `dist`.
- `method` The agglomeration method to be used. This should be (an unambiguous abbreviation of) one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).
- `label_cols` A vector to be used as label’s colors for the dendrogram.
- `bar_cols` Either a vector or a matrix, which will be plotted as a colored bar.
- `main` As in 'plot'.
- `xlab` As in 'plot'.
- `horiz` Logical indicating if the dendrogram should be drawn horizontally or not.
- `...` Arguments to be passed to methods, such as graphical parameters (see `par`).

Value

Plot figure on open device.

Author(s)

Wubing Zhang
Examples

```r
label_cols = rownames(USArrests)
hclustView(dist(USArrests), label_cols=label_cols, bar_cols=label_cols)
```

Description

Draw heatmap

Usage

```r
HeatmapView(
  mat,
  limit = c(-2, 2),
  na_col = "gray70",
  colPal = rev(colorRampPalette(c("#c12603", "white", "#0073B6"), space = "Lab")(199)),
  filename = NA,
  width = NA,
  height = NA,
  ...
)
```

Arguments

- **mat**: Matrix like object, each row is gene and each column is sample.
- **limit**: Max value in heatmap
- **na_col**: Color for missing values
- **colPal**: colorRampPalette.
- **filename**: File path where to save the picture.
- **width**: Manual option for determining the output file width in inches.
- **height**: Manual option for determining the output file height in inches.
- **...**: Other parameters in pheatmap.

Value

Invisibly a pheatmap object that is a list with components.

Author(s)

Wubing Zhang
Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
                 "testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
        gg = cor(dd[,2:ncol(dd)])
HeatmapView(gg, display_numbers = TRUE)
```

Description

Identical bar plot

Usage

```r
IdentBarView(
  gg,
  x = "x",
  y = "y",
  fill = c("#CF3C2B", "#394E80"),
  main = NULL,
  xlab = NULL,
  ylab = NULL,
  filename = NULL,
  width = 5,
  height = 4,
  ...
)
```

Arguments

- **gg**: A data frame.
- **x**: A character, indicating column (in countSummary) of x-axis.
- **y**: A character, indicating column (in countSummary) of y-axis.
- **fill**: A character, indicating fill color of all bars.
- **main**: A character, specifying the figure title.
- **xlab**: A character, specifying the title of x-axis.
- **ylab**: A character, specifying the title of y-axis.
- **filename**: Figure file name to create on disk. Default filename="NULL", which means don’t save the figure on disk.
- **width**: As in ggsave.
- **height**: As in ggsave.
- **...**: Other available parameters in ggsave.
Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

```r
file4 = file.path(system.file("extdata", package = "MAGECKFlute"),
    "testdata/countsummary.txt")
countsummary = read.delim(file4, check.names = FALSE)
IdentBarView(countsummary, x="Label", y="Reads")
```

Description

Incorporate Depmap screen into analysis

Usage

```r
IncorporateDepmap(
    dd, symbol = "id",
    cell_lines = NA,
    lineages = "All",
    na.rm = FALSE
)
```

Arguments

- **dd**: A data frame.
- **symbol**: A character, specifying the column name of gene symbols in the data frame.
- **cell_lines**: A character vector, specifying the cell lines for incorporation.
- **lineages**: A character vector, specifying the cancer types for incorporation.
- **na.rm**: Boolean, indicating whether removing NAs from the results.

Value

A data frame with Depmap column (average CERES scores across selected cell lines) attached.

Author(s)

Wubing Zhang
loadDepmap

Examples

```r
file1 = file.path(system.file("extdata", package = "MAGECKFlute"),
                 "testdata/rra.gene_summary.txt")
gdata = ReadRRA(file1)
head(gdata)
```

```r
## Not run:
gdata = IncorporateDepmap(gdata)
head(gdata)
```

```r
## End(Not run)
```

Description

Load processed Depmap data

Usage

```r
LoadDepmap()
```

Value

A list including two elements, one is the Depmap CRISPR data, and the other is the sample annotation data.

Author(s)

Wubing Zhang

Examples

```r
## Not run:
depmapDat = LoadDepmap()
```

```r
## End(Not run)
```
MapRatesView View mapping ratio

Description

View mapping ratio of each sample

Usage

MapRatesView(
 countSummary,
 Label = "Label",
 Reads = "Reads",
 Mapped = "Mapped",
 filename = NULL,
 width = 5,
 height = 4,
 ...
)

Arguments

countSummary A data frame, which contains columns of ‘Label’, ‘Reads’, and ‘Mapped’
Label A character, indicating column (in countSummary) of sample names.
Reads A character, indicating column (in countSummary) of total reads.
Mapped A character, indicating column (in countSummary) of mapped reads.
filename Figure file name to create on disk. Default filename="NULL", which means
don’t save the figure on disk.
width As in ggsave.
height As in ggsave.
... Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

file4 = file.path(system.file("extdata", package = "MAGeCKFlute"),
 "testdata/countsummary.txt")
countsummary = read.delim(file4, check.names = FALSE)
MapRatesView(countsummary)
MAView

MA View

37

MAplot of gene beta scores

Description

MAplot of gene beta scores in Control vs Treatment

Usage

MAView(
 beta,
 ctrlname = "Control",
 treatname = "Treatment",
 main = NULL,
 show.statistics = TRUE,
 add.smooth = TRUE,
 lty = 1,
 smooth.col = "red",
 plot.method = c("loess", "lm", "glm", "gam"),
 filename = NULL,
 width = 5,
 height = 4,
 ...
)

Arguments

beta Data frame, including ctrlname and treatname as columns.
ctrlname Character vector, specifying the name of control sample.
treatname Character vector, specifying the name of treatment sample.
main As in plot.
show.statistics Show statistics.
add.smooth Whether add a smooth line to the plot.
lty Line type for smooth line.
smooth.col Color of smooth line.
plot.method A string specifying the method to fit smooth line, which should be one of "loess" (default), "lm", "glm" and "gam".
filename Figure file name to create on disk. Default filename="NULL", which means don’t save the figure on disk.
width As in ggsave.
height As in ggsave.
... Other available parameters in function 'ggsave'.
Value

An object created by `ggplot`, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
MAView(dd, ctrlname = "Pmel1_Ctrl", treatname = "Pmel1")
dd2 = NormalizeBeta(dd, method="loess", org = "mmu")
MAView(dd2, ctrlname = "Pmel1_Ctrl", treatname = "Pmel1")
```

Description

Blank figure

Usage

```r
noEnrichPlot(main = "No enriched terms")
```

Arguments

- `main`: The title of figure.

Value

An object created by `ggplot`, which can be assigned and further customized.

Author(s)

Wubing Zhang
normalize.loess

Description

Loess normalization method.

Usage

normalize.loess(
 mat,
 subset = sample(1:(dim(mat)[1]), min(c(5000, nrow(mat)))),
 epsilon = 10^-2,
 maxit = 1,
 log.it = FALSE,
 verbose = TRUE,
 span = 2/3,
 family.loess = "symmetric",
 ...
)

Arguments

mat A matrix with columns containing the values of the chips to normalize.
subset A subset of the data to fit a loess to.
epsilon A tolerance value (supposed to be a small value - used as a stopping criterion).
maxit Maximum number of iterations.
log.it Logical. If TRUE it takes the log2 of mat.
verbose Logical. If TRUE displays current pair of chip being worked on.
span Parameter to be passed the function loess
family.loess Parameter to be passed the function loess. "gaussian" or "symmetric" are acceptable values for this parameter.
... Any of the options of normalize.loess you would like to modify (described above).

Value

A matrix similar as mat.

Author(s)

Wubing Zhang
See Also

loess

NormalizeBeta

Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
beta_loess = normalize.loess(dd[,,-1])
```

NormalizeBeta

 normalize gene beta scores

Description

Two normalization methods are available. `cell_cycle` method normalizes gene beta scores based on positive control genes in CRISPR screening. `loess` method normalizes gene beta scores using loess.

Usage

```r
NormalizeBeta(
  beta, 
  id = 1, 
  method = "cell_cycle", 
  posControl = NULL, 
  samples = NULL, 
  org = "hsa"
)
```

Arguments

- **beta**: Data frame.
- **id**: An integer specifying the column of gene.
- **method**: Character, one of 'cell_cycle' (default) and 'loess'. or character string giving the name of the table column containing the gene names.
- **posControl**: A character vector, specifying a list of positive control genes.
- **samples**: Character vector, specifying the sample names in `beta` columns. If NULL (default), take all `beta` columns as samples.
- **org**: "hsa", "mmu", "bta", "cfa", "ptr", "rno", or "ssc" indicating the organism.
OmitCommonEssential

Details

In CRISPR screens, cells treated with different conditions (e.g., with or without drug) may have different proliferation rates. So it's necessary to normalize the proliferation rate based on defined positive control genes among samples. After normalization, the beta scores are comparable across samples. loess is another optional normalization method, which is used to normalize array data before.

Value

A data frame with same format as input data beta.

Author(s)

Wubing Zhang

Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"), "testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
## Not run:
  #Cell Cycle normalization
  dd_essential = NormalizeBeta(dd, method="cell_cycle", org = "mmu")
  head(dd_essential)

  ## End(Not run)
  #Optional loess normalization (not recommended)
  dd_loess = NormalizeBeta(dd, method="loess")
  head(dd_loess)
```

Description

Omit common essential genes based on depmap data

Usage

```r
OmitCommonEssential(
  dd,
  symbol = "id",
  lineages = "All",
  cell_lines = NULL,
  dependency = -0.5
)
```
Arguments

- `dd` A data frame.
- `symbol` A character, specifying the column name of gene symbols in the data frame.
- `lineages` A character vector, specifying the lineages for selecting essential genes.
- `cell_lines` A character vector, specifying cell lines for selecting essential genes.
- `dependency` A numeric, specifying the threshold for selecting essential genes.

Value

A data frame.

Author(s)

Wubing Zhang

Examples

```r
## Not run:
file1 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/rra.gene_summary.txt")
gdata = ReadRRA(file1)
dim(gdata)
rra.omit = OmitCommonEssential(gdata)
dim(rra.omit)
## End(Not run)
```

RankView

Rank plot

Description

Draw the score and rank of genes on a scatter plot.

Usage

```r
RankView(
  rankdata,
  genelist = NULL,
  decreasing = TRUE,
  top = 5,
  bottom = 5,
  cutoff = 2,
  main = NULL,
  filename = NULL,
  width = 5,
)```
Arguments

- **rankdata**: A numeric vector, with gene as names.
- **genelist**: A character vector, specifying genes to be labeled.
- **decreasing**: Boolean, specifying the order of genes to plot.
- **top**: Integer, specifying number of positive genes to be labeled.
- **bottom**: Integer, specifying number of negative genes to be labeled.
- **cutoff**: One numeric value indicating the fold of standard deviation used as cutoff; two number vector, such as c(-1, 1), specifying the exact cutoff for selecting top genes.
- **main**: A character, specifying title.
- **filename**: A character, specifying a file name to create on disk. Set filename to be "NULL", if don’t want to save the figure.
- **width**: Numeric, specifying width of figure.
- **height**: Numeric, specifying height of figure.
- **...**: Other available parameters in the function ’geom_text_repel’.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

```r
file1 = file.path(system.file("extdata", package = "MAGECKFlute"),
 "testdata/rra.gene_summary.txt")
gdata = ReadRRA(file1)
rankdata = gdata$Score
names(rankdata) = gdata$id
RankView(rankdata)
```
ReadBeta

Description
Read gene beta scores from MAGeCK-MLE results

Usage
ReadBeta(gene_summary)

Arguments

gene_summary A data frame or a file path to gene summary file generated by MAGeCK-MLE.

Value
A data frame, whose first column is Gene and other columns are comparisons.

Author(s)
Wubing Zhang

Examples
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
head(dd)

ReadGMT

Description
Parse gmt file to a data.frame

Usage
ReadGMT(gmtpath, limit = c(0, Inf))

Arguments

gmtpath The path to gmt file.
limit A integer vector of length two, specifying the limit of geneset size.
ReadRRA

Value

An data.frame, in which the first column is gene, and the second column is pathway name.

Author(s)

Wubing Zhang

Description

Read gene summary file in MAGeCK-RRA results

Usage

ReadRRA(gene_summary, score = c("lfc", "rra")[1])

Arguments

gene_summary A data frame or a file path to gene summary file generated by MAGeCK-RRA.
score "lfc" (default) or "rra", specifying the score type.

Details

If the score type is equal to lfc, then LFC will be returned. If the score type is rra, the log10 transformed RRA score will be returned.

Value

A data frame including three columns, including "id", "LFC" and "FDR".

Author(s)

Wubing Zhang

Examples

file1 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/rra.gene_summary.txt")
gdata = ReadRRA(file1)
head(gdata)
Read sgRNA summary in MAGeCK-RRA results

**Description**

Read sgRNA summary in MAGeCK-RRA results

**Usage**

`ReadsgRRA(sgRNA_summary)`

**Arguments**

*sgRNA_summary*  A file path or a data frame of sgRNA summary data.

**Value**

A data frame.

**Author(s)**

Wubing Zhang

**Examples**

```r
file2 = file.path(system.file("extdata", package = "MAGeCKFlute"),
 "testdata/rra.sgrna_summary.txt")
sgrra = ReadsgRRA(file2)
head(sgrra)
```

---

**Objects exported from other packages**

**Description**

These objects are imported from other packages. Follow the links below to see their documentation.

- `clusterProfiler`
- `GSEA, enricher`
- `enrichplot`: `cnetplot, dotplot, emapplot, gplot, gseaplot, gseaplot2, heatplot, ridgeplot`
**ResembleDepmap**

*Compute the similarity between customized CRISPR screen with Depmap screens*

---

**Description**

Compute the similarity between customized CRISPR screen with Depmap screens

**Usage**

```r
ResembleDepmap(
 dd,
symbol = "id",
score = "Score",
lineages = "All",
method = c("pearson", "spearman", "kendall")[1]
)
```

**Arguments**

- `dd` A data frame.
- `symbol` A character, specifying the column name of gene symbols in the data frame.
- `score` A character, specifying the column name of gene essentiality score in the data frame.
- `lineages` A character vector, specifying the lineages used for common essential gene selection.
- `method` A character, indicating which correlation coefficient is to be used for the test. One of "pearson", "kendall", or "spearman".

**Value**

A data frame with correlation and test p.value.

**Author(s)**

Wubing Zhang

**Examples**

```r
gdata = ReadRRA(file1)
Not run:
rra.omit = OmitCommonEssential(gdata)
depmap_similarity = ResembleDepmap(rra.omit)
head(depmap_similarity)
End(Not run)
```
**retrieve_gs**  
*Update genesets from source database*

**Description**
Update genesets from source database

**Usage**
```r
retrieve_gs(type = c("KEGG", "REACTOME", "CORUM", "GO"), organism = "hsa")
```

**Arguments**
- `type` A vector of databases, such as KEGG, REACTOME, CORUM, GO.
- `organism` 'hsa' or 'mmu'.

**Value**
save data to local library.

**Author(s)**
Wubing Zhang

---

**ScatterView**  
*Scatter plot*

**Description**
Scatter plot supporting groups.

**Usage**
```r
ScatterView(
data,
 x = "x",
 y = "y",
 label = 0,
 model = c("none", "ninesquare", "volcano", "rank")[1],
 x_cut = NULL,
 y_cut = NULL,
 slope = 1,
 intercept = NULL,
 auto_cut = FALSE,
 auto_cut_x = auto_cut,
```
auto_cut_y = auto_cut,
auto_cut_diag = auto_cut,
groups = NULL,
group_col = NULL,
groupnames = NULL,
label.top = TRUE,
top = 0,
toplabels = NULL,
display_cut = FALSE,
color = NULL,
shape = 16,
size = 1,
alpha = 0.6,
main = NULL,
xlab = x,
ylab = y,
legend.position = "none",
...)

Arguments

data
Data frame.

x
A character, specifying the x-axis.

y
A character, specifying the y-axis.

label
An integer or a character specifying the column used as the label, default value is 0 (row names).

model
One of "none" (default), "ninesquare", "volcano", and "rank".

x_cut
An one or two-length numeric vector, specifying the cutoff used for x-axis.

y_cut
An one or two-length numeric vector, specifying the cutoff used for y-axis.

slope
A numeric value indicating slope of the diagonal cutoff.

intercept
A numeric value indicating intercept of the diagonal cutoff.

auto_cut
Boolean or numeric, specifying how many standard deviation will be used as cutoff.

auto_cut_x
Boolean or numeric, specifying how many standard deviation will be used as cutoff on x-axis.

auto_cut_y
Boolean or numeric, specifying how many standard deviation will be used as cutoff on y-axis.

auto_cut_diag
Boolean or numeric, specifying how many standard deviation will be used as cutoff on diagonal.

groups
A character vector specifying groups. Optional groups include "top", "mid", "bottom", "left", "center", "right", "topleft", "topcenter", "topright", "midleft", "midcenter", "midright", "bottomleft", "bottomcenter", "bottomright".

group_col
A vector of colors for specified groups.
ScatterView

- `groupnames`: A vector of group names to show on the legend.
- `label.top`: Boolean, specifying whether label top hits.
- `top`: Integer, specifying the number of top terms in the groups to be labeled.
- `toplabels`: Character vector, specifying terms to be labeled.
- `display_cut`: Boolean, indicating whether display the dashed line of cutoffs.
- `color`: A character, specifying the column name of color in the data frame.
- `shape`: A character, specifying the column name of shape in the data frame.
- `size`: A character, specifying the column name of size in the data frame.
- `alpha`: A numeric, specifying the transparency of the dots.
- `main`: Title of the figure.
- `xlab`: Title of x-axis.
- `ylab`: Title of y-axis.
- `legend.position`: Position of legend, "none", "right", "top", "bottom", or a two-length vector indicating the position.
- `...`: Other available parameters in function 'geom_text_repel'.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
ScatterView(dd, x = "Pme1_Ctrl", y = "Pme1", label = "Gene",
auto_cut = 1, groups = "topright", top = 5, display_cut = TRUE)
ScatterView(dd, x = "Pme1_Ctrl", y = "Pme1", label = "Gene",
auto_cut = 2, model = "ninesquare", top = 5, display_cut = TRUE)
```
Selector

Select signatures from candidate list (according to the consistence in most samples).

Description

Select signatures from candidate list (according to the consistence in most samples).

Usage

Selector(mat, cutoff = 0, type = "<", select = 0.8)

Arguments

- **mat**: A matrix, each row is candidates (genes), each column is samples.
- **cutoff**: Numeric, specifying the cutoff to define the signatures.
- **type**: Character, ">" or "<".
- **select**: Numeric, specifying the proportion of samples in which signature is selected.

Value

An list containing two elements, the first is the selected signature and the second is a ggplot object.

Examples

```r
mat = matrix(rnorm(1000*30), 1000, 30)
rownames(mat) = paste0("Gene", 1:1000)
colnames(mat) = paste0("Sample", 1:30)
hits = Selector(mat, select = 0.68)
print(hits$p)
```

sgRankView

View sgRNA rank.

Description

View sgRNA rank.
Usage

```r
sgRankView(
 df,
 gene = NULL,
 top = 3,
 bottom = 3,
 neg_ctrl = NULL,
 binwidth = 0.3,
 interval = 0.1,
 bg.col = "gray90",
 filename = NULL,
 width = 5,
 height = 3.5,
 ...
)
```

Arguments

- **df**: A data frame, which contains columns of 'sgrna', 'Gene', and 'LFC'.
- **gene**: Character vector, specifying genes to be plotted.
- **top**: Integer, specifying number of top genes to be plotted.
- **bottom**: Integer, specifying number of bottom genes to be plotted.
- **neg_ctrl**: A vector specifying negative ctrl genes.
- **binwidth**: A numeric value specifying the bar width.
- **interval**: A numeric value specifying the interval length between each bar.
- **bg.col**: A character value specifying the background color.
- **filename**: Figure file name to create on disk. Default filename="NULL", which means no output.
- **width**: As in ggsave.
- **height**: As in ggsave.
- **...**: Other available parameters in function 'ggsave'.

Value

An object created by ggplot.

Author(s)

Yihan Xiao

Examples

```r
file2 = file.path(system.file("extdata", package = "MAGeCKFlute"),
 "testdata/rra.sgrna_summary.txt")
sgrra = ReadsgRRA(file2)
sgRankView(sgrra)
```
SquareView

Scatter plot showing dots in 9 quadrants

Description

Scatter plot showing dots in 9 quadrants

Usage

SquareView(
  df,
  ctrlname = "Control",
  treatname = "Treatment",
  label = 0,
  label.top = TRUE,
  top = 5,
  genelist = c(),
  x_cut = NULL,
  y_cut = NULL,
  slope = 1,
  intercept = NULL,
  auto_cut = FALSE,
  auto_cut_x = auto_cut,
  auto_cut_y = auto_cut,
  auto_cut_diag = auto_cut,
  groups = c("midleft", "topcenter", "midright", "bottomcenter"),
  groupnames = paste0("Group", 1:length(groups)),
  legend.position = "none",
  main = NULL,
  filename = NULL,
  width = 6,
  height = 4,
  ...
)

Arguments

df A data frame.
ctrlname A character, specifying the names of control samples, of which the average scores will show as the x-axis.
treatname A character, specifying the name of treatment samples, of which the average scores will show as the y-axis.
label An integer or a character specifying the column used as the label, default value is 0 (row names).
label.top Boolean, whether label the top selected genes, default label the top 10 genes in each group.
top Integer, specifying the number of top selected genes to be labeled. Default is 5.
genelist Character vector, specifying genes to be labeled.
x_cut An one or two-length numeric vector, specifying the cutoff used for x-axis.
y_cut An one or two-length numeric vector, specifying the cutoff used for y-axis.
slope A numeric value indicating slope of the diagonal cutoff.
intercept A numeric value indicating intercept of the diagonal cutoff.
auto_cut Boolean (2-fold SD by default) or numeric, specifying how many standard deviation will be used as cutoff.
auto_cut_x Boolean (2-fold SD by default) or numeric, specifying how many standard deviation will be used as cutoff on x-axis.
auto_cut_y Boolean (2-fold SD by default) or numeric, specifying how many standard deviation will be used as cutoff on y-axis
auto_cut_diag Boolean (2-fold SD by default) or numeric, specifying how many standard deviation will be used as cutoff on diagonal.
groups A character vector, specifying which group to be colored. Optional groups include "topleft", "topcenter", "topright", "midleft", "midright", "bottomleft", "bottomcenter", "bottomright".
groupnames A character vector, specifying group names.
legend.position Position of the legend.
main As in 'plot'.
filename Figure file name to create on disk. Default filename="NULL", which means don’t save the figure on disk.
width As in ggsave.
height As in ggsave.
... Other available parameters in function 'ggsave'.

Value
An object created by ggplot, which can be assigned and further customized.

Author(s)
Wubing Zhang

See Also
 ScatterView

Examples
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
SquareView(dd, ctrlname = "Pmel1_Ctrl", treatname = "Pmel1", label = "Gene")
TransGeneID

Description

Gene ID conversion

Usage

```
TransGeneID(
 genes,
 fromType = "Symbol",
 toType = "Entrez",
 organism = "hsa",
 fromOrg = organism,
 toOrg = organism,
 ensemblHost = "www.ensembl.org",
 unique = TRUE,
 update = FALSE
)
```

Arguments

genes A character vector, input genes to be converted.

fromType The input ID type, one of "entrez", "symbol" (default), "hgnc", "ensembl", "full-name" and "uniprotswissprot"; you can also input other valid attribute names for biomaRt. Look at the code in examples to check valid attributes.

toType The output ID type, similar to ‘fromType’.

organism "hsa" (default), "mmu", "bta", "cfa", "ptr", "rno", and "ssc" are optional.

fromOrg "hsa", "mmu", "bta", "cfa", "ptr", "rno", and "ssc" are optional (Only used when transform gene ids between organisms).

toOrg "hsa" (default), "mmu", "bta", "cfa", "ptr", "rno", and "ssc" are optional (Only used when transform gene ids between organisms).

enssemblHost Character, specifying ensembl host, you can use ‘listEnsemblArchives()’ to show all available Ensembl archives hosts.

unique Boolean, specifying whether do one-to-one mapping.

update Boolean, specifying whether update built-in gene annotation (needs network and takes time).

Value

A character vector, named by unique input gene ids.

Author(s)

Wubing Zhang
Examples

TransGeneID("HLA-A", organism="hsa")
TransGeneID("HLA-A", toType = "uniprot", organism="hsa")
TransGeneID("H2-K1", toType="Symbol", fromOrg = "mmu", toOrg = "hsa")

---

ViolinView | Violin plot

---

Description

Violin plot showing the distribution of numeric vectors with the same length.

Usage

ViolinView(
  dat,
  samples = NULL,
  main = NULL,
  ylab = "Score",
  filename = NULL,
  width = 5,
  height = 4,
  ...
)

Arguments

dat | A data frame.
samples | A character vector, specifying the columns in the dat for plotting.
main | A character, specifying title.
ylab | A character, specifying title of y-axis.
filename | A character, specifying a file name to create on disk. Set filename to be "NULL", if don’t want to save the figure.
width | Numeric, specifying width of figure.
height | Numeric, specifying height of figure.
... | Other available parameters in function 'ggsave'.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang
### VolcanoView

**Description**

Volcano plot for differential analysis.

**Usage**

```r
VolcanoView(
 df,
 x = "logFC",
 y = "adj.P.Val",
 Label = NA,
 top = 5,
 topnames = NULL,
 x_cutoff = log2(1.5),
 y_cutoff = 0.05,
 mycolour = c("gray80", "#e41a1c", "#377eb8"),
 alpha = 0.6,
 force = 0.1,
 main = NULL,
 xlab = "log2FC",
 ylab = "-log10(FDR)",
 filename = NULL,
 width = 4,
 height = 2.5,
 ...
)
```

**Arguments**

- `df`: A data frame.
- `x`: A character, specifying the x-axis in Volcano figure, 'logFC' (default).

---

**Examples**

```r
file3 = file.path(system.file("extdata", package = "MAGeCKFlute"),
"testdata/mle.gene_summary.txt")
dd = ReadBeta(file3)
ViolinView(dd[, -1])
```
VolcanoView

y A character, specifying the y-axis in Volcano figure, 'adj.P.Val' (default). log10 transformation will be done automatically.

Label A character, specifying dots to be labeled on the figure.

top An integer, specifying the number of top significant genes to be labeled.

topnames A character vector, indicating positive/negative controls to be labeled.

x_cutoff Numeric, specifying cutoff of the x-axis.

y_cutoff Numeric, specifying cutoff of the y-axis.

mycolour A color vector, specifying colors of non-significant, significantly up and down-regulated genes.

alpha Numeric, parameter in ggplot.

force Numeric, Parameter for geom_text_repel. Force of repulsion between overlapping text labels.

main A character, specifying title.

xlab A character, specifying title of x-axis.

ylab A character, specifying title of y-axis.

filename A character, specifying a file name to create on disk. Set filename to be "NULL", if don’t want to save the figure.

width Numeric, specifying width of figure.

height Numeric, specifying height of figure.

... Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

file1 = file.path(system.file("extdata", package = "MAgCKFlute"), "testdata/rra.gene_summary.txt")
gdata = ReadRRA(file1)
VolcanoView(gdata, x = "Score", y = "FDR", Label = "id")
writeGMT

Write GMT file

Description
write data frame to a gmt file

Usage
writeGMT(gene2path, gmtfile)

Arguments
gene2path A data frame. The columns should be Gene, Pathway ID, and Pathway Name.
gmtfile Path to gmt file.

Value
Output gmt file to local folder.

Author(s)
Wubing Zhang

Examples
gene2path = gsGetter(type = "Complex")
# writeGMT(gene2path, "Protein_complex.gmt")
INDEX

ReadRRA, 45
readrra (ReadRRA), 45
ReadsgRRA, 46
reexports, 46
ResembleDepmap, 47
retrieve_gs, 48
ridgeplot, 46
ridgeplot (reexports), 46
RRApipeline (FluteRRA), 25

 ScatterView, 48, 54
Selector, 51
sgRankView, 51
SquareView, 53
squareview (SquareView), 53

TransGeneID, 55

ViolinView, 11, 56
violinview (ViolinView), 56
VolcanoView, 57

writeGMT, 59