Package ‘MEAL’

April 1, 2024

Title Perform methylation analysis
Version 1.32.0
Maintainer Xavier Escribà Montagut <xavier.escriba@isglobal.org>
Description Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated.

Depends R (>= 3.6.0), Biobase, MultiDataSet
License Artistic-2.0
biocViews DNAMethylation, Microarray, Software, WholeGenome
LazyData true
Imports GenomicRanges, limma, vegan, BiocGenerics, minfi, IRanges, S4Vectors, methods, parallel, ggplot2 (>= 2.0.0), permute, Gviz, missMethyl, isva, SummarizedExperiment, SmartSV, graphics, stats, utils, matrixStats
Suggests testthat, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, IlluminaHumanMethylation450kanno.ilmn12.hg19, knitr, minfiData, BiocStyle, rmarkdown, brgedata
VignetteBuilder knitr
RoxygenNote 7.1.1
Encoding UTF-8
git_url https://git.bioconductor.org/packages/MEAL
git_branch RELEASE_3_18
git_last_commit 4d6f89b
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-01
Author Carlos Ruiz-Arenas [aut, cre], Juan R. Gonzalez [aut]
computeRDAR2

`computeRDAR2` . 2
`correlationMethExprs` . 3
`exportResults` . 4
`filterResults` . 5
`getGeneVals` . 6
`getProbeResults` . 7
`getRDAresults` . 8
`MEAL` . 8
`MEAL-defunct` . 8
`plotFeature` . 9
`plotRDA` . 9
`plotRegion` . 10
`runBlockFinder` . 11
`runBumphunter` . 12
`runDiffMeanAnalysis` . 13
`runDiffVarAnalysis` . 14
`runDMRcate` . 15
`runPipeline` . 16
`runRDA` . 18
`runRegionAnalysis` . 19
`topRDAhits` . 20

Index 21

computeRDAR2

Compute signification of RDA test

Description

Compare R2 obtained in our region of interest with the global R^2 and the R^2 of regions with the same number of probes.

Usage

```r
computeRDAR2(
  fullMat,
  varsmodel,
  covarsmodel = NULL,
  featNum,
  R2,
  num_permutations = 1e+05 - 1
)
```
correlationMethExprs

Arguments

fullMat Matrix with the whole genome expression or methylation values
varsmodel Matrix with the model
covarsmodel Matrix with the covariates model
featNum Numeric with the number of features of the RDA model
R2 Numeric with the R2 of the RDA model
num_permutations Numeric with the number of permutations.

Value

Numeric vector with the probability of finding a region with the same number of probes with a
bigger R2 and the global R2.

correlationMethExprs Computes the correlation between methylation and expression

Description

Estimates the correlation between methylation and expression. When there are known variables that
affect methylation and/or expression, their effect can be subtracted using a linear model and then
the residuals are used.

Usage

correlationMethExprs(
 multiset,
 meth_set_name = NULL,
 exprs_set_name = NULL,
 vars_meth = NULL,
 vars_exprs = NULL,
 sel_cpgs,
 flank = 250000,
 betas = TRUE,
 num_cores = 1,
 verbose = TRUE
)

Arguments

multiset MultiDataSet containing a methylation and an expression slots.
meth_set_name Character vector with the name of the MultiDataSet’s slot containing methyla-
tion data.
exprs_set_name Character vector with the name of the MultiDataSet’s slot containing expression data.
vars_meth Character vector with the names of the variables that will be used to obtain the
methylation residuals. By default, none is used and residuals are not computed.

vars_exprs Character vector with the names of the variables that will be used to obtain the
expression residuals. By default, none is used and residuals are not computed.

sel_cpgs Character vector with the name of the CpGs used in the analysis. If empty, all
the CpGs of the methylation set will be used.

flank Numeric with the number of pair bases used to define the cpg-expression probe
pairs.

betas If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)

num_cores Numeric with the number of cores to be used.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

Details

For each cpg, a range is defined by the position of the cpg plus the flank parameter (upstream and
downstream). Only those expression probes that are entirely in this range will be selected. For these
reason, it is required that the ExpressionSet contains a featureData with the chromosome and the
starting and ending positions of the probes.

Value

Data.frame with the results of the linear regression:

• cpg: Name of the cpg
• exprs: Name of the expression probe
• beta: coefficient of the methylation change
• se: standard error of the beta
• P.Value: p-value of the beta coefficient
• adj.P.Val: q-value computed using B&H

exportResults

Exports results data.frames to csv files.

Description

Exports results to csv files. If more than one variable is present, subfolders with the name of the
variable are created. For each variable, four files will be generated: probeResults.csv, dmrCateRe-
sults.csv, bumphunterResults.csv and blockFinderResults.csv
filterResults

Usage

exportResults(
 object,
 dir = "./",
 prefix = NULL,
 fNamees = c("chromosome", "start")
)

Arguments

 object ResultSet
 dir Character with the path to export.
 prefix Character with a prefix to be added to all file names.
 fNamees Names of the columns of object fData that will be added to the results data.frame.

Value

Files are saved into the given folder.

Examples

if (require(minfiData)){
 set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
 methyOneVar <- runPipeline(set, variable_names = "sex")
 exportResults(methyOneVar)
}

filterResults Filter the data.frame obtained from probe analysis

Description

Filter the data.frame obtained from probe analysis

Usage

filterResults(results, range, position = "position", chr = "chromosome")

Arguments

 results Data.frame with the results of probe analysis
 range GenomicRanges with the desired range.
 position Character with the name of the column containing the positions
 chr Character with the name of the column containing the chromosome

Value

Data.frame with the results of the probes of the range
getGeneVals

Get all probes related to a gene

Description

Given a ResultSet and a gene name returns the results of the analysis of all the probes of the gene.

Usage

getGeneVals(
 object,
 gene,
 rid = 1,
 genecol = "genes",
 fNames = c("chromosome", "start"),
 ...
)

Arguments

- object: ResultSet
- gene: Character with the name of the gene
- rid: Name of the results: "DiffMean" for mean differences, "DiffVar" for variance differences. (Default: DiffMean)
- genecol: Character with the column of object fData with the gene information
- fNames: Names of the columns of object fData that will be added to the results data.frame.
- ...: Further arguments passed to getProbeResults

Value

data.frame with the results of the analysis of the probes belonging to the gene

Examples

```r
## Not run:
if (require(minfiData)){
  set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
methyOneVar <- runPipeline(set, variable_names = "sex")
geneVals(methyOneVar, "TSPY4")
}
## End(Not run)
```
getProbeResults

Obtain probe results from a ResultSet

Description

It computes the statistics from the MArrayLM computed with DiffMeanAnalysis or DiffVarAnalysis. This function allows to specify the contrasts and to get F-statistics for a group of variables.

Usage

getProbeResults(
 object,
 rid = "DiffMean",
 coef = 2,
 contrast = NULL,
 fName = c("chromosome", "start"),
 robust = FALSE,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>ResultSet</td>
</tr>
<tr>
<td>rid</td>
<td>Name of the results: "DiffMean" for mean differences, "DiffVar" for variance differences. (Default: DiffMean)</td>
</tr>
<tr>
<td>coef</td>
<td>Number of the coefficient used to compute the statistics. If a vector is supplied, F-statistics evaluating the global effect of the coefficients are computed. (Default: 2).</td>
</tr>
<tr>
<td>contrast</td>
<td>Matrix of contrasts</td>
</tr>
<tr>
<td>fName</td>
<td>Names of the columns of object fData that will be added to the results data.frame.</td>
</tr>
<tr>
<td>...</td>
<td>Further arguments passed to getAssociation.</td>
</tr>
</tbody>
</table>

Value

data.frame with the probe results.
getRDAresults

Get a summary of RDA results

Description
Get statistics from RDA result.

Usage
getRDAresults(object)

Arguments
object ResultSet

Value
Numeric vector with the RDA statistics

MEAL

MEAL (Methylation and Expression AnaLizer): Package for analysing methylation and expression data

Description
MEAL is a package designed to facilitate the analysis methylation and expression data. The package can analyze one dataset and can find correlations between methylation and expression data. MEAL has a vignette that explains the main functionalities of the package.

MEAL-defunct

Defunct functions

Description
These functions are defunct and no longer available.

Details
Defunct functions are: multiCorrMethExprs, DAPipeline, DAProbe, DARegion, RDAsSet, filterSet, plotBestFeatures, preparePhenotype, createRanges, prepareMethylationSet, calculateRelevantSNPs, correlationMethSNPs, explainedVariance, normalSNP, plotLM
Defunct classes are: analysisRegionResults, analysisResults
plotFeature

Plot values of a feature

Description

Plot values of a feature splitted by one or two variables.

Usage

```r
plotFeature(set, feat, variables = colnames(pheno)[1], betas = TRUE)
```

Arguments

- `set`: ExpressionSet, GenomicRatioSet or SummarizedExperiment.
- `feat`: Numeric with the index of the feature or character with its name.
- `variables`: Character vector with the names of the variables to be used in the splitting. Two variables is the maximum allowed.
- `betas`: If `set` is a GenomicRatioSet, should beta values be used? (Default: TRUE)

Value

A plot is generated on the current graphics device.

Examples

```r
if (require(minfiData)){
set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
plotFeature(set, 1, variables = "Sample_Group")
}
```

plotRDA

Plot RDA results

Description

Plot RDA results

Usage

```r
plotRDA(object, pheno = data.frame(), n_feat = 5, main = "RDA plot", alpha = 1)
```
plotRegion

Arguments

- **object**: `ResultSet`
- **pheno**: data.frame with the variables used to color the samples.
- **n_feat**: Numeric with the number of cpgs to be highlighted. Default: 5.
- **main**: Character with the plot title.
- **alpha**: Numeric with the alpha level for colour transparency. Default: 1; no transparency.

Value

A plot is generated on the current graphics device.

Examples

```r
if (require(minfiData)){
  set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
  model <- model.matrix(~set$sex)
  rda <- runRDA(set, model)
  plotRDA(rda, pheno = data.frame(factor(set$sex)))
}
```

plotRegion

Plot results in a genomic region

Description

Plot the results from the different analyses of a `ResultSet` in a specific genomic region. It can plot all the results from `runPipeline`.

Usage

```r
plotRegion(
  rset,  # ResultSet
  range,  # range
  results = names(rset),  # names of results
  genome = "hg19",  # genome
  rset2,  # second ResultSet
  tPV = 5,  # threshold for PV
  fNames = c("chromosome", "start", "end"),  # names for columns
  fNames2 = c("chromosome", "start", "end")  # names for columns
)
```
Arguments

- **rset**: `ResultSet`
- **range**: `GenomicRanges` with the region coordinates
- **results**: Character with the analyses that will be included in the plot. By default, all analyses available are included.
- **genome**: String with the genome used to retrieve transcripts annotation: hg19, hg38, mm10. (Default: "hg19")
- **rset2**: Additional `ResultSet`
- **tPV**: Threshold for P-Value
- **fNames**: Names from `rset fData`
- **fNames2**: Names from `rset2 fData`

Details

This plot allows to have a quick summary of the methylation or gene expression analyses in a given region. If we use a `ResultSet` obtained from methylation data, transcripts annotation is obtained from archive. If we use a `ResultSet` obtained from gene expression data, transcripts annotation is taken from `fData`.

This plot can be used to plot the results of one dataset (methylation or gene expression) or to represent the association between methylation and gene expression data. If only one dataset is used, the p-values and the coefficients of DiffMean and DiffVar analyses are plotted. If we pass two `ResultSets`, `rset` should contain methylation results and a `rset2` the gene expression results.

Value

- Regional plot

runBlockFinder

Run blockFinder

Description

Run blockFinder

Usage

```r
runBlockFinder(
    set,
    model,
    coefficient = 2,
    blockfinder_cutoff = 0.1,
    num_permutations = 0,
    resultSet = FALSE,
    verbose = FALSE,
    ...
)
```
Arguments

set GenomicRatioSet, eSet derived object or SummarizedExperiment
model Model matrix or formula to get model matrix from set.
coefficient Numeric with the column of model matrix used in the analysis. (Default: 2)
bumphunter_cutoff Numeric with the minimum cutoff to include a probe in a block. (Default: 0.1)
num_permutations Numeric with the number of permutations run to compute the blocks p-value. (Default: 0)
resultSet Should results be encapsulated in a resultSet? (Default: TRUE)
verbose Logical value. Should the function be verbose? (Default: FALSE)
...

Further arguments passed to blockFinder.

Details

This function has been deprecated and will be defunct in the new version.

Value

data.frame or resultSet with the result of blockFinder

See Also

blockFinder

Description

Run bumphunter

Usage

runBumphunter(
 set,
 model,
 coefficient = 2,
 bumphunter_cutoff = 0.1,
 num_permutations = 0,
 bumps_max = 30000,
 betas = TRUE,
 check_perms = FALSE,
 verbose = FALSE,
 resultSet = FALSE,
 ...
)
Arguments

- **set** - GenomicRatioSet, eSet derived object or SummarizedExperiment
- **model** - Model matrix or formula to get model matrix from set.
- **coefficient** - Numeric with the column of model matrix used in the analysis. (Default: 2)
- **bumphunter_cutoff** - Numeric with the minimum cutoff to include a probe in a block. (Default: 0.1)
- **num_permutations** - Numeric with the number of permutations run to compute the bumps p-value. (Default: 0)
- **bumps_max** - Numeric with the maximum number of bumps used in the permutation. This parameter only applies when num_permutations is greater than 0. (Default: 30000)
- **betas** - If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)
- **check_perms** - Logical. Should we check that there are less bumps than bumps_max? This parameter only applies when num_permutations is greater than 0. (Default: TRUE)
- **verbose** - Logical value. Should the function be verbose? (Default: FALSE)
- **resultSet** - Should results be encapsulated in a resultSet? (Default: TRUE)
- **...** - Further arguments passed to bumphunter.

Details

This function has been deprecated and will be defunct in the new version.

Value

data.frame or resultSet with the result of bumphunter

See Also

bumphunter

runDiffMeanAnalysis
Run differential mean analysis

Description

Run differential mean analysis using t-moderated statistics. This function relies on lmFit from limma package.
runDiffMeanAnalysis

Usage

```r
runDiffMeanAnalysis(
  set,
  model,
  weights = NULL,
  method = "ls",
  max_iterations = 100,
  betas = TRUE,
  resultSet = TRUE,
  warnings = TRUE
)
```

Arguments

- **set**: Matrix, GenomicRatioSet, SummarizedExperiment or ExpressionSet.
- **model**: Model matrix or formula to get model matrix from `set`.
- **weights**: weights used in the lmFit model.
- **method**: String indicating the method used in the regression: "ls" or "robust". (Default: "ls")
- **max_iterations**: Numeric indicating the maximum number of iterations done in the robust method.
- **betas**: If `set` is a GenomicRatioSet, should beta values be used? (Default: TRUE)
- **resultSet**: Should results be encapsulated in a resultSet? (Default: TRUE)
- **warnings**: Should warnings be displayed? (Default: TRUE)

Value

MArrayLM or resultSet with the result of the differential mean analysis.

Examples

```r
if (require(minfiData)){
  mvalues <- getM(MsetEx)[1:100,]
  model <- model.matrix(~ Sample_Group, data = pData(MsetEx))
  res <- runDiffMeanAnalysis(mvalues, model, method = "ls")
  res
}
```

runDiffVarAnalysis

Run differential variance analysis

Description

Run differential variance analysis. This analysis can only be run with categorical variables. This function relies on varFit from missMethyl package.
Usage
runDiffVarAnalysis(
 set, model, coefficient = NULL, resultSet = TRUE, betas = TRUE, warnings = TRUE, ...
)

Arguments
- **set** Matrix, GenomicRatioSet, SummarizedExperiment or ExpressionSet.
- **model** Model matrix or formula to get model matrix from set.
- **coefficient** Numeric with the coefficients used to make the groups. If NULL, all possible groups will be computed.
- **resultSet** Should results be encapsulated in a resultSet? (Default: TRUE)
- **betas** If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)
- **warnings** Should warnings be displayed? (Default: TRUE)
- **...** Further arguments passed to varFit.

Value
MArrayLM or resultSet with the result of the differential variance analysis.

Examples
if (require(minfiData)){
 mvalues <- getM(MsetEx)[1:100,]
 model <- model.matrix(~ Sample_Group, data = pData(MsetEx))
 res <- runDiffVarAnalysis(mvalues, model)
 res
}

runDMRcate

Run DMRcate

Description
Run DMRcate

Usage
runDMRcate(set, model, coefficient = 2, resultSet = FALSE, ...)
runPipeline

Arguments

- `set`: GenomicRatioSet, eSet derived object or SummarizedExperiment
- `model`: Model matrix or formula to get model matrix from `set`.
- `coefficient`: Numeric with the column of model matrix used in the analysis. (Default: 2)
- `resultSet`: Should results be encapsulated in a resultSet? (Default: TRUE)
- `...`: Further arguments passed to `cpg.annotate` or `dmrcate`.

Details

This function has been deprecated and will be defunct in the new version.

Value

data.frame or resultSet with the result of `bumphunter`

See Also

dmrcate, cpg.annotate

Description

Wrapper for analysing differential methylation and expression at region and probe level.

Usage

```r
runPipeline(
  set,
  variable_names,
  covariable_names = NULL,
  model = NULL,
  weights = NULL,
  num_vars,
  sva = FALSE,
  betas = TRUE,
  range,
  analyses = c("DiffMean"),
  verbose = FALSE,
  warnings = TRUE,
  DiffMean_params = NULL,
  DiffVar_params = list(coefficient = 1:2),
  rda_params = NULL,
  method = "ls",
  big = FALSE
)
```
runPipeline

Arguments

- **set** GenomicRatioSet, eSet derived object or SummarizedExperiment
- **variable_names** Character vector with the names of the variables that will be returned as result.
- **covariable_names** Character vector with the names of the variables that will be used to adjust the model.
- **model** Model matrix or formula to get model matrix from set.
- **weights** weights used in the lmFit model (default NULL)
- **num_vars** Numeric with the number of variables in the matrix for which the analysis will be performed. Compulsory if equation is not null.
- **sva** Logical. Should Surrogate Variable Analysis be applied? (Default: FALSE)
- **betas** If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)
- **range** GenomicRanges with the region used for RDA analyses
- **verbosity** Vector with the names of the analysis to be run (DiffMean and/or DiffVar).
- **warnings** Logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.
- **DiffMean_params** List with other parameter passed to runBumphunter function.
- **DiffVar_params** List with other parameter passed to runRDA function.
- **rda_params** List with other parameter passed to runRDA function.
- **method** String indicating the method used in the regression: "ls" or "robust". (Default: "ls")
- **big** Logical value indicating whether SmartSVA should be instead of SVA (TRUE recommended for methylation or when having large number of samples). Default is FALSE.

Details

This function is the main wrapper of the package. First, it simplifies the the set to only contain the common samples between phenotype and features. In addition, it allows to change the class of the variables and to apply genomic models (more information on preparePhenotype). Afterwards, analysis per probe and per region are done merging the results in an AnalysisResults object.

Default linear model will contain a sum of the variables and covariables. If interactions are desired, a costum formula can be specified. In that case, variables and covariables must also be specified in order to assure the proper work of the resulting AnalysisResult. In addition, the number of variables of the model for which the calculation will be done must be specified.

Value

ResultSet object
Examples

```r
if (require(minfiData)){
  set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
  res <- runPipeline(set, variable_names = "Sample_Group")
  res
}
```

runRDA

Calculate RDA for a set

Description

Perform RDA calculation for a `AnalysisRegionResults`. Feature values will be considered the matrix X and phenotypes the matrix Y. Adjusting for covariates is done using a model matrix passed in `covarsmodel`.

Usage

```r
runRDA(
  set,
  model,
  num_vars = ncol(model),
  range,
  betas = FALSE,
  resultSet = TRUE,
  num_permutations = 10000,
  ...
)
```

Arguments

- **set**: MethylationSet, ExpressionSet or matrix
- **model**: Model matrix or formula to get model matrix from set.
- **num_vars**: Numeric with the number of variables in the matrix for which the analysis will be performed. Compulsory if equation is not null.
- **range**: GenomicRanges with the region used for RDA
- **betas**: If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)
- **resultSet**: Should results be encapsulated in a resultSet? (Default: TRUE)
- **num_permutations**: Numeric with the number of permutations run to compute the p-value. (Default: 1e4)
- ... Further arguments passed to `rda`.

Value

Object of class `rda` or `resultSet`
runRegionAnalysis

See Also
rda

Examples
if (require(minfiData)){
 set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
 model <- model.matrix(~set$age)
 rda <- runRDA(set, model)
 rda
}

runRegionAnalysis function

Usage
runRegionAnalysis(
 set, GenomicRatioSet, eSet derived object or SummarizedExperiment
 model, Model matrix representing a linear model.
 methods = c("blockFinder", "bumphunter", "DMRcate"),
 coefficient = 2,
 bumphunter_params = NULL,
 blockFinder_params = NULL,
 dmrcate_params = NULL,
 verbose = FALSE,
 resultSet = TRUE
)

Arguments
set GenomicRatioSet, eSet derived object or SummarizedExperiment
model Model matrix representing a linear model.
methods Character vector with the names of the methods used to estimate the regions. Valid names are: "blockFinder", "bumphunter" and "DMRcate".
coefficient Numeric with the index of the model matrix used to perform the analysis.
bumphunter_params List with other parameter passed to runBumphunter function.
blockFinder_params List with other parameter passed to runBlockFinder function.
dmrcate_params List with other parameter passed to runDMRcate function.
verbose Logical value. Should the function be verbose? (Default: FALSE)
resultSet Should results be encapsulated in a resultSet? (Default: TRUE)
Details
This function has been deprecated and will be defunct in the new version.

Value
List or resultSet with the result of the DMR detection methods.

See Also
bumphunter, blockFinder, dmrcate

Examples
if (require(minfiData)){
 set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
 model <- model.matrix(~Sample_Group, data = pData(MsetEx))
 res <- runRegionAnalysis(set, model)
 res
}

topRDAhits
Get the top features associated with the RDA

Description
Get a list of the features significantly associated to the first two RDA components

Usage
topRDAhits(object, tPV = 0.05)

Arguments
- **object**
 (resultSet)
- **tPV**
 numeric with the p-value threshold. Only features with a p-values below this threshold will be shown.

Value
data.frame with the features, the component, the correlation and the p-value

Examples
if (require(minfiData) & require(GenomicRanges)){
 set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
 model <- model.matrix(~set$sex)
 rda <- runRDA(set, model)
 topRDAhits(rda)
}
Index

blockFinder, 12, 20
bumphunter, 13, 20

computeRDAR2, 2
correlationMethExprs, 3
cpg.annotate, 16
dmrcate, 16, 20
diffResults, 4
filterResults, 5
geneVals, 6
getProbeResults, 7
getRDAresults, 8
MEAL, 8
MEAL-defunct, 8
plotFeature, 9
plotRDA, 9
plotRegion, 10

rda, 19
runBlockFinder, 11
runBumphunter, 12
runDiffMeanAnalysis, 13
runDiffVarAnalysis, 14
runDMRcate, 15
runPipeline, 16
runRDA, 18
runRegionAnalysis, 19

topRDAhits, 20