Package ‘MMAPPR2’

October 31, 2023

Title Mutation Mapping Analysis Pipeline for Pooled RNA-Seq

Version 1.16.0

Description MMAPPR2 maps mutations resulting from pooled RNA-seq data from the F2 cross of forward genetic screens. Its predecessor is described in a paper published in Genome Research (Hill et al. 2013). MMAPPR2 accepts aligned BAM files as well as a reference genome as input, identifies loci of high sequence disparity between the control and mutant RNA sequences, predicts variant effects using Ensembl's Variant Effect Predictor, and outputs a ranked list of candidate mutations.

Depends R (>= 3.6.0)

License GPL-3

Encoding UTF-8

RoxygenNote 6.1.1

VignetteBuilder knitr

Suggests testthat, mockery, roxygen2, knitr, rmarkdown, BiocStyle, MMAPPR2data

Imports ensemblVEP (>= 1.20.0), gmapR, Rsamtools, VariantAnnotation, BiocParallel, Biobase, BiocGenerics, dplyr, GenomeInfoDb, GenomicRanges, IRanges, S4Vectors, tidyr, VariantTools, magrittr, methods, grDevices, graphics, stats, utils, stringr, data.table

SystemRequirements Ensembl VEP, Samtools

biocViews RNASeq, PooledScreens, DNASeq, VariantDetection

BugReports https://github.com/kjohnsen/MMAPPR2/issues

OS_type unix

git_url https://git.bioconductor.org/packages/MMAPPR2

git_branch RELEASE_3_18

git_last_commit e30fb29

git_last_commit_date 2023-10-24

1
calculateDistance

Description

First step in the MMAPPR2 pipeline. Precedes the loessFit step.

Usage

calculateDistance(mmaprData)

Arguments

mmaprData The MmaprData object to be analyzed.

Value

A MmaprData object with the distance slot filled.
generateCandidates

Generate potential causative mutations and consequences in peak regions

description

Follows the peakRefinement step and produces a MmapprData object ready for outputMmapprData.

Usage

generateCandidates(mmapprData)

Arguments

mmapprData The MmapprData object to be analyzed.

Value

A MmapprData object with the candidates slot filled with a GRanges object for each peak chromosome containing variants and predicted consequences from Ensembl’s Variant Effect Predictor.

Examples

```r
if (requireNamespace('MMAPPR2data', quietly=TRUE)
  & all(Sys.which(c("samtools", "vep")) != "")) {
  mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
                              wtFiles = MMAPPR2data::exampleWTbam(),
                              mutFiles = MMAPPR2data::exampleMutBam(),
                              species = "danio_rerio",
                              outputFolder = tempOutputFolder())

  md <- new('MmapprData', param = mmappr_param)
  postCalcDistMD <- calculateDistance(md)
}
```

Not run:
```r
md <- new('MmapprData', param = mmappr_param)
postCalcDistMD <- calculateDistance(md)
postLoessMD <- loessFit(postCalcDistMD)
postPrePeakMD <- prePeak(postLoessMD)
```
postPeakRefMD <- peakRefinement(postPrePeakMD)

postCandidatesMD <- generateCandidates(postPeakRefMD)

End(Not run)

loessFit
Perform optimized Loess regression for each chromosome

Description

Called after the `calculateDistance` step and before `prePeak`.

Usage

```r
loessFit(mmapprData)
```

Arguments

- `mmapprData`
The `MmapprData` object to be analyzed.

Value

A `MmapprData` object with the `$loess` element of the distance slot list filled.

Examples

```r
if (requireNamespace('MMAPPR2data', quietly=TRUE) & all(Sys.which(c("samtools", "vep")) != "")) {
  mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
                              wtFiles = MMAPPR2data::exampleWTbam(),
                              mutFiles = MMAPPR2data::exampleMutBam(),
                              species = "danio_rerio",
                              outputFolder = tempOutputFolder())
}

## Not run:
md <- new('MmapprData', param = mmappr_param)
postCalcDistMD <- calculateDistance(md)

postLoessMD <- loessFit(postCalcDistMD)

## End(Not run)
```
mmappr

Mutation Mapping Analysis Pipeline for Pooled RNA-Seq

Description

MMAPR2 is designed to map the causative mutation in a forward genetics screen. It analyzes aligned sequence files, calculates the per-base Euclidean distance between the mutant and wild-type pools, performs a Loess regression on that distance, and generates candidate variants in regions of peak distance.

Usage

```r
mmappr(mmapprParam)
```

Arguments

- `mmapprParam`: A `MmapprParam` object containing desired parameters.

Value

- A `MmapprData` object containing results and/or intermediate data.

See Also

- `calculateDistance`, `loessFit`, `prePeak`, `peakRefinement`, `generateCandidates`, `outputMmapprData`

Examples

```r
if (requireNamespace('MMAPPR2data', quietly = TRUE) & all(Sys.which(c('vep', 'samtools')) != '')) {
  # Specify parameters:
  mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
                             wtFiles = MMAPPR2data::exampleWTbam(),
                             mutFiles = MMAPPR2data::exampleMutBam(),
                             species = "danio_rerio",
                             outputFolder = tempOutputFolder())

  # Run pipeline:
  mmapprData <- mmappr(mmappr_param)
}
```

Not run:

Alternately, you can navigate the pipeline step by step.

This may be helpful for debugging.

```r
md <- new('MmapprData', param = mmappr_param)
postCalcDistMD <- calculateDistance(md)
postLoessMD <- loessFit(postCalcDistMD)
postPrePeakMD <- prePeak(postLoessMD)
```
```r
postPeakRefMD <- peakRefinement(postPrePeakMD)
postCandidatesMD <- generateCandidates(postPeakRefMD)
outputMmapprData(postCandidatesMD)

## End(Not run)
```

MMAPPR2

Mutation Mapping Analysis Pipeline for Pooled RNA-seq

Description

The main functionality of this package is described in the `mmappr` function.

MmapprData-class

MmapprData Class

Description

Stores data from each step of the MMAPPR2 pipeline.

Slots

- `param` *MmapprParam* object storing parameters used in analysis.
- `distance` List containing raw counts and Euclidean distance data for each chromosome. After `calculateDistance`, chromosomes with sufficient data should have `$wtCounts`, `$mutCounts`, and `$distanceDf` populated. After `loessFit`, the `$distanceDf` element for each chromosome list is replaced with a `$loess` element.
- `peaks` List of chromosomes containing peak regions. Initialized after `prePeak` and populated with density function after `peakRefinement`.
- `candidates` List containing `GRanges` object for each peak, resulting from `generateCandidates` function. VEP data, including gene symbol and consequence for each variant, are included in metacolumns.

See Also

`mmappr`, `MmapprData-getters`
MmapprData-getters

MmapprData-getters

Description

Access slots of MmapprData object.

Usage

```r
## S4 method for signature 'MmapprData'
param(obj)

## S4 method for signature 'MmapprData'
distance(obj)

## S4 method for signature 'MmapprData'
peaks(obj)

## S4 method for signature 'MmapprData'
candidates(obj)
```

Arguments

obj Desired MmapprData object.

Value

Desired attribute.

See Also

MmapprData

Examples

```r
if (requireNamespace('MMAPPR2data', quietly=TRUE) & all(Sys.which(c("samtools", "vep")) != "")) {
  mmapr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
                             wtFiles = MMAPPR2data::exampleWTbam(),
                             mutfiles = MMAPPR2data::exampleMutBam(),
                             species = "danio_rerio",
                             outputFolder = tempOutputFolder())

  md <- new('MmapprData', param = mmapr_param)

  param(md)
  distance(md)
  peaks(md)
  candidates(md)
}
MmapprParam-class

MmapprParam Class and Constructor

Description

MmapprParam stores parameters for running mmappr.

Usage

MmapprParam(refFasta, wtFiles, mutFiles, species, vepFlags = NULL, refGenome = NULL, outputFolder = NULL, distancePower = 4, peakIntervalWidth = 0.95, minDepth = 10, homozygoteCutoff = 0.95, minBaseQuality = 20, minMapQuality = 30, loessOptResolution = 0.001, loessOptCutFactor = 0.1, naCutoff = 0, fileAggregation = c("sum", "mean"))

Arguments

refFasta The path to the fasta file genome, which will be referenced in reading the BAM files.
wtFiles Character vector, BamFile, or BamFileList containing BAM files for the wild-type pool to be analyzed.
mutFiles Character vector, BamFile, or BamFileList containing BAM files for the mutant pool to be analyzed.
species Length-one character vector of name of species under analysis. Used only in generating default VEPFlags object.
vepFlags Optional VEPFlags object containing runtime options for Ensembl’s Variant Effect Predictor. See vignette for details. Generated by default.
refGenome GmapGenome object storing reference genome to be used in variant calling. Make sure it is the same genome aligned to and used installed with VEP. Generated by default.
outputFolder Length-one character vector specifying where to save output, including a MmapprData stored as mmappr_data.RDS, mmappr2.log, a .tsv file for each peak chromosome containing candidate mutations, and PDF plots of both the entire genome and peak chromosomes. Defaults to an automatically generated mmappr2_<timestamp>.
distancePower Length-one numeric vector determinig to what power Euclidean distance values are raised before fitting. Higher powers tend to increase high values and decrease low values, exaggerating the variation in the data. Default of 4.
peakIntervalWidth Length-one numeric vector between 0 and 1 specifying desired width of linkage region(s). The default value of 0.95, for example, yields peak regions defined as including the top 95% of SNPs in the peak region, as determined by the peak resampling distribution.
MmapprParam-class

minDepth Length-one integer vector determining minimum depth required for a position to be considered in the analysis. Defaults to 10.

homozygoteCutoff Length-one numeric vector between 0 and 1 specifying threshold for throwing out base pairs on account of homozygosity. Positions with high major allele frequency in the wild-type pool are unlikely to exhibit polymorphism and are thus thrown out when they exceed this cutoff. Defaults to 0.95.

minBaseQuality Length-one numeric vector indicating minimum base call quality to consider in analysis. Read positions with qualities below this score will be thrown out. Defaults to 20.

minMapQuality Length-one numeric vector indicating minimum read mapping quality to consider in analysis. Reads with qualities below this score will be thrown out. Defaults to 30.

loessOptResolution Length-one numeric vector between 0 and 1 specifying desired resolution for Loess fit optimization. The default of 0.001, for example, indicates that the span ultimately chosen will perform better than its neighbor values at ±0.001.

loessOptCutFactor Length-one numeric vector between 0 and 1 specifying how aggressively the Loess optimization algorithm proceeds. For example, with a default of 0.1 different spans at intervals of 0.001 would be evaluated after intervals of 0.01.

naCutoff Integer specifying the most NAs to accept at a given position—that is, the number of files without data for that position. Defaults to 0.

fileAggregation A length-one character vector determining strategy for aggregating base calls when multiple wild-type or multiple mutant files are provided. When 'sum', average base call proportions are computed using the read counts from each file, effectively weighting files with higher counts at a given position. When equal to 'mean', the base call proportions as well as read depths, rather than the absolute count, are averaged across files, which is useful when you want to weight each replicate evenly without regards to differing depth.

Value

A MmapprParam object.

Examples

```r
if (requireNamespace('MMAPPR2data', quietly=TRUE) & all(Sys.which(c("samtools", "vep")) != "")) {
 mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
 wtFiles = MMAPPR2data::exampleWTbam(),
 mutFiles = MMAPPR2data::exampleMutBam(),
 species = "danio_rerio",
 outputFolder = tempOutputFolder())
}
```
Description

Access and assign slots of `MmapprParam` object.

Usage

```r
S4 method for signature 'MmapprParam'
refFasta(obj)

S4 method for signature 'MmapprParam'
wtFiles(obj)

S4 method for signature 'MmapprParam'
mutFiles(obj)

S4 method for signature 'MmapprParam'
species(obj)

S4 method for signature 'MmapprParam'
vepFlags(obj)

S4 method for signature 'MmapprParam'
refGenome(obj)

S4 method for signature 'MmapprParam'
homozygoteCutoff(obj)

S4 method for signature 'MmapprParam'
distancePower(obj)

S4 method for signature 'MmapprParam'
peakIntervalWidth(obj)

S4 method for signature 'MmapprParam'
minDepth(obj)

S4 method for signature 'MmapprParam'
minBaseQuality(obj)

S4 method for signature 'MmapprParam'
minMapQuality(obj)

S4 method for signature 'MmapprParam'
loessOptResolution(obj)
```
## S4 method for signature 'MmapprParam'
loessOptCutFactor(obj)

## S4 method for signature 'MmapprParam'
naCutoff(obj)

## S4 method for signature 'MmapprParam'
outputFolder(obj)

## S4 method for signature 'MmapprParam'
fileAggregation(obj)

## S4 replacement method for signature 'MmapprParam'
refFasta(obj) <- value

## S4 replacement method for signature 'MmapprParam'
wtFiles(obj) <- value

## S4 replacement method for signature 'MmapprParam'
mutFiles(obj) <- value

## S4 replacement method for signature 'MmapprParam'
vepFlags(obj) <- value

## S4 replacement method for signature 'MmapprParam'
refGenome(obj) <- value

## S4 replacement method for signature 'MmapprParam'
species(obj) <- value

## S4 replacement method for signature 'MmapprParam'
homozygoteCutoff(obj) <- value

## S4 replacement method for signature 'MmapprParam'
distancePower(obj) <- value

## S4 replacement method for signature 'MmapprParam'
peakIntervalWidth(obj) <- value

## S4 replacement method for signature 'MmapprParam'
minDepth(obj) <- value

## S4 replacement method for signature 'MmapprParam'
minBaseQuality(obj) <- value

## S4 replacement method for signature 'MmapprParam'
loessOptResolution(obj) <- value
## S4 replacement method for signature 'MmapprParam'

loessOptCutFactor(obj) <- value

## S4 replacement method for signature 'MmapprParam'

naCutoff(obj) <- value

## S4 replacement method for signature 'MmapprParam'

outputFolder(obj) <- value

## S4 replacement method for signature 'MmapprParam'

minMapQuality(obj) <- value

## S4 replacement method for signature 'MmapprParam'

fileAggregation(obj) <- value

### Arguments

- **obj**
  - Desired `MmapprParam` object.

- **value**
  - Value to replace desired attribute.

### Value

The desired `MmapprParam` attribute.

### See Also

`MmapprParam`

### Examples

```r
if (requireNamespace('MMAPPR2data', quietly=TRUE) & all(Sys.which(c("samtools", "vep")) != "")) {
 mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
 wtFiles = MMAPPR2data::exampleWTbam(),
 mutFiles = MMAPPR2data::exampleMutBam(),
 species = "danio_rerio")

 outputFolder(mmappr_param) <- 'mmappr2_test_1'
 minBaseQuality(mmappr_param) <- 25
 vepFlags(mmappr_param)
}
```
Generate plots and tables from MMAPPR2 data

Description

Generate plots and tables from MMAPPR2 data

Usage

outputMmapprData(mmapprData)

Arguments

mmapprData The MmapprData object to be output

Value

A MmapprData object after writing output files to the folder specified in the outputFolder slot of the link{MmapprParam} used.

Examples

```r
if (requireNamespace('MMAPPR2data', quietly=TRUE)
 & all(Sys.which(c("samtools", "vep")) != "")) {
 mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
 wtFiles = MMAPPR2data::exampleWTbam(),
 mutFiles = MMAPPR2data::exampleMutBam(),
 species = "danio_rerio",
 outputFolder = tempOutputFolder())
}
Not run:
md <- new('MmapprData', param = mmappr_param)
postCalcDistMD <- calculateDistance(md)
postLoessMD <- loessFit(postCalcDistMD)
postPrePeakMD <- prePeak(postLoessMD)
postPeakRefMD <- peakRefinement(postPrePeakMD)
postCandidatesMD <- generateCandidates(postPeakRefMD)

outputMmapprData(postCandidatesMD)
End(Not run)
```
Description

Follows the \texttt{prePeak} step and precedes \texttt{generateCandidates}.

Usage

\begin{verbatim}
peakRefinement(mmapprData)
\end{verbatim}

Arguments

\begin{verbatim}
mmapprData \hspace{1cm} The \texttt{MmapprData} object to be analyzed.
\end{verbatim}

Value

A \texttt{MmapprData} object with the peaks slot filled and populated.

Examples

\begin{verbatim}
if (requireNamespace('MMAPPR2data', quietly=TRUE) & all(Sys.which(c("samtools", "vep")) != "")) {
  mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
                             wtFiles = MMAPPR2data::exampleWTbam(),
                             mutFiles = MMAPPR2data::exampleMutBam(),
                             species = "danio_rerio",
                             outputFolder = tempOutputFolder())
}
## Not run:
md <- new('MmapprData', param = mmappr_param)
postCalcDistMD <- calculateDistance(md)
postLoessMD <- loessFit(postCalcDistMD)
postPrePeakMD <- prePeak(postLoessMD)
postPeakRefMD <- peakRefinement(postPrePeakMD)
## End(Not run)
\end{verbatim}

Description

Follows the \texttt{loessFit} step and precedes \texttt{peakRefinement}.
Usage

prePeak(mmapprData)

Arguments

mmapprData  The MmapprData object to be analyzed.

Value

A MmapprData object with the peaks slot initialized.

Examples

if (requireNamespace('MMAPPR2data', quietly=TRUE) & all(Sys.which(c("samtools", "vep")) != "")) {
  mmappr_param <- MmapprParam(refFasta = MMAPPR2data::goldenFasta(),
                              wtFiles = MMAPPR2data::exampleWTbam(),
                              mutFiles = MMAPPR2data::exampleMutBam(),
                              species = "danio_rerio",
                              outputFolder = tempOutputFolder())
}
## Not run:
md <- new('MmapprData', param = mmappr_param)
postCalcDistMD <- calculateDistance(md)
postLoessMD <- loessFit(postCalcDistMD)

postPrePeakMD <- prePeak(postLoessMD)
## End(Not run)

---

tempOutputFolder  Generate temporary output folder

Description

Conveniently creates a timestamp-named temporary directory

Usage

tempOutputFolder()

Value

The path to the temporary directory
Examples

```r
if (requireNamespace('MMAPPR2data', quietly=TRUE)
 & all(Sys.which(c("samtools", "vep")) != "")) {
 mmapper_param <- MmapperParam(refFasta = MMAPPR2data::goldenFasta(),
 wtFiles = MMAPPR2data::exampleWTbam(),
 mutFiles = MMAPPR2data::exampleMutBam(),
 species = "danio_rerio",
 outputFolder = tempOutputFolder())
}
```
Index

BamFile, 8
BamFileList, 8

calculateDistance, 2, 4–6
candidates (MmapprData-getters), 7
candidates, MmapprData-method (MmapprData-getters), 7
distance (MmapprData-getters), 7
distance, MmapprData-method (MmapprData-getters), 7
distancePower (MmapprParam-functions), 10
distancePower, MmapprParam-method (MmapprParam-functions), 10
distancePower<-, MmapprParam-method (MmapprParam-functions), 10

fileAggregation (MmapprParam-functions), 10
fileAggregation, MmapprParam-method (MmapprParam-functions), 10
fileAggregation<-, MmapprParam-method (MmapprParam-functions), 10
generateCandidates, 3, 5, 6, 14
GmapGenome, 8
GRanges, 3, 6

homozygoteCutoff (MmapprParam-functions), 10
homozygoteCutoff, MmapprParam-method (MmapprParam-functions), 10
homozygoteCutoff<-, MmapprParam-method (MmapprParam-functions), 10

loessFit, 2, 4, 5, 6, 14
loessOptCutFactor (MmapprParam-functions), 10
loessOptCutFactor, MmapprParam-method (MmapprParam-functions), 10
loessOptCutFactor<-, MmapprParam-method (MmapprParam-functions), 10
loessOptCutFactor<-, MmapprParam-method (MmapprParam-functions), 10
loessOptResolution (MmapprParam-functions), 10
loessOptResolution, MmapprParam-method (MmapprParam-functions), 10
loessOptResolution<-, MmapprParam-method (MmapprParam-functions), 10

minBaseQuality (MmapprParam-functions), 10
minBaseQuality, MmapprParam-method (MmapprParam-functions), 10
minBaseQuality<-, MmapprParam-method (MmapprParam-functions), 10
minBaseQuality<-, MmapprParam-method (MmapprParam-functions), 10
minDepth (MmapprParam-functions), 10
minDepth<-, MmapprParam-method (MmapprParam-functions), 10

minMapQuality (MmapprParam-functions), 10
minMapQuality, MmapprParam-method (MmapprParam-functions), 10
minMapQuality<-, MmapprParam-method (MmapprParam-functions), 10
minMapQuality<-, MmapprParam-method (MmapprParam-functions), 10