Package ‘MMUPHin’

May 30, 2024

Type Package
Title Meta-analysis Methods with Uniform Pipeline for Heterogeneity in Microbiome Studies
Version 1.18.1
Author Siyuan Ma
Maintainer Siyuan MA <syma.research@gmail.com>
Description MMUPHin is an R package for meta-analysis tasks of microbiome cohorts. It has function interfaces for:
 a) covariate-controlled batch- and cohort effect adjustment,
 b) meta-analysis differential abundance testing,
 c) meta-analysis unsupervised discrete structure (clustering) discovery, and
 d) meta-analysis unsupervised continuous structure discovery.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1
VignetteBuilder knitr
SystemRequirements glpk (>= 4.57)
Depends R (>= 3.6)
Imports Maaslin2, metafor, fpc, igraph, ggplot2, dplyr, tidyr, stringr, cowplot, utils, stats, grDevices
Suggests testthat, BiocStyle, knitr, rmarkdown, magrittr, vegan, phyloseq, curatedMetagenomicData, genefilter
biocViews Metagenomics, Microbiome, BatchEffect
git_url https://git.bioconductor.org/packages/MMUPHin
git_branch RELEASE_3_19
git_last_commit 4729c9c
git_last_commit_date 2024-05-18
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_back_covariates</td>
<td>3</td>
</tr>
<tr>
<td>adjust_batch</td>
<td>3</td>
</tr>
<tr>
<td>adjust_EB</td>
<td>5</td>
</tr>
<tr>
<td>aprior</td>
<td>5</td>
</tr>
<tr>
<td>AST</td>
<td>6</td>
</tr>
<tr>
<td>back_transform_abd</td>
<td>6</td>
</tr>
<tr>
<td>bprior</td>
<td>7</td>
</tr>
<tr>
<td>catchToList</td>
<td>7</td>
</tr>
<tr>
<td>check_batch</td>
<td>8</td>
</tr>
<tr>
<td>check_covariates</td>
<td>8</td>
</tr>
<tr>
<td>check_covariates_random</td>
<td>9</td>
</tr>
<tr>
<td>check_D</td>
<td>9</td>
</tr>
<tr>
<td>check_exposure</td>
<td>10</td>
</tr>
<tr>
<td>check_feature_abd</td>
<td>10</td>
</tr>
<tr>
<td>check_metadata</td>
<td>11</td>
</tr>
<tr>
<td>check_options</td>
<td>11</td>
</tr>
<tr>
<td>check_options_continuous</td>
<td>12</td>
</tr>
<tr>
<td>check_pseudo_count</td>
<td>12</td>
</tr>
<tr>
<td>check_rank</td>
<td>13</td>
</tr>
<tr>
<td>check_samples</td>
<td>13</td>
</tr>
<tr>
<td>check_samples_D</td>
<td>14</td>
</tr>
<tr>
<td>construct_design</td>
<td>14</td>
</tr>
<tr>
<td>construct_ind</td>
<td>15</td>
</tr>
<tr>
<td>continuous_discover</td>
<td>15</td>
</tr>
<tr>
<td>CRC_abd</td>
<td>17</td>
</tr>
<tr>
<td>CRC_meta</td>
<td>18</td>
</tr>
<tr>
<td>create_table_maaslin</td>
<td>20</td>
</tr>
<tr>
<td>diagnostic_adjust_batch</td>
<td>20</td>
</tr>
<tr>
<td>diagnostic_continuous_discover</td>
<td>21</td>
</tr>
<tr>
<td>diagnostic_discrete_discover</td>
<td>21</td>
</tr>
<tr>
<td>discrete_discover</td>
<td>22</td>
</tr>
<tr>
<td>fill_dimnames</td>
<td>23</td>
</tr>
<tr>
<td>fit_EB</td>
<td>24</td>
</tr>
<tr>
<td>fit_shrink</td>
<td>24</td>
</tr>
<tr>
<td>fit_stand_feature</td>
<td>25</td>
</tr>
<tr>
<td>it_sol</td>
<td>25</td>
</tr>
<tr>
<td>lm_meta</td>
<td>26</td>
</tr>
<tr>
<td>LOG</td>
<td>28</td>
</tr>
<tr>
<td>Maaslin2_wrapper</td>
<td>29</td>
</tr>
<tr>
<td>match_control</td>
<td>29</td>
</tr>
<tr>
<td>normalize_features</td>
<td>30</td>
</tr>
<tr>
<td>relocate_scale</td>
<td>30</td>
</tr>
<tr>
<td>rename_maaslin</td>
<td>31</td>
</tr>
<tr>
<td>rma_wrapper</td>
<td>32</td>
</tr>
<tr>
<td>set_pseudo</td>
<td>32</td>
</tr>
<tr>
<td>shorten_name</td>
<td>33</td>
</tr>
</tbody>
</table>
add_back_covariates

Add back covariate effects to batch-corrected feature abundance data

Description

Add back covariate effects to batch-corrected feature abundance data

Usage

```
add_back_covariates(adj_data, l_stand_feature, l_ind)
```

Arguments

- `adj_data`: feature-by-sample matrix of batch-adjusted feature abundances (but without covariate effects), as returned by `relocate_scale`.
- `l_stand_feature`: list of per-feature standardization fits, as returned by `fit_stand_feature`.
- `l_ind`: list of indicator matrices, as returned by `construct_ind`.

Value

feature-by-sample matrix of batch-adjusted feature abundances with covariate effects retained.

adjust_batch

Zero-inflated empirical Bayes adjustment of batch effect in compositional feature abundance data

Description

`adjust_batch` takes as input a feature-by-sample matrix of microbial abundances, and performs batch effect adjustment given provided batch and optional covariate variables. It returns the batch-adjusted abundance matrix. Additional options and parameters can be passed through the `control` parameter as a list (see details).

Usage

```
adjust_batch(feature_abd, batch, covariates = NULL, data, control)
```
4

adjust_batch

Arguments

- **feature_abd** feature-by-sample matrix of abundances (proportions or counts).
- **batch** name of the batch variable. This variable in data should be a factor variable and will be converted to so with a warning if otherwise.
- **covariates** name(s) of covariates to adjust for in the batch correction model.
- **data** data frame of metadata, columns must include batch and covariates (if specified).
- **control** a named list of additional control parameters. See details.

Details

control should be provided as a named list of the following components (can be a subset).

- **zero_inflation** logical. Indicates whether or not a zero-inflated model should be run. Default to TRUE (zero-inflated model). If set to FALSE then the correction will be similar to ComBat as provided in the sva package.
- **pseudo_count** numeric. Pseudo count to add feature_abd before the methods’ log transformation. Default to NULL, in which case adjust_batch will set the pseudo count automatically to half of minimal non-zero values in feature_abd.
- **diagnostic_plot** character. Name for the generated diagnostic figure file. Default to "adjust_batch_diagnostic.pdf". Can be set to NULL in which case no output will be generated.
- **conv** numeric. Convergence threshold for the method’s iterative algorithm for shrinking batch effect parameters. Default to 1e-4.
- **maxit** integer. Maximum number of iterations allowed for the method’s iterative algorithm. Default to 1000.
- **verbose** logical. Indicates whether or not verbose information will be printed.

Value

a list, with the following components:

- **feature_abd_adj** feature-by-sample matrix of batch-adjusted abundances, normalized to the same per-sample total abundance as feature_abd.
- **control** list of additional control parameters used in the function call.

Author(s)

Siyuan Ma, <siyuanma@g.harvard.edu>

Examples

data("CRC_abd", "CRC_meta")
CRC_abd_adj <- adjust_batch(feature_abd = CRC_abd,
batch = "studyID",
covariates = "study_condition",
data = CRC_meta)$feature_abd_adj
adjust_EB

Perform batch adjustment on standardized feature abundances, based on EB shrinked per-batch location and scale parameters

Description

Perform batch adjustment on standardized feature abundances, based on EB shrinked per-batch location and scale parameters.

Usage

```
adjust_EB(s_data, l_params_shrink, l_stand_feature, batchmod, n_batch, l_ind)
```

Arguments

- `s_data`: feature-by-sample matrix of standardized abundances.
- `l_params_shrink`: list of shrinked parameters, as returned by fit_shrink.
- `l_stand_feature`: list of per-feature standardization fits, as returned by fit_stand_feature.
- `batchmod`: design matrix for batch variables.
- `n_batch`: number of batches in the data.
- `l_ind`: list of indicator matrices, as returned by construct_ind.

Value

feature-by-sample matrix of batch-adjusted feature abundances.

aprior

EB prior estimation for scale parameters

Description

EB prior estimation for scale parameters.

Usage

```
aprior(delta_hat, na.rm = FALSE)
```

Arguments

- `delta_hat`: frequentist per-batch scale estimations.
- `na.rm`: whether or not missing values should be removed.
Value

shape hyper parameter

AST

AST transformation (modified from Maaslin2 and is different)

Description

AST transformation (modified from Maaslin2 and is different)

Usage

AST(x)

Arguments

- x: vector of abundance to be transformed.

Value

transformed vector of abundance.

back_transform_abd

Transform batch adjusted feature abundances back to the original scale in feature_abd

Description

Transform batch adjusted feature abundances back to the original scale in feature_abd

Usage

back_transform_abd(adj_data, feature_abd, type_feature_abd)

Arguments

- adj_data: feature-by-sample matrix of batch-adjusted feature abundances with covariate effects retained.
- feature_abd: original feature-by-sample matrix of abundances (proportions or counts).
- type_feature_abd: type of feature abundance table (counts or proportions). If counts, the final output will be rounded into counts as well.

Value

feature-by-sample matrix of batch-adjusted feature abundances, with covariate effects retained and scales consistent with original abundance matrix.
Description

EB prior estimation for scale parameters

Usage

```r
bprior(delta_hat, na.rm = FALSE)
```

Arguments

- `delta_hat`: frequentist per-batch location estimations.
- `na.rm`: whether or not missing values should be removed.

Value

scale hyper parameter

catchToList

Utility for catching warning/error messages

Description

Utility for catching warning/error messages

Usage

```r
catchToList(expr)
```

Arguments

- `expr`: an expression to run that can generate potential errors/warnings

Value

a list, capturing both the return value of the expression, as well as generated errors/warnings (NULL if no errors/warnings)
check_batch

Check batch variable

Description

Check batch variable

Usage

```r
check_batch(x, min_n_batch = 2)
```

Arguments

- `x` batch variable.
- `min_n_batch` min. number of batches (for MMUPHin functions to run).

Value

if no errors then the batch variables (factorized if not already)

check_covariates

Check covariates

Description

Check covariates

Usage

```r
check_covariates(data_covariates, batch)
```

Arguments

- `data_covariates` data frame of covariates.
- `batch` batch variable.

Value

vector of indicators per batch for if/which covariates can be fitted within the batches
check_covariates_random

Check random covariates

Description

Check random covariates

Usage

check_covariates_random(data_covariates, batch)

Arguments

data_covariates
data frame of random covariates.
batch
batch variable.

Value

vector of indicators per batch for if/which random covariates can be fitted within the batches

check_D

Check dissimilarity object

Description

Make sure that the input is a dissimilarity object

Usage

check_D(D)

Arguments

D
dissimilarity object.

Value

returns an error if D is not a dissimilarity. Otherwise D as a matrix.
check_exposure

Description
Check exposure variable

Usage
check_exposure(exposure, batch)

Arguments
exposure exposure variable.
batch batch variable.

Value
vector of indicators per batch for whether or not the exposure can be fitted within the batches

check_feature_abd

Description
Given a feature abundance table, make sure that a) it has no missing values, b) all values are non-negative, c) it is either proportions (all no greater than 1) or counts (all integers).

Usage
check_feature_abd(feature_abd)

Arguments
feature_abd feature-by-sample matrix of abundances (proportions or counts).

Value
returns an error if any of the check fails. Otherwise either "counts" or "proportions"
check_metadata

Check that metadata data frame has all the variables and not missing

Description

Check that metadata data frame has all the variables and not missing

Usage

```r
check_metadata(data, variables, no_missing = TRUE)
```

Arguments

- `data` : data frame of metadata.
- `variables` : name of variables (batch, covariates, etc.) to check

Value

data reduced to include only those specified in variables

check_options

Utility for checking options

Description

Utility for checking options

Usage

```r
check_options(x, x_name, options)
```

Arguments

- `x` : the specified value
- `x_name` : name of the specified value
- `options` : allowed options

Value

error if x is not in options. Otherwise returns x.
check_options_continuous

Utility for checking continuous options

Description
Utility for checking continuous options

Usage
check_options_continuous(x, x_name, range)

Arguments
- x: the specified numeric value
- x_name: name of the specified value
- range: allowed range

Value
error if x is not within range (boundaries excluded). Otherwise returns x.

check_pseudo_count
Utility for checking pseudo count

Description
Utility for checking pseudo count

Usage
check_pseudo_count(x)

Arguments
- x: the specified pseudo count

Value
error if pseudo count is smaller than zero. Otherwise returns x.
check_rank

Check if a design matrix is full rank

Description

Check if a design matrix is full rank

Usage

```r
check_rank(design)
```

Arguments

- `design` design matrix.

Value

TRUE/FALSE for whether or not the design matrix is full rank.

check_samples

Check that sample numbers and names match between a feature table and a metadata data frame

Description

Sample names (column names of the feature table, row names of the metadata data frame) must be matching exactly. Note that this dictates that they cannot be NULL because by design data (a data frame) should have non-empty row names.

Usage

```r
check_samples(feature_abd, data)
```

Arguments

- `feature_abd` feature-by-sample matrix of abundances (proportions or counts).
- `data` data frame of metadata.

Value

matched sample names
check_samples_D
Check that sample numbers and names match between a dissimilarity matrix and a metadata data frame

Description
Sample names (row/column names of the D matrix, row names of the metadata data frame) must be matching exactly. Note that this dictates that they cannot be NULL because by design data (a data frame) should have non-empty row names.

Usage
check_samples_D(D, data)

Arguments
D sample-by-sample matrix of dissimilarities (proportions or counts).

data data frame of metadata.

Value
matched sample names

construct_design
Construct a design model matrix given a metadata data frame, with the option to exclude the intercept.

Description
Construct a design model matrix given a metadata data frame, with the option to exclude the intercept.

Usage
construct_design(data, with_intercept = TRUE)

Arguments
data metadata data frame.

with_intercept should intercept terms be included in the model

Value
design matrix.
construct_ind

Create indicator matrices for which feature/batch/samples to adjust. This is relevant for zero_inflation is TRUE and only non-zero values are adjusted.

Description

Create indicator matrices for which feature/batch/samples to adjust. This is relevant for zero_inflation is TRUE and only non-zero values are adjusted.

Usage

```r
construct_ind(feature_abd, n_batch, design, zero_inflation)
```

Arguments

- `feature_abd`: feature-by-sample matrix of abundances (proportions or counts).
- `n_batch`: number of batches in the data.
- `design`: design matrix.
- `zero_inflation`: zero inflation flag.

Value

list of indicator matrices needed by fitting in adjust_batch.

continuous_discover

Unsupervised meta-analytical discovery and validation of continuous structures in microbial abundance data

Description

`continuous_discover` takes as input a feature-by-sample matrix of microbial abundances. It first performs unsupervised continuous structure discovery (PCA) within each batch. Loadings of top PCs from each batch are then mapped against each other to identify "consensus" loadings that are reproducible across batches with a network community discovery approach with `igraph`. The identified consensus loadings/scores can be viewed as continuous structures in microbial profiles that are recurrent across batches and valid in a meta-analytical sense. `continuous_discover` returns, among other output, the identified consensus scores for continuous structures in the provided microbial abundance profiles, as well as the consensus PC loadings which can be used to assign continuous scores to any sample with the same set of microbial features.

Usage

```r
continuous_discover(feature_abd, batch, data, control)
```
Arguments

- **feature_abd**: feature-by-sample matrix of abundances (proportions or counts).
- **batch**: name of the batch variable. This variable in data should be a factor variable and will be converted to so with a warning if otherwise.
- **data**: data frame of metadata, columns must include batch.
- **control**: a named list of additional control parameters. See details.

Details

control should be provided as a named list of the following components (can be a subset).

- **normalization**: character. Similar to the normalization parameter in Maaslin2 but only "TSS" and "NONE" are allowed. Default to "TSS" (total sum scaling).
- **transform**: character. Similar to the transform parameter in Maaslin2 but only "AST" and "LOG" are allowed. Default to "AST" (arcsine square root transformation).
- **pseudo_count**: numeric. Pseudo count to add feature_abd before the transformation. Default to NULL, in which case pseudo count will be set automatically to 0 if transform="AST", and half of minimal non-zero values in feature_abd if transform="LOG".
- **var_perc_cutoff**: numeric. A value between 0 and 1 that indicates the percentage variability explained to cut off at for selecting top PCs in each batch. Across batches, the top PCs that in total explain more than var_perc_cutoff of the total variability will be selected for meta-analytical continuous structure discovery. Default to 0.8 (PCs included need to explain at least 80 total variability).
- **cos_cutoff**: numeric. A value between 0 and 1 that indicates cutoff for absolute cosine coefficients between PC loadings to construct the method’s network with. Once the top PC loadings from each batch are selected, cosine coefficients between each loading pair are calculated which indicate their similarity. Loading pairs with absolute cosine coefficients surpassing cos_cutoff are then considered as associated with each other, and represented as an edge between the pair in a PC loading network. Network community discovery can then be performed on this network to identified densely connected "clusters" of PC loadings, which represent meta-analytically recurrent continuous structures.
- **cluster_function**: function. cluster_function is used to perform community structure discovery in the constructed PC loading network. This can be any of the network cluster functions provided in igraph. Default to cluster_optimal. Note that this option can be slow for larger datasets, in which case cluster_fast_greedy is recommended.
- **network_plot**: character. Name for the generated network figure file. Default to "clustered_network.pdf". Can be set to NULL in which case no output will be generated.
- **plot_size_cutoff**: integer. Clusters with sizes smaller than or equal to plot_size_cutoff will be excluded in the visualized network. Default to 2 - visualized clusters must have at least three nodes (PC loadings).
- **diagnostic_plot**: character. Name for the generated diagnostic figure file. Default to "continuous_diagnostic.pdf". Can be set to NULL in which case no output will be generated.
- **verbose**: logical. Indicates whether or not verbose information will be printed.
Value

a list, with the following components:

- **consensus_scores** matrix of identified consensus continuous scores. Columns are the identified consensus scores and rows correspond to samples in feature_abd.
- **consensus_loadings** matrix of identified consensus loadings. Columns are the identified consensus scores and rows correspond to features in feature_abd.
- **mat_vali** matrix of validation cosine coefficients of the identified consensus loadings. Columns correspond to the identified consensus scores and rows correspond to batches.
- **network, communities, mat_cos** components for the constructed PC loading network and community discovery results. **network** is an **igraph** graph object for the constructed network of associated PC loadings. **communities** is a **communities** object for the identified consensus loading clusters in network (output from control$cluster_function). **mat_cos** is the matrix of cosine coefficients between all selected top PCs from all batches.

- **control** list of additional control parameters used in the function call.

Author(s)

Siyuan Ma, <siyuanma@g.harvard.edu>

Examples

```r
data("CRC_abd", "CRC_meta")
fit_continuous <- continuous_discover(feature_abd = CRC_abd, batch = "studyID", data = CRC_meta)
```

Description

Species level relative abundance profiles of CRC and control patients in the five public studies used in Thomas et al. (2019). These were accessed through **curatedMetagenomicData**.

Usage

```r
data(CRC_abd)
```

Format

A feature-by-sample matrix of species-level profiles

Source

curatedMetagenomicData
References

Examples

data(CRC_abd)
features included
rownames(CRC_abd)
These are relative abundances
apply(CRC_abd, 2, sum)
The following were used to generate the object
library(curatedMetagenomicData)
library(phyloseq)
library(genefilter)
datasets <- curatedMetagenomicData(
c("FengQ_2015.metaphlan_bugs_list.stool" ,
"HanniganGD_2017.metaphlan_bugs_list.stool",
"VogtmannE_2016.metaphlan_bugs_list.stool",
"YuJ_2015.metaphlan_bugs_list.stool",
"ZellerG_2014.metaphlan_bugs_list.stool"),
dryrun = FALSE)
Construct phyloseq object from the five datasets
physeq <-
Aggregate the five studies into ExpressionSet
mergeData(datasets) %>%
Convert to phyloseq object
ExpressionSet2phyloseq() %>%
Subset samples to only CRC and controls
subset_samples(study_condition %in% c("CRC", "control")) %>%
Subset features to species
subset_taxa(!is.na(Species) & is.na(Strain)) %>%
Normalize abundances to relative abundance scale
transform_sample_counts(function(x) x / sum(x)) %>%
Filter features to be of at least 1e-5 relative abundance in five
samples
filter_taxa(kOverA(5, 1e-5), prune = TRUE)
CRC_abd <- otu_table(physeq)@.Data

CRC_meta

<table>
<thead>
<tr>
<th>Sample metadata of five public CRC studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metadata information of CRC and control patients in the five public studies used in Thomas et al. (2019). These were accessed through curatedMetagenomicData.</td>
</tr>
</tbody>
</table>
CRC_meta

Usage

```r
data(CRC_meta)
```

Format

A data.frame of per-sample metadata information

Source

[curatedMetagenomicData](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494346/)

References

Examples

```r
data(CRC_meta)
# has CRC and control samples across five studies
table(CRC_meta$studyID, CRC_meta$study_condition)
# The following were used to generate the object
# library(curatedMetagenomicData)
# library(phyloseq)
# library(genefilter)
# datasets <- curatedMetagenomicData(
#   c("FengQ_2015.metaphlan_bugs_list.stool",
#     "HanniganGD_2017.metaphlan_bugs_list.stool",
#     "VogtmannE_2016.metaphlan_bugs_list.stool",
#     "YuJ_2015.metaphlan_bugs_list.stool",
#     "ZellerG_2014.metaphlan_bugs_list.stool"),
#   dryrun = FALSE)
# Construct phyloseq object from the five datasets
# physeq <-
#   # Aggregate the five studies into ExpressionSet
#   mergeData(datasets) %>%
#     # Convert to phyloseq object
#     ExpressionSet2phyloseq() %>%
#     # Subset samples to only CRC and controls
#     subset_samples(study_condition %in% c("CRC", "control")) %>%
#     # Subset features to species
#     subset_taxa(!is.na(Species) & is.na(Strain)) %>%
#     # Normalize abundances to relative abundance scale
#     transform_sample_counts(function(x) x / sum(x)) %>%
#     # Filter features to be of at least 1e-5 relative abundance in five
#     # samples
#     filter_taxa(kOverA(5, 1e-5), prune = TRUE)
# CRC_meta <- data.frame(sample_data(physeq))
# CRC_meta$studyID <- factor(CRC_meta$studyID)
```
create_table_maaslin
Utility for generating empty Maaslin2 results table

Description

Utility for generating empty Maaslin2 results table

Usage

create_table_maaslin(features, exposure, lvl_exposure)

Arguments

- features: name of the features fitted to Maaslin2.
- exposure: the exposure variable.
- lvl_exposure: levels of the exposure variable, if a factor.

Value

A table for each feature-exposure value pair; reference level of exposure, if a factor, is taken out because is absorbed into the intercept term in Maaslin2 regression.

diagnostic_adjust_batch
Diagnostic visualization for adj_batch function

Description

Diagnostic visualization for adj_batch function

Usage

diagnostic_adjust_batch(feature_abd, feature_abd_adj, var_batch, gamma_hat, gamma_star, output)

Arguments

- feature_abd: original feature-by-sample matrix of abundances (proportions or counts).
- feature_abd_adj: feature-by-sample matrix of batch-adjusted feature abundances, with covariate effects retained and scales consistent with original abundance matrix.
- var_batch: the batch variable (should be a factor).
- gamma_hat: estimated per feature-batch gamma parameters.
- gamma_star: shrinked per feature-batch gamma parameters.
- output: output file name.
Value

(invisbly) the ggplot2 plot object

diagnostic_continuous_discover

Diagnostic visualization for continuous.discover function

Description

Diagnostic visualization for continuous.discover function

Usage

```r
diagnostic_continuous_discover(mat_vali, lvl_batch, cos_cutoff, output)
```

Arguments

- `mat_vali`: matrix of maximum correlations between the cluster-specific consensus loadings and top PC loadings from each batch
- `lvl_batch`: unique batches in the data
- `cos_cutoff`: the specified cosine coefficient cutoff
- `output`: output file name

Value

the invisible ggplot2 plot object

diagnostic_discrete_discover

Diagnostic visualization for discrete.discover function

Description

Diagnostic visualization for discrete.discover function

Usage

```r
diagnostic_discrete_discover(stats_internal, stats_external, lvl_batch, output)
```

Arguments

- `stats_internal`: list of internal evaluation summary statistics
- `stats_external`: list of external validation summary statistics
- `lvl_batch`: unique batches in the data
- `output`: output file name
Value

the invisible ggplot2 plot object

Description

discrete_discover takes as input sample-by-sample dissimilarity measurements (generated from microbial abundance profiles), and performs unsupervised clustering within each batch across a range of cluster numbers. It then evaluates the support for each cluster number with both internal (i.e., samples within the batch) and external (i.e., samples in other batches) data. Internal evaluation is realized with prediction.strength and external evaluation is based on a generalized version of the same method. discrete_discover generates as output the evaluation statistics for each cluster number. A cluster number with good support from both internal and external evaluations provides meta-analytical evidence for discrete structures in the microbial abundance profiles.

Usage

discrete_discover(D, batch, data, control)

Arguments

- **D** sample-by-sample dissimilarity measurements. Should be provided as a dist object.
- **batch** name of the batch variable. This variable in data should be a factor variable and will be converted to so with a warning if otherwise.
- **data** data frame of metadata, columns must include batch.
- **control** a named list of additional control parameters. See details.

Details

control should be provided as a named list of the following components (can be a subset).

- **k_max** integer. Maximum number of clusters to evaluate. discrete_discover will evaluate clustering structures corresponding to cluster numbers ranging from 2 to k_max. Default to 10.
- **cluster_function** an interface function. This function will be used for unsupervised clustering for discrete structure evaluation. This corresponds to the clustermethod parameter in prediction.strength, and similarly, should also follow the specifications as detailed in clusterboot. Default to claraCBI
- **classify_method** character. Classification method used to assign observations in the method’s internal and external evaluation stage. Corresponds to the classification parameter in prediction.strength, and can only be either "centroid" or "knn". Default to "centroid".
- **M** integer. Number of random iterations to partition the batch during method’s internal evaluation. Corresponds to the M parameter in prediction.strength. Default to 30.
nnk integer. Number of nearest neighbors if `classify_method="knn"`. Corresponds to the `nnk` parameter in `prediction.strength`. Default to 1.

diagnostic_plot character. Name for the generated diagnostic figure file. Default to "discrete_diagnostic.pdf". Can be set to `NULL` in which case no output will be generated.

verbose logical. Indicates whether or not verbose information will be printed.

Value

a list, with the following components:

- **internal_mean**, **internal_se** matrices of internal clustering structure evaluation measurements (prediction strengths). Columns and rows corresponds to different batches and different numbers of clusters, respectively. `internal_mean` and `internal_se`, as the names suggest, are the mean and standard error of prediction strengths for each batch/cluster number.

- **external_mean**, **external_se** same structure as `internal_mean` and `internal_se`, but records external clustering structure evaluation measurements (generalized prediction strength).

- **control** list of additional control parameters used in the function call.

Author(s)

Siyuan Ma, <siyuanma@g.harvard.edu>

Examples

```r
data("CRC_abd", "CRC_meta")
# Calculate Bray-Curtis dissimilarity between the samples
library(vegan)
D <- vegdist(t(CRC_abd))
fit_discrete <- discrete_discover(D = D,
                                batch = "studyID",
                                data = CRC_meta)
```

fill_dimnames

Fill in artificial row/column names to a matrix or data frame, if they are missing

Description

Fill in artificial row/column names to a matrix or data frame, if they are missing

Usage

```r
fill_dimnames(x, row_prefix, col_prefix)
```

Arguments

- **x** matrix or data frame
- **row_prefix** prefix for the artificial row names
- **col_prefix** prefix for the artificial column names
fit_EB

Parametric estimation of per-batch location and scale parameters, and Empirical Bayes estimation of their priors

Description

Parametric estimation of per-batch location and scale parameters, and Empirical Bayes estimation of their priors.

Usage

```r
fit_EB(s_data, l_stand_feature, batchmod, n_batch, l_ind)
```

Arguments

- **s_data**: feature-by-sample matrix of standardized abundances.
- **l_stand_feature**: list of per-feature standardization fits, as returned by `fit_stand_feature`.
- **batchmod**: design matrix for batch variables.
- **n_batch**: number of batches in the data.
- **l_ind**: list of indicator matrices, as returned by `construct_ind`.

Value

list of parameter estimations.

fit_shrink

A posteriori shrink per-batch location and scale parameters towards their EB priors

Description

A posteriori shrink per-batch location and scale parameters towards their EB priors.

Usage

```r
fit_shrink(s_data, l_params, batchmod, n_batch, l_ind, control)
```
fit_stand_feature

Arguments

- `s_data` feature-by-sample matrix of standardized abundances.
- `l_params` list of parameter fits, as returned by `fit_EB`.
- `batchmod` design matrix for batch variables.
- `n_batch` number of batches in the data.
- `l_ind` list of indicator matrices, as returned by `construct_ind`.
- `control` list of control parameters (passed on to `it_sol`)

Value

list of shrinked per-batch location and scale parameters.

fit_stand_feature
Fit lm and standardize all features

Description

Fit lm and standardize all features

Usage

```r
fit_stand_feature(s_data, design, l_ind)
```

Arguments

- `s_data` feature-by-sample matrix of abundances (proportions or counts).
- `design` design matrix.
- `l_ind` list of indicator matrices, as returned by `construct_ind`.

Value

list of two components: the standardized feature abundance matrix, and a list of per-feature standardization fits.
it_sol

Iteratively solve for one feature’s shrinked location and scale parameters

Description

Iteratively solve for one feature’s shrinked location and scale parameters

Usage

\[
\text{it_sol}(s_data, g_hat, d_hat, g_bar, t2, a, b, \text{control})
\]

Arguments

- **s_data**: the feature’s standardized abundances.
- **g_hat**: the feature’s location parameter frequentist estimations.
- **d_hat**: the feature’s scale parameter frequentist estimations.
- **g_bar**: EB estimation of location hyper parameters.
- **t2**: EB estimation of location hyper parameters.
- **a**: EB estimation of scale hyper parameters.
- **b**: EB estimation of scale hyper parameters.
- **control**: list of control parameters

Value

matrix of shrinked location and scale parameters.

lm_meta

Covariate adjusted meta-analytical differential abundance testing

Description

lm_meta runs differential abundance models on microbial profiles within individual studies/batches, and aggregates per-batch effect sizes with a meta-analysis fixed/random effects model. It takes as input a feature-by-sample microbial abundance table and the accompanying meta data data frame which should includes the batch indicator variable, the main exposure variable for differential abundance testing, and optional covariates and random covariates. The function first runs Maaslin2 models on the exposure with optional covariates/random covariates in each batch. The per-batch effect sizes are then aggregated with rma.uni and reported as output. Additional parameters, including those for both Maaslin2 and rma.uni can be provided through control (see details).
Usage

```r
lm_meta(
  feature_abd,
  batch,
  exposure,
  covariates = NULL,
  covariates_random = NULL,
  data,
  control
)
```

Arguments

- `feature_abd` feature-by-sample matrix of abundances (proportions or counts).
- `batch` name of the batch variable. This variable in data should be a factor variable and will be converted to so with a warning if otherwise.
- `exposure` name of the exposure variable for differential abundance testing.
- `covariates` names of covariates to adjust for in Maaslin2 differential abundance testing models.
- `covariates_random` names of random effects grouping covariates to adjust for in Maaslin2 differential abundance testing models.
- `data` data frame of metadata, columns must include exposure, batch, and covariates and covariates_random (if specified).
- `control` a named list of additional control parameters. See details.

Details

control should be provided as a named list of the following components (can be a subset).

- `normalization` character. Normalization parameter for Maaslin2. See `Maaslin2` for details and allowed values. Default to "TSS" (total sum scaling).
- `transform` character. Transform parameter for Maaslin2. See `Maaslin2` for details and allowed values. Default to "AST" (arcsine square root transformation).
- `analysis_method` character. Analysis_method parameter for Maaslin2. See `Maaslin2` for details and allowed values. Default to "LM" (linear modeling).
- `rma_method` character. Method parameter for rma.uni. See `rma.uni` for details and allowed values. Default to "REML" (restricted maximum-likelihood estimator).
- `output` character. Output directory for intermediate Maaslin2 output and the optional forest plots. Default to "MMUPHin_lmmeta".
- `forest_plot` character. Suffix in the name for the generated forest plots visualizing significant meta-analytical differential abundance effects. Default to "forest.pdf". Can be set to NULL in which case no output will be generated.
- `rma_conv` numeric. Convergence threshold for rma.uni (corresponds to control$threshold. See `rma.uni` for details. Default to 1e-4.
rma_maxit integer. Maximum number of iterations allowed for rma.uni (corresponds to control$maxiter. See rma.uni for details. Default to 1000.

verbose logical. Indicates whether or not verbose information will be printed.

Value

a list, with the following components:

- **meta_fits** data frame of per-feature meta-analytical differential abundance results, including columns for effect sizes, p-values and q-values, heterogeneity statistics such as τ^2 and I^2, as well as weights for individual batches. Many of these statistics are explained in detail in rma.uni.

- **maaslin_fits** list of data frames, each one corresponding to the fitted results of Maaslin2 in a individual batch. See Maaslin2 on details of these output.

- **control** list of additional control parameters used in the function call.

Author(s)

Siyuan Ma, <siyuanma@g.harvard.edu>

Examples

data("CRC_abd", "CRC_meta")
fit_meta <- lm_meta(feature_abd = CRC_abd,
exposure = "study_condition",
batch = "studyID",
covariates = c("gender", "age"),
data = CRC_meta$meta_fits

```
LOG transformation (modified from Maaslin2 and is different)
```

Description

LOG transformation (modified from Maaslin2 and is different)

Usage

```
LOG(x)
```

Arguments

- **x** vector of abundance to be transformed.

Value

transformed vector of abundance.
Maaslin2_wrapper

Wrapper function for Maaslin2

Description

Wrapper function for Maaslin2

Usage

Maaslin2_wrapper(feature_abd, data, exposure, covariates = NULL, covariates_random = NULL, output = tempdir(), normalization = "TSS", transform = "AST", analysis_method = "LM")

Arguments

feature_abd feature×sample matrix of feature abundance.
data data frame of metadata.
exposure name of exposure variable.
covariates name of covariates.
covariates_random name of random covariates.
output directory for Maaslin2.
normalization normalization parameter for Maaslin2.
transform transformation parameter for Maaslin2.
analysis_method analysis method parameter for Maaslin2.

Value

a data frame recording per-feature coefficients, p-values, etc. from running Maaslin2.

match_control

Match user-specified control parameters with default, and modify if needed

Description

Match user-specified control parameters with default, and modify if needed

Usage

match_control(default, control)
Arguments

- `default` list of default control parameters
- `control` list of user-provided control parameters

Value

list of control parameters, set to user provided values if specified and default otherwise

normalize_features

Normalize feature abundance table (modified from Maaslin2)

Description

Normalize feature abundance table (modified from Maaslin2)

Usage

`normalize_features(features, normalization = "NONE", pseudo_count = 0)`

Arguments

- `features` feature-by-sample matrix of abundances (proportions or counts).
- `normalization` normalization method.
- `pseudo_count` pseudo count to be added to feature_abd.

Value

normalized abundance table.

relocate_scale

Relocate and scale feature abundances to correct for batch effects, given shrinked per-batch location and scale parameters

Description

Relocate and scale feature abundances to correct for batch effects, given shrinked per-batch location and scale parameters

Usage

`relocate_scale(s_data, l_params_shrink, batchmod, n_batch, l_ind)`
rename_maaslin

Arguments

s_data feature-by-sample matrix of standardized abundances.
1_params_shrink list of shrinked parameters, as returned by fit_shrink.
batchmod design matrix for batch variables.
n_batch number of batches in the data.
l_ind list of indicator matrices, as returned by construct_ind.

Value

feature-by-sample matrix of batch-adjusted feature abundances (but without covariate effects).

Description

Utility for temporarily renaming samples/features for Maaslin2 run to bypass the rare cases where unconventional names can cause exceptions.

Usage

rename_maaslin(old_names, prefix)

Arguments

old_names vector of names.
prefix prefix for the replacement (new numbered names).

Value

vector of new names - numbered vector with same length as old names and with the specified prefix.
rma_wrapper

Wrapper for fitting fixed/random effects meta-analysis model using metafor

Description

Wrapper for fitting fixed/random effects meta-analysis model using metafor

Usage

```r
rma_wrapper(maaslin_fits, method = "REML", output = tempdir(),
            forest_plot = NULL, rma_conv = 1e-06, rma_maxit = 1000,
            verbose = TRUE)
```

Arguments

- `maaslin_fits`: list of Maaslin2 result data frames, outputted from Maaslin2_wrapper.
- `method`: meta-analysis model to run, options provided in metafor::rma.
- `output`: directory for the output forest plots.
- `forest_plot`: logical. should forest plots be generated for the significant associations.
- `rma_conv`: rma threshold control.
- `rma_maxit`: rma maximum iteration control.
- `verbose`: should verbose information be printed.

Value

a data frame recording per-feature meta-analysis association results. (coefficients, p-values, etc.)

set_pseudo

Set pseudo count for an abundance matrix. Pseudo count is currently set to half of minimum non-zero values

Description

Set pseudo count for an abundance matrix. Pseudo count is currently set to half of minimum non-zero values

Usage

```r
set_pseudo(features)
```

Arguments

- `features`: feature-by-sample matrix of abundances (proportions or counts).
shorten_name

Value
the pseudo count

shorten_name
Utility for shorter names Useful when plotting per-feature figures where feature names could be cutoff

Description
Utility for shorter names Useful when plotting per-feature figures where feature names could be cutoff

Usage
shorten_name(x, cutoff = 3, replacement = "..")

Arguments
- x: vector of names
- cutoff: number of maximum string length before start cutting off the middle

Value
vector of new names with .. replacing the middle part if name is longer than cutoff

standardize_feature
Centralize (by design matrix) and standardize (by pooled variance across all batches) feature abundances for empirical Bayes fit

Description
Centralize (by design matrix) and standardize (by pooled variance across all batches) feature abundances for empirical Bayes fit

Usage
standardize_feature(y, i_design, n_batch)

Arguments
- y: vector of non-zero abundance of a single feature (if zero-inflated is true).
- i_design: design matrix for the feature; samples with zeros are taken out (if zero-inflated is true).
- n_batch: number of batches in the data.
Value

a list with component: y_stand for vector of centralized and standardized feature abundance, and stand_mean/varpooled for the location and scale factor (these are used later to back transform the batch-shrinked feature abundance).

transform_features
Transform feature abundance table (modified from Maaslin2)

Description

Transform feature abundance table (modified from Maaslin2)

Usage

```
transform_features(features, transform = "NONE", pseudo_count = 0)
```

Arguments

- `features`
 feature-by-sample matrix of abundances (proportions or counts).
- `transform`
 transformation method.
- `pseudo_count`
 pseudo count to be added to feature_abd..

Value

transformed abundance table.

TSS
TSS normalization (modified from Maaslin2)

Description

TSS normalization (modified from Maaslin2)

Usage

```
TSS(x)
```

Arguments

- `x`
 vector of abundance to be normalized.

Value

normalized vector of abundance.
Species level feature abundance data of two public vaginal studies

Description

Species level relative abundance profiles of vaginal samples in the two public studies provided in curatedMetagenomicData.

Usage

data(vaginal_abd)

Format

A feature-by-sample matrix of species-level profiles

Source

curatedMetagenomicData

References

Examples

data(vaginal_abd)
features included
rownames(vaginal_abd)
These are relative abundances
apply(vaginal_abd, 2, sum)
The following were used to generate the object
library(curatedMetagenomicData)
library(phyloseq)
datasets <- curatedMetagenomicData(
"*metaphlan_bugs_list.vagina*",
dryrun = FALSE)
Construct phyloseq object from the five datasets
physeq <-
Aggregate the five studies into ExpressionSet
mergeData(datasets) %>%
Convert to phyloseq object
ExpressionSet2phyloseq() %>%
Subset features to species
subset_taxa(!is.na(Species) & is.na(Stain)) %>%
Normalize abundances to relative abundance scale
transform_sample_counts(function(x) x / sum(x)) %>%
Filter features to be of at least 1e-5 relative abundance in two samples
filter_taxa(kOverA(2, 1e-5), prune = TRUE)
vaginal_abd <- otu_table(physeq)@.Data

vaginal_meta

Sample metadata of two public vaginal studies

Description

Metadata information of vaginal samples in the two public studies provided in curatedMetagenomicData.

Usage

```r
data(vaginal_meta)
```

Format

A data.frame of per-sample metadata information

Source

curatedMetagenomicData

References

Examples

```r
data(vaginal_meta)
# has vaginal samples across two studies
table(vaginal_meta$studyID, vaginal_meta$body_site)
# The following were used to generate the object
# library(curatedMetagenomicData)
# library(phyloseq)
# datasets <- curatedMetagenomicData(
#   "*metaphlan_bugs_list.vagina*",
#   dryrun = FALSE)
# Construct phyloseq object from the five datasets
# physeq <-
#   # Aggregate the five studies into ExpressionSet
#   mergeData(datasets) %>%
#   # Convert to phyloseq object
#   ExpressionSet2phyloseq() %>%
#   # Subset features to species
#   subset_taxa(is.na(Species) & is.na(Strain)) %>%
#   # Normalize abundances to relative abundance scale
#   transform_sample_counts(function(x) x / sum(x)) %>%
```
Filter features to be of at least 1e-5 relative abundance in two samples
filter_taxa(kOverA(2, 1e-5), prune = TRUE)
vaginal_meta <- data.frame(sample_data(physeq))
vaginal_meta$studyID <- factor(vaginal_meta$studyID)

visualize_continuous_discover

Visualization of the clustered network for the continuous.discover function

Description

Visualization of the clustered network for the continuous.discover function

Usage

```r
visualize_continuous_discover(graph_pc, membership_loading, 
size_communities, plot_size_cutoff, short_names, output)
```

Arguments

- `graph_pc` the full pc network constructed from correlated PCs
- `membership_loading` membership of PC loadings from community discovery
- `size_communities` ordered (largest to smallest) size of the identified communities
- `plot_size_cutoff` cluster size cutoff (for cluster to be included in the visualized PC network)
- `short_names` shorter names of the loadings
- `output` output file name

Value

an invisible list of the subsetted network and memberships (to reproduce the plot)
Index

* datasets
 CRC_abd, 17
 CRC_meta, 18
 vaginal_abd, 35
 vaginal_meta, 36

* internal
 add_back_covariates, 3
 adjust_batch, 3
 adjust_EB, 5
 aprior, 5
 AST, 6
 back_transform_abd, 6
 bprior, 7
 catchToList, 7
 check_batch, 8
 check_covariates, 8
 check_covariates_random, 9
 check_D, 9
 check_exposure, 10
 check_feature_abd, 10
 check_metadata, 11
 check_options, 11
 check_options_continuous, 12
 check_pseudo_count, 12
 check_rank, 13
 check_samples, 13
 check_samples_D, 14
 construct_design, 14
 construct_ind, 15
 create_table_maaslin, 20
 diagnostic_adjust_batch, 20
 diagnostic_continuous_discover, 21
 diagnostic_discrete_discover, 21
 fill_dimnames, 23
 fit_EB, 24
 fit_shrink, 24
 fit_stand_feature, 25
 it_sol, 26
 LOG, 28
 Maaslin2_wrapper, 29
 match_control, 29
 normalize_features, 30
 relocate_scale, 30
 rename_maaslin, 31
 rma_wrapper, 32
 set_pseudo, 32
 shorten_name, 33
 standardize_feature, 33
 transform_features, 34
 TSS, 34
 visualize_continuous_discover, 37
 add_back_covariates, 3
 adjust_batch, 3
 adjust_EB, 5
 aprior, 5
 AST, 6
 back_transform_abd, 6
 bprior, 7
 catchToList, 7
 check_batch, 8
 check_covariates, 8
 check_covariates_random, 9
 check_D, 9
 check_exposure, 10
 check_feature_abd, 10
 check_metadata, 11
 check_options, 11
 check_options_continuous, 12
 check_pseudo_count, 12
 check_rank, 13
 check_samples, 13
 check_samples_D, 14
 claraCBI, 22
 cluster_fast_greedy, 16
 cluster_optimal, 16
 clusterboot, 22
 communities, 17
INDEX

construct_design, 14
construct_ind, 15
continuous_discover, 15
CRC_abd, 17
CRC_meta, 18
create_table_maaslin, 20
curatedMetagenomicData, 17–19, 35, 36
diagnostic_adjust_batch, 20
diagnostic_continuous_discover, 21
diagnostic_discrete_discover, 21
discrete_discover, 22
dist, 22
fill_dimnames, 23
fit_EB, 24
fit_shrink, 24
fit_stand_feature, 25
it_sol, 26
lm_meta, 26
LOG, 28
Maaslin2, 16, 26–28
Maaslin2_wrapper, 29
match_control, 29
normalize_features, 30
prediction_strength, 22, 23
relocate_scale, 30
rename_maaslin, 31
rma.uni, 26–28
rma_wrapper, 32
set_pseudo, 32
shorten_name, 33
standardize_feature, 33
transform_features, 34
TSS, 34
vaginal_abd, 35
vaginal_meta, 36
visualize_continuous_discover, 37