Package ‘MOFA2’

March 6, 2024

Type Package
Title Multi-Omics Factor Analysis v2
Version 1.12.1
Maintainer Ricard Argelaguet <ricard.argelaguet@gmail.com>
Date 2023-01-12
License file LICENSE

Description The MOFA2 package contains a collection of tools for training and analysing multi-omic factor analysis (MOFA). MOFA is a probabilistic factor model that aims to identify principal axes of variation from data sets that can comprise multiple omic layers and/or groups of samples. Additional time or space information on the samples can be incorporated using the MEFISTO framework, which is part of MOFA2. Downstream analysis functions to inspect molecular features underlying each factor, visualisation, imputation etc are available.

Encoding UTF-8
Depends R (>= 4.0)
Imports rhdf5, dplyr, tidyr, reshape2, pheatmap, ggplot2, methods, RColorBrewer, cowplot, ggrepel, reticulate, HDF5Array, grDevices, stats, magrittr, forcats, utils, corrplot, DelayedArray, Rtsne, uwot, basilisk, stringi
Suggests knitr, testthat, Seurat, SeuratObject, ggrep, foreach, psych, MultiAssayExperiment, SummarizedExperiment, SingleCellExperiment, ggastrix, mvtnorm, GGally, rmarkdown, data.table, tidyverse, BiocStyle, Matrix, markdown

biocViews DimensionReduction, Bayesian, Visualization

BugReports https://github.com/bioFAM/MOFA2

VignetteBuilder knitr
LazyData false
StagedInstall no
NeedsCompilation yes
RoxygenNote 7.2.3
SystemRequirements Python (>=3), numpy, pandas, h5py, scipy, argparse, sklearn, mofapy2

git_url https://git.bioconductor.org/packages/MOFA2

git_branch RELEASE_3_18

git_last_commit 6fdef2f

git_last_commit_date 2024-01-04

Repository Bioconductor 3.18

Date/Publication 2024-03-05

Author Ricard Argelaguet [aut, cre] (<https://orcid.org/0000-0003-3199-3722>), Damien Arnol [aut] (<https://orcid.org/0000-0003-2462-534X>), Danila Bredikhin [aut] (<https://orcid.org/0000-0001-8089-6983>), Britta Velten [aut] (<https://orcid.org/0000-0002-8397-3515>)

R topics documented:

add_mofa_factors_to_seurat 4
calculate_contribution_scores 5
calculate_variance_explained 6
calculate_variance_explained_per_sample 7
cluster_samples ... 8
compare_elbo ... 9
compare_factors .. 10
correlate_factors_with_covariates 10
covariates_names ... 12
create_mofa .. 12
create_mofa_from_df .. 13
create_mofa_from_matrix 14
create_mofa_from_MultiAssayExperiment 15
create_mofa_from_Seurat 15
create_mofa_from_SingleCellExperiment 16
factors_names .. 17
features_metadata .. 18
features_names ... 18
get_covariates ... 19
get_data ... 20
get_default_data_options 22
get_default_mefisto_options 23
get_default_model_options 24
get_default_stochastic_options 26
get_default_training_options 27
get_dimensions .. 28
get_elbo ... 29
get_expectations .. 30
get_factors .. 31
get_group_kernel .. 32
get_imputed_data ... 32
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_interpolated_factors</td>
<td>33</td>
</tr>
<tr>
<td>get_lengthscale</td>
<td>34</td>
</tr>
<tr>
<td>get_scales</td>
<td>35</td>
</tr>
<tr>
<td>get_variance_explained</td>
<td>35</td>
</tr>
<tr>
<td>get_weights</td>
<td>36</td>
</tr>
<tr>
<td>groups_names</td>
<td>37</td>
</tr>
<tr>
<td>impute</td>
<td>38</td>
</tr>
<tr>
<td>interpolate_factors</td>
<td>39</td>
</tr>
<tr>
<td>load_model</td>
<td>40</td>
</tr>
<tr>
<td>make_example_data</td>
<td>41</td>
</tr>
<tr>
<td>MOFA</td>
<td>43</td>
</tr>
<tr>
<td>plot_alignment</td>
<td>44</td>
</tr>
<tr>
<td>plot_ascii_data</td>
<td>44</td>
</tr>
<tr>
<td>plot_data_heatmap</td>
<td>45</td>
</tr>
<tr>
<td>plot_data_overview</td>
<td>47</td>
</tr>
<tr>
<td>plot_data_scatter</td>
<td>48</td>
</tr>
<tr>
<td>plot_data_vs_cov</td>
<td>50</td>
</tr>
<tr>
<td>plot_dimred</td>
<td>52</td>
</tr>
<tr>
<td>plot_enrichment</td>
<td>54</td>
</tr>
<tr>
<td>plot_enrichment_detailed</td>
<td>55</td>
</tr>
<tr>
<td>plot_enrichment_heatmap</td>
<td>56</td>
</tr>
<tr>
<td>plot_factor</td>
<td>56</td>
</tr>
<tr>
<td>plot_factors</td>
<td>59</td>
</tr>
<tr>
<td>plot_factors_vs_cov</td>
<td>61</td>
</tr>
<tr>
<td>plot_factor_cor</td>
<td>63</td>
</tr>
<tr>
<td>plot_group_kernel</td>
<td>64</td>
</tr>
<tr>
<td>plot_interpolation_vs_covariate</td>
<td>65</td>
</tr>
<tr>
<td>plot_sharedness</td>
<td>66</td>
</tr>
<tr>
<td>plot_smoothness</td>
<td>66</td>
</tr>
<tr>
<td>plot_top_weights</td>
<td>67</td>
</tr>
<tr>
<td>plot_variance_explained</td>
<td>68</td>
</tr>
<tr>
<td>plot_variance_explained_by_c covariates</td>
<td>70</td>
</tr>
<tr>
<td>plot_variance_explained_per_feature</td>
<td>71</td>
</tr>
<tr>
<td>plot_weights</td>
<td>72</td>
</tr>
<tr>
<td>plot_weights_heatmap</td>
<td>74</td>
</tr>
<tr>
<td>plot_weights_scatter</td>
<td>75</td>
</tr>
<tr>
<td>predict</td>
<td>77</td>
</tr>
<tr>
<td>prepare_mofa</td>
<td>78</td>
</tr>
<tr>
<td>run_enrichment</td>
<td>79</td>
</tr>
<tr>
<td>run_mofa</td>
<td>81</td>
</tr>
<tr>
<td>run_tsne</td>
<td>82</td>
</tr>
<tr>
<td>run_umap</td>
<td>83</td>
</tr>
<tr>
<td>samples_metadata</td>
<td>84</td>
</tr>
<tr>
<td>samples_names</td>
<td>85</td>
</tr>
<tr>
<td>select_model</td>
<td>86</td>
</tr>
<tr>
<td>set_c covariates</td>
<td>86</td>
</tr>
<tr>
<td>subset_factors</td>
<td>87</td>
</tr>
<tr>
<td>subset_features</td>
<td>88</td>
</tr>
</tbody>
</table>
add_mofa_factors_to_seurat

Function to add the MOFA representation onto a Seurat object

Description
Function to add the MOFA latent representation to a Seurat object

Usage
add_mofa_factors_to_seurat(
 mofa_object,
 seurat_object,
 views = "all",
 factors = "all"
)

Arguments
mofa_object a trained MOFA object.
seurat_object a Seurat object
views character vector with the view names, or numeric vector with view indexes. Default is 'all'
factors character vector with the factor names, or numeric vector with the factor indexes. Default is 'all'

Details
This function calls the CreateDimReducObject function from Seurat to store the MOFA factors.

Value
Returns a Seurat object with the 'reductions' slot filled with the MOFA factors. Also adds, if calculated, the UMAP/TSNE obtained with the MOFA factors.

Examples
Generate a simulated data set
MOFAexample <- make_example_data()
calculate_contribution_scores

Calculate contribution scores for each view in each sample

Description

This function calculates, *for each sample* how much each view contributes to its location in the latent manifold, what we call **contribution scores**

Usage

```
calculate_contribution_scores(
    object, 
    views = "all", 
    groups = "all", 
    factors = "all", 
    scale = TRUE
)
```

Arguments

- **object** : a trained MOFA object.
- **views** : character vector with the view names, or numeric vector with view indexes. Default is 'all'
- **groups** : character vector with the group names, or numeric vector with group indexes. Default is 'all'
- **factors** : character vector with the factor names, or numeric vector with the factor indexes. Default is 'all'
- **scale** : logical indicating whether to scale the sample-wise variance explained values by the total amount of variance explained per view. This effectively normalises each view by its total variance explained. It is important when different amounts of variance is explained for each view (check with `plot_variance_explained(..., plot_total=TRUE)`)

Details

Contribution scores are calculated in three steps:

- Step 1: calculate variance explained for each cell i and each view m (R_{im}), using all factors
- Step 2 (optional): scale values by the total variance explained for each view
- Step 3: calculate contribution score (C_{im}) for cell i and view m as:

$$C_{im} = \frac{R_{2im}}{\sum_m R_{2im}}$$

Note that contribution scores can be calculated using any number of data modalities, but it is easier to interpret when you specify two.

Please note that this functionality is still experimental, contact the authors if you have questions.
Value

adds the contribution scores to the metadata slot (samples_metadata(MOFAobject)) and to the MOFAobject@cache slot

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
model <- calculate_contribution_scores(model)
```

calculate_variance_explained

Calculate variance explained by the model

Description

This function takes a trained MOFA model as input and calculates the proportion of variance explained (i.e. the coefficient of determinations (R^2)) by the MOFA factors across the different views.

Usage

```r
calculate_variance_explained(
  object,
  views = "all",
  groups = "all",
  factors = "all"
)
```

Arguments

- `object` a MOFA object.
- `views` character vector with the view names, or numeric vector with view indexes. Default is 'all'
- `groups` character vector with the group names, or numeric vector with group indexes. Default is 'all'
- `factors` character vector with the factor names, or numeric vector with the factor indexes. Default is 'all'

Value

a list with matrices with the amount of variation explained per factor and view.
Using an existing trained model on simulated data
```
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
```

Calculate variance explained (R2)
```
r2 <- calculate_variance_explained(model)
```

Plot variance explained values (view as x-axis, and factor as y-axis)
```
plot_variance_explained(model, x="view", y="factor")
```

Plot variance explained values (view as x-axis, and group as y-axis)
```
plot_variance_explained(model, x="view", y="group")
```

Plot variance explained values for factors 1 to 3
```
plot_variance_explained(model, x="view", y="group", factors=1:3)
```

Scale R2 values
```
plot_variance_explained(model, max_r2 = 0.25)
```

calculate_variance_explained_per_sample

Calculate variance explained by the MOFA factors for each sample

Description

This function takes a trained MOFA model as input and calculates, **for each sample** the proportion of variance explained (i.e. the coefficient of determinations (R^2)) by the MOFA factors across the different views.

Usage

```
calculate_variance_explained_per_sample(
  object,
  views = "all",
  groups = "all",
  factors = "all"
)
```

Arguments

- **object**: a MOFA object.
- **views**: character vector with the view names, or numeric vector with view indexes. Default is 'all'
- **groups**: character vector with the group names, or numeric vector with group indexes. Default is 'all'
- **factors**: character vector with the factor names, or numeric vector with the factor indexes. Default is 'all'
cluster_samples

Value

a list with matrices with the amount of variation explained per sample and view.

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Calculate variance explained (R2)
r2 <- calculate_variance_explained_per_sample(model)

calculate_variance_explained_per_sample

Description

MOFA factors are continuous in nature but they can be used to predict discrete clusters of samples. The clustering can be performed in a single factor, which is equivalent to setting a manual threshold. More interestingly, it can be done using multiple factors, where multiple sources of variation are aggregated.

Importantly, this type of clustering is not weighted and does not take into account the different importance of the latent factors.

Usage

cluster_samples(object, k, factors = "all", ...)

data

Arguments

object a trained MOFA object.
k number of clusters (integer).
factors character vector with the factor name(s), or numeric vector with the index of the factor(s) to use. Default is ‘all’
... extra arguments passed to kmeans

Details

In some cases, due to model technicalities, samples can have missing values in the latent factor space. In such a case, these samples are currently ignored in the clustering procedure.

Value

output from kmeans function
compare_elbo

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Cluster samples in the factor space using factors 1 to 3 and K=2 clusters
clusters <- cluster_samples(model, k=2, factors=1:3)

compare_elbo

Compare different trained MOFA objects in terms of the final value of the ELBO statistics and number of inferred factors

Description

Different objects of MOFA are compared in terms of the final value of the ELBO statistics. For model selection the model with the highest ELBO value is selected.

Usage

```r
compare_elbo(models, log = FALSE, return_data = FALSE)
```

Arguments

- **models**
 - a list containing MOFA objects.
- **log**
 - logical indicating whether to plot the log of the ELBO.
- **return_data**
 - logical indicating whether to return a data.frame with the ELBO values per model

Value

A `ggplot` object or the underlying data.frame if `return_data` is TRUE

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model1 <- load_model(file)
model2 <- load_model(file)

Compare ELBO between models
Not run: compare_elbo(list(model1,model2))
compare_factors
Plot the correlation of factors between different models

Description

Different **MOFA** objects are compared in terms of correlation between their factors.

Usage

```r
compare_factors(models, ...)
```

Arguments

- `models` a list with **MOFA** objects.
- `...` extra arguments passed to `pheatmap`

Details

If assessing model robustness across trials, the output should look like a block diagonal matrix, suggesting that all factors are robustly detected in all model instances.

Value

Plots a heatmap of the Pearson correlation between latent factors across all input models.

Examples

```r
# Using an existing trained model on simulated data
defile <- system.file("extdata", "model.hdf5", package = "MOFA2")
model1 <- load_model(file)
model2 <- load_model(file)

# Compare factors between models
compare_factors(list(model1, model2))
```

correlate_factors_with_covariates
Plot correlation of factors with external covariates

Description

Function to correlate factor values with external covariates.
correlate_factors_with_covariates

Usage

correlate_factors_with_covariates(
 object,
 covariates,
 factors = "all",
 groups = "all",
 abs = FALSE,
 plot = c("log_pval", "r"),
 alpha = 0.05,
 return_data = FALSE,
 transpose = FALSE,
 ...
)

Arguments

object a trained MOFA object.
covariates • data.frame: a data.frame where the samples are stored in the rows and the covariates are stored in the columns. Use row names for sample names and column names for covariate names. Columns values must be numeric.
• character vector: character vector with names of columns that are present in the sample metadata (samples_metadata(model))
factors character vector with the factor name(s), or numeric vector with the index of the factor(s) to use. Default is 'all'.
groups character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.
abs logical indicating whether to take the absolute value of the correlation coefficient (default is TRUE).
plot character indicating whether to plot Pearson correlation coefficients (plot="r") or log10 adjusted p-values (plot="log_pval").
alpha p-value threshold
return_data logical indicating whether to return the correlation results instead of plotting
transpose logical indicating whether to transpose the plot
... extra arguments passed to corrplot (if plot="r") or pheatmap (if plot="log_pval").

Value

A corrplot (if plot="r") or pheatmap (if plot="log_pval") or the underlying data.frame if return_data is TRUE
covariates_names

Description

covariates_names: set and retrieve covariate names

Usage

covariates_names(object)
covariates_names(object) <- value

S4 method for signature 'MOFA'
covariates_names(object)

S4 replacement method for signature 'MOFA,vector'
covariates_names(object) <- value

Arguments

object a MOFA object.
value a character vector of covariate names

Value

character vector with the covariate names

Examples

Using an existing trained model on simulated dataile <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")model <- load_model(file)
covariates_names(model)

create_mofa

Description

Method to create a MOFA object. Depending on the input data format, this method calls one of the following functions:

- long data.frame: create_mofa_from_df
- List of matrices: create_mofa_from_matrix
create_mofa_from_df

- MultiAssayExperiment: create_mofa_from_MultiAssayExperiment
- Seurat: create_mofa_from_Seurat
- SingleCellExperiment: create_mofa_from_SingleCellExperiment

Please read the documentation of the corresponding function for more details on your specific data format.

Usage

create_mofa(data, groups = NULL, extract_metadata = TRUE, ...)

Arguments

data one of the formats above

groups group information, only relevant when using the multi-group framework.

extract_metadata logical indicating whether to incorporate the sample metadata from the input object into the MOFA object (not relevant when the input is a list of matrices). Default is TRUE.

... further arguments that can be passed to the function depending on the inout data format. See the documentation of above functions for details.

Value

Returns an untrained MOFA object

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata", "test_data.RData", package = "MOFA2")

Load data (in long data.frame format)
load(file)
MOFAmodel <- create_mofa(dt)
create_mofa_from_matrix

Arguments

df
- `data.frame` object with at most 5 columns: `sample`, `group`, `feature`, `view`, `value`. The `group` column (optional) indicates the group of each sample when using the multi-group framework. The `view` column (optional) indicates the view of each feature when having multi-view data.

extract_metadata
- logical indicating whether to incorporate the extra columns as sample metadata into the MOFA object

Value

Returns an untrained MOFA object

Examples

```r
# Using an existing simulated data with two groups and two views
file <- system.file("extdata", "test_data.RData", package = "MOFA2")

# Load data (in long data.frame format)
load(file)
MOFAmodel <- create_mofa_from_df(dt)
```

create_mofa_from_matrix

create a MOFA object from a list of matrices

Description

Method to create a MOFA object from a list of matrices

Usage

```r
create_mofa_from_matrix(data, groups = NULL)
```

Arguments

data
- A list of matrices, where each entry corresponds to one view. Samples are stored in columns and features in rows. Missing values must be filled in prior to creating the MOFA object (see for example the CLL tutorial)

groups
- A character vector with group assignment for every sample. Default is `NULL`, no group structure.

Value

Returns an untrained MOFA object
Examples

```r
m <- make_example_data()
create_mofa_from_matrix(m$data)
```

Description

Method to create a **MOFA** object from a MultiAssayExperiment object

Usage

```r
create_mofa_from_MultiAssayExperiment(
  mae,
  groups = NULL,
  extract_metadata = FALSE
)
```

Arguments

- **mae**: a MultiAssayExperiment object
- **groups**: a string specifying column name of the colData to use it as a group variable. Alternatively, a character vector with group assignment for every sample. Default is NULL (no group structure).
- **extract_metadata**: logical indicating whether to incorporate the metadata from the MultiAssayExperiment object into the MOFA object

Value

Returns an untrained **MOFA** object

Description

Method to create a **MOFA** object from a Seurat object

```r
create_mofa_from_Seurat
```

```r
create_mofa_from_MultiAssayExperiment
```

```r
create_mofa_from_Seurat
```
create_mofa_from_Seurat

Usage

create_mofa_from_Seurat(
 seurat,
 groups = NULL,
 assays = NULL,
 slot = "scale.data",
 features = NULL,
 extract_metadata = FALSE
)

Arguments

seurat Seurat object

groups a string specifying column name of the samples metadata to use it as a group variable. Alternatively, a character vector with group assignment for every sample. Default is NULL (no group structure).

assays assays to use, default is NULL, it fetched all assays available

slot assay slot to be used (default is scale.data).

features a list with vectors, which are used to subset features, with names corresponding to assays; a vector can be provided when only one assay is used

extract_metadata logical indicating whether to incorporate the metadata from the Seurat object into the MOFA object

Value

Returns an untrained MOFA object

create_mofa_from_SingleCellExperiment

create a MOFA object from a SingleCellExperiment object

Description

Method to create a MOFA object from a SingleCellExperiment object

Usage

create_mofa_from_SingleCellExperiment(
 sce,
 groups = NULL,
 assay = "logcounts",
 extract_metadata = FALSE
)
Arguments

- **sce**: SingleCellExperiment object
- **groups**: a string specifying column name of the colData to use it as a group variable. Alternatively, a character vector with group assignment for every sample. Default is NULL (no group structure).
- **assay**: assay to use, default is logcounts.
- **extract_metadata**: logical indicating whether to incorporate the metadata from the SingleCellExperiment object into the MOFA object

Value

Returns an untrained MOFA object

Description

factors_names: set and retrieve factor names

Usage

factors_names(object)

factors_names(object) <- value

S4 method for signature 'MOFA'
factors_names(object)

S4 replacement method for signature 'MOFA,vector'
factors_names(object) <- value

Arguments

- **object**: a MOFA object.
- **value**: a character vector of factor names

Value

character vector with the factor names

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
factors_names(model)
Features metadata

Description

features_metadata: set and retrieve feature metadata

Usage

features_metadata(object)

features_metadata(object) <- value

S4 method for signature 'MOFA'
features_metadata(object)

S4 replacement method for signature 'MOFA,data.frame'
features_metadata(object) <- value

Arguments

object a MOFA object.
value data frame with feature information, it at least must contain the columns feature and view

Value

a data frame with sample metadata

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
features_metadata(model)

Features names

Description

features_names: set and retrieve feature names
get_covariates

Usage

features_names(object)

features_names(object) <- value

S4 method for signature 'MOFA'
features_names(object)

S4 replacement method for signature 'MOFA,list'
features_names(object) <- value

Arguments

object a MOFA object.

value list of character vectors with the feature names for every view

Value

list of character vectors with the feature names for each view

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
features_names(model)

generate_variability

Description

Function to extract the covariates from a MOFA object using MEFISTO.

Usage

get_covariates(
 object,
 covariates = "all",
 as.data.frame = FALSE,
 warped = FALSE
)

get_covariates

Get sample covariates
get_data

Arguments

object a MOFA object.
covariates character vector with the covariate name(s), or numeric vector with the covariate index(es).
as.data.frame logical indicating whether to output the result as a long data frame, default is FALSE.
warping logical indicating whether to extract the aligned covariates

Value

a matrix with dimensions (samples,covariates). If as.data.frame is TRUE, a long-formatted data frame with columns (sample,factor,value)

Examples

Using an existing trained model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
covariates <- get_covariates(model)

Description

Fetch the input data

Usage

get_data(
 object,
 views = "all",
 groups = "all",
 features = "all",
 as.data.frame = FALSE,
 add_intercept = TRUE,
 denoise = FALSE,
 na.rm = TRUE
)

Arguments

object a MOFA object.
views character vector with the view name(s), or numeric vector with the view index(es). Default is "all".
get_data

- **groups**: character vector with the group name(s), or numeric vector with the group index(es). Default is "all".
- **features**: a *named* list of character vectors. Example: list("view1"=c("feature_1","feature_2"), "view2"=c("feature_3","feature_4")) Default is "all".
- **as.data.frame**: logical indicating whether to return a long data frame instead of a list of matrices. Default is FALSE.
- **add_intercept**: logical indicating whether to add feature intercepts to the data. Default is TRUE.
- **denoise**: logical indicating whether to return the denoised data (i.e. the model predictions). Default is FALSE.
- **na.rm**: remove NAs from the data.frame (only if as.data.frame is TRUE).

Details

By default this function returns a list where each element is a data matrix with dimensionality (D,N) where D is the number of features and N is the number of samples. Alternatively, if as.data.frame is TRUE, the function returns a long-formatted data frame with columns (view,feature,sample,value). Missing values are not included in the the long data.frame format by default. To include them use the argument na.rm=FALSE.

Value

A list of data matrices with dimensionality (D,N) or a data.frame (if as.data.frame is TRUE)

Examples

Using an existing trained model on simulated data
code <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(code)

Fetch data
data <- get_data(model)

Fetch a specific view
data <- get_data(model, views = "view_0")

Fetch data in data.frame format instead of matrix format
data <- get_data(model, as.data.frame = TRUE)

Fetch centered data (do not add the feature intercepts)
data <- get_data(model, as.data.frame = FALSE)

Fetch denoised data (do not add the feature intercepts)
data <- get_data(model, denoise = TRUE)
get_default_data_options

Get default data options

Description

Function to obtain the default data options.

Usage

get_default_data_options(object)

Arguments

object an untrained MOFA object

Details

This function provides a default set of data options that can be modified and passed to the MOFA object in the prepare_mofa step (see example), i.e. after creating a MOFA object (using create_mofa) and before starting the training (using run_mofa) The data options are the following:

- **scale_views**: logical indicating whether to scale views to have the same unit variance. As long as the scale differences between the views is not too high, this is not required. Default is FALSE.
- **scale_groups**: logical indicating whether to scale groups to have the same unit variance. As long as the scale differences between the groups is not too high, this is not required. Default is FALSE.
- **use_float32**: logical indicating whether use float32 instead of float64 arrays to increase speed and memory usage. Default is FALSE.

Value

Returns a list with the default data options.

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata", "test_data.RData", package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

Load default data options
get_default_mefisto_options <- get_default_data_options(MOFAmodel)

Edit some of the data options
data_opts$scale_views <- TRUE

Prepare the MOFA object
MOFAmodel <- prepare_mofa(MOFAmodel, data_options = data_opts)

get_default_mefisto_options

Get default options for MEFISTO covariates

Description

Function to obtain the default options for the usage of MEFISTO covariates with MEFISTO

Usage

get_default_mefisto_options(object)

Arguments

- `object`: an untrained MOFA object

Details

The options are the following:

- **scale_cov**: logical: Scale covariates?
- **start_opt**: integer: First iteration to start the optimisation of GP hyperparameters
- **n_grid**: integer: Number of points for the grid search in the optimisation of GP hyperparameters
- **opt_freq**: integer: Frequency of optimisation of GP hyperparameters
- **sparseGP**: logical: Use sparse GPs to speed up the optimisation of the GP parameters?
- **frac_inducing**: numeric between 0 and 1: Fraction of samples to use as inducing points (only relevant if sparseGP is TRUE)
- **warping**: logical: Activate warping functionality to align covariates between groups (requires a multi-group design)
- **warping_freq**: numeric: frequency of the warping (only relevant if warping is TRUE)
- **warping_ref**: A character specifying the reference group for warping (only relevant if warping is TRUE)
- **warping_open_begin**: logical: Warping: Allow for open beginning? (only relevant warping is TRUE)
- **warping_open_end**: logical: Warping: Allow for open end? (only relevant warping is TRUE)
- **warping_groups**: Assignment of groups to classes used for alignment (advanced option). Needs to be a vector of length number of samples, e.g. a column of samples_metadata, which needs to have the same value within each group. By default groups are used specified in 'create_mofa'.

- **model_groups**: logical: Model covariance structure across groups (for more than one group, otherwise FALSE)? If FALSE, we assume the same patterns in all groups.

- **new_values**: Values for which to predict the factor values (for interpolation / extrapolation). This should be numeric matrix in the same format with covariate(s) in rows and new values in columns. Default is NULL, leading to no interpolation.

Value

Returns a list with default options for the MEFISTO covariate(s) functionality.

Examples

```r
# generate example data
dd <- make_example_data(sample_cov = seq(0,1,length.out = 200),
n_samples = 200,
n_factors = 4, n_features = 200, n_views = 4, lscales = c(0.5, 0.2, 0, 0))
# input data
data <- dd$data
# covariate matrix with samples in columns
time <- dd$sample_cov
rownames(time) <- "time"

# create mofa and set covariates
sm <- create_mofa(data = dd$data)
sm <- set_covariates(sm, covariates = time)

MEFISTO_opt <- get_default_mefisto_options(sm)
```

get_default_model_options

Get default model options

Description

Function to obtain the default model options.

Usage

`get_default_model_options(object)`

Arguments

- **object**: an untrained **MOFA** object
get_default_model_options

Details

This function provides a default set of model options that can be modified and passed to the MOFA object in the prepare_mofa step (see example), i.e. after creating a MOFA object (using create_mofa) and before starting the training (using run_mofa) The model options are the following:

- **likelihoods**: character vector with data likelihoods per view: 'gaussian' for continuous data (Default for all views), 'bernoulli' for binary data and 'poisson' for count data.
- **num_factors**: numeric value indicating the (initial) number of factors. Default is 15.
- **spikeslab_factors**: logical indicating whether to use spike and slab sparsity on the factors (Default is FALSE)
- **spikeslab_weights**: logical indicating whether to use spike and slab sparsity on the weights (Default is TRUE)
- **ard_factors**: logical indicating whether to use ARD sparsity on the factors (Default is TRUE only if using multiple groups)
- **ard_weights**: logical indicating whether to use ARD sparsity on the weights (Default is TRUE)

Value

Returns a list with the default model options.

Examples

Using an existing simulated data with two groups and two views file <- system.file("extdata", "test_data.RData", package = "MOFA2")

Load data dt (in data.frame format) load(file)

Create the MOFA object MOFAmodel <- create_mofa(dt)

Load default model options model_opts <- get_default_model_options(MOFAmodel)

Edit some of the model options model_opts$num_factors <- 10 model_opts$spikeslab_weights <- FALSE

Prepare the MOFA object MOFAmodel <- prepare_mofa(MOFAmodel, model_options = model_opts)
get_default_stochastic_options

Get default stochastic options

Description

Function to obtain the default options for stochastic variational inference.

Usage

get_default_stochastic_options(object)

Arguments

object an untrained MOFA

Details

This function provides a default set of stochastic inference options that can be modified and passed to the MOFA object in the prepare_mofa step, i.e. after creating a MOFA object (using create_mofa) and before starting the training (using run_mofa) These options are only relevant when activating stochastic inference in training_options (see example). The stochastic inference options are the following:

- **batch_size**: numeric value indicating the batch size (as a fraction). Default is 0.5 (half of the data set).
- **learning_rate**: numeric value indicating the learning rate. Default is 1.0
- **forgetting_rate**: numeric indicating the forgetting rate. Default is 0.5
- **start_stochastic**: integer indicating the first iteration to start stochastic inference Default is 1

Value

Returns a list with default options

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata", "test_data.RData", package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

activate stochastic inference in training options
train_opts <- get_default_training_options(MOFAmodel)
get_default_training_options

train_opts$stochastic <- TRUE

Load default stochastic options
stochastic_opts <- get_default_stochastic_options(MOFAmodel)

Edit some of the stochastic options
stochastic_opts$learning_rate <- 0.75
stochastic_opts$batch_size <- 0.25

Prepare the MOFA object
MOFAmodel <- prepare_mofa(MOFAmodel,
 training_options = train_opts,
 stochastic_options = stochastic_opts
)

get_default_training_options

Get default training options

Description

Function to obtain the default training options.

Usage

get_default_training_options(object)

Arguments

object an untrained MOFA

Details

This function provides a default set of training options that can be modified and passed to the MOFA object in the prepare_mofa step (see example), i.e. after creating a MOFA object (using create_mofa) and before starting the training (using run_mofa) The training options are the following:

- **maxiter**: numeric value indicating the maximum number of iterations. Default is 1000. Convergence is assessed using the ELBO statistic.
- **drop_factor_threshold**: numeric indicating the threshold on fraction of variance explained to consider a factor inactive and drop it from the model. For example, a value of 0.01 implies that factors explaining less than 1% of variance (in each view) will be dropped. Default is -1 (no dropping of factors)
- **convergence_mode**: character indicating the convergence criteria, either "fast", "medium" or "slow", corresponding to 0.0005%, 0.00005% or 0.000005% deltaELBO change.
get_dimensions

Description

Extract dimensionalities from the model.

Usage

get_dimensions(object)
get_elbo

Arguments

object a MOFA object.

Details

K indicates the number of factors, M indicates the number of views, D indicates the number of features (per view), N indicates the number of samples (per group) and C indicates the number of covariates.

Value

list containing the dimensionalities of the model

Examples

Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
dims <- get_dimensions(model)

give <- get_elbo(model)

Description

Extract the value of the ELBO statistics after model training. This can be useful for model selection.

Usage

give(object)

Arguments

object a MOFA object.

Details

This can be useful for model selection.

Value

Value of the ELBO

Examples

Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
elbo <- get_elbo(model)
get_expectations Get expectations

Description

Function to extract the expectations from the (variational) posterior distributions of a trained MOFA object.

Usage

```r
get_expectations(object, variable, as.data.frame = FALSE)
```

Arguments

- `object`: a trained MOFA object.
- `variable`: variable name: 'Z' for factors and 'W' for weights.
- `as.data.frame`: logical indicating whether to output the result as a long data frame, default is FALSE.

Details

Technical note: MOFA is a Bayesian model where each variable has a prior distribution and a posterior distribution. In particular, to achieve scalability we used the variational inference framework, thus true posterior distributions are replaced by approximated variational distributions. This function extracts the expectations of the variational distributions, which can be used as final point estimates to analyse the results of the model.

The priors and variational distributions of each variable are extensively described in the supplementary methods of the original paper.

Value

The output varies depending on the variable of interest:

- "Z" a matrix with dimensions (samples,factors). If as.data.frame is TRUE, a long-formatted data frame with columns (sample,factor,value)
- "W" a list of length (views) where each element is a matrix with dimensions (features,factors). If as.data.frame is TRUE, a long-formatted data frame with columns (view,feature,factor,value)

Examples

```r
# Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
factors <- get_expectations(model, "Z")
weights <- get_expectations(model, "W")
```
get_factors

Get factors

Description

Extract the latent factors from the model.

Usage

get_factors(
 object,
 groups = "all",
 factors = "all",
 scale = FALSE,
 as.data.frame = FALSE
)

Arguments

object a trained MOFA object.
groups character vector with the group name(s), or numeric vector with the group index(es). Default is "all".
factors character vector with the factor name(s), or numeric vector with the factor index(es). Default is "all".
scale logical indicating whether to scale factor values.
as.data.frame logical indicating whether to return a long data frame instead of a matrix. Default is FALSE.

Value

By default it returns the latent factor matrix of dimensionality (N,K), where N is number of samples and K is number of factors.
Alternatively, if as.data.frame is TRUE, returns a long-formatted data frame with columns (sample,factor,value).

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Fetch factors in matrix format (a list, one matrix per group)
factors <- get_factors(model)

Concatenate groups
factors <- do.call("rbind",factors)
get_factors <- get_factors(model, as.data.frame = TRUE)

get_group_kernel

Get group covariance matrix

Description

Extract the inferred group-group covariance matrix per factor

Usage

get_group_kernel(object)

Arguments

object a MOFA object.

Details

This can be used only if covariates are passed to the MOFA object upon creation and GP_factors is set to True.

Value

A list of group-group correlation matrices per factor

get_imputed_data

Get imputed data

Description

Function to get the imputed data. It requires the previous use of the impute method.

Usage

generate_imputed_data(
 object,
 views = "all",
 groups = "all",
 features = "all",
 as.data.frame = FALSE
)
get_interpolated_factors

Get interpolated factor values

Description

Extract the interpolated factor values

Usage

```
get_interpolated_factors(object, as.data.frame = FALSE, only_mean = FALSE)
```

Arguments

- **object**: a MOFA object
- **as.data.frame**: logical indicating whether to return data as a data.frame
- **only_mean**: logical indicating whether include only mean or also uncertainties

Details

Data is imputed from the generative model of MOFA.

Value

A list containing the imputed valued or a data.frame if as.data.frame is TRUE

Examples

```r
# Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
model <- impute(model)
imputed <- get_imputed_data(model)
```
get_lengthscales

Description

Extract the inferred lengthscale for each factor after model training.

Usage

get_lengthscales(object)

Arguments

object a MOFA object.

Details

This can be used only if covariates are passed to the MOFA object upon creation and GP_factors is set to True.

Value

A numeric vector containing the lengthscale for each factor.

Examples

Using an existing trained model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
ls <- get_lengthscales(model)
get_scales

Get scales

Description

Extract the inferred scale for each factor after model training.

Usage

```r
get_scales(object)
```

Arguments

- `object`: a MOFA object.

Details

This can be used only if covariates are passed to the MOFA object upon creation and GP_factors is set to True.

Value

A numeric vector containing the scale for each factor.

Examples

```r
# Using an existing trained model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
s <- get_scales(model)
```

get_variance_explained

Get variance explained values

Description

Extract the latent factors from the model.

Usage

```r
get_variance_explained(
  object,
  groups = "all",
  views = "all",
  factors = "all",
  as.data.frame = FALSE
)
```
get_weights

Arguments

object a trained MOFA object.
groups character vector with the group name(s), or numeric vector with the group index(es). Default is "all".
views character vector with the view name(s), or numeric vector with the view index(es). Default is "all".
factors character vector with the factor name(s), or numeric vector with the factor index(es). Default is "all".
as.data.frame logical indicating whether to return a long data frame instead of a matrix. Default is FALSE.

Value

A list of data matrices with variance explained per group or a data.frame (if as.data.frame is TRUE)

Examples

Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Fetch variance explained values (in matrix format)
r2 <- get_variance_explained(model)

Fetch variance explained values (in data.frame format)
r2 <- get_variance_explained(model, as.data.frame = TRUE)

generate_weights

Get weights

Description

Extract the weights from the model.

Usage

get_weights(
 object,
 views = "all",
 factors = "all",
 abs = FALSE,
 scale = FALSE,
 as.data.frame = FALSE
)
groups_names

Arguments

object a trained MOFA object.
views character vector with the view name(s), or numeric vector with the view index(es). Default is "all".
factors character vector with the factor name(s) or numeric vector with the factor index(es). Default is "all".
abs logical indicating whether to take the absolute value of the weights.
scale logical indicating whether to scale all weights from -1 to 1 (or from 0 to 1 if abs=TRUE).
as.data.frame logical indicating whether to return a long data frame instead of a list of matrices. Default is FALSE.

Value

By default it returns a list where each element is a loading matrix with dimensionality (D,K), where D is the number of features and K is the number of factors.
Alternatively, if as.data.frame is TRUE, returns a long-formatted data frame with columns (view, feature, factor, value).

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Fetch weights in matrix format (a list, one matrix per view)
weights <- get_weights(model)

Fetch weights for factor 1 and 2 and view 1
weights <- get_weights(model, views = 1, factors = c(1,2))

Fetch weights in data.frame format
weights <- get_weights(model, as.data.frame = TRUE)

groups_names

groups_names: set and retrieve group names

Description

groups_names: set and retrieve group names
Usage

```r
groups_names(object)

groups_names(object) <- value
```

S4 method for signature 'MOFA'

```r
groups_names(object)
```

S4 replacement method for signature 'MOFA,character'

```r
groups_names(object) <- value
```

Arguments

- `object` a `MOFA` object.
- `value` character vector with the names for each group

Value

character vector with the names for each sample group

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
groups_names(model)
groups_names(model) <- c("my_group")
```

impute

Impute missing values from a fitted MOFA

Description

This function uses the latent factors and the loadings to impute missing values.

Usage

```r
impute(
  object,
  views = "all",
  groups = "all",
  factors = "all",
  add_intercept = TRUE
)
```
Arguments

- **object**: a MOFA object.
- **views**: character vector with the view name(s), or numeric vector with view index(es).
- **groups**: character vector with the group name(s), or numeric vector with group index(es).
- **factors**: character vector with the factor names, or numeric vector with the factor index(es).
 - **response**: gives mean for gaussian and poisson and probabilities for bernoulli.
 - **link**: gives the linear predictions.
 - **inRange**: rounds the fitted values from "terms" for integer-valued distributions to the next integer (default).
- **add_intercept**: add feature intercepts to the imputation (default is TRUE).

Details

MOFA generates a denoised and condensed low-dimensional representation of the data that captures the main sources of heterogeneity of the data. This representation can be used to reconstruct the data, simply using the equation $Y = WX$. For more details read the supplementary methods of the manuscript.

Note that with **impute** you can only generate the point estimates (the means of the posterior distributions). If you want to add uncertainty estimates (the variance) you need to set **impute=TRUE** in the training options. See **get_default_training_options**.

Value

This method fills the imputed_data slot by replacing the missing values in the input data with the model predictions.

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Impute missing values in all data modalities
imputed_data <- impute(model, views = "all")

# Impute missing values in all data modalities using factors 1:3
imputed_data <- impute(model, views = "all", factors = 1:3)
```

interpolate_factors

Interpolate factors in MEFISTO based on new covariate values

Description

Function to interpolate factors in MEFISTO based on new covariate values.
Usage

interpolate_factors(object, new_values)

Arguments

object a MOFA object trained with MEFISTO options and a covariate
new_values a matrix containing the new covariate values to inter/extrapolate to. Should be in the same format as the covariated used for training.

Details

This function requires the functional MEFISTO framework to be used in training. Use set_covariates and specify mefisto_options when preparing the training using prepare_mofa. Currently, only the mean of the interpolation is provided from R.

Value

Returns the MOFA with interpolated factor values filled in the corresponding slot (interpolatedZ)

Examples

Using an existing trained model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
model <- interpolate_factors(model, new_values = seq(0,1.1,0.01))

load_model Load a trained MOFA

Description

Method to load a trained MOFA
The training of mofa is done using a Python framework, and the model output is saved as an .hdf5 file, which has to be loaded in the R package.

Usage

load_model(
 file,
 sort_factors = TRUE,
 on_disk = FALSE,
 load_data = TRUE,
 remove_outliers = FALSE,
 remove_inactive_factors = TRUE,
 verbose = FALSE,
 load_interpol_Z = FALSE
)
make_example_data

Arguments

- **file**: an hdf5 file saved by the mofa Python framework
- **sort_factors**: logical indicating whether factors should be sorted by variance explained (default is TRUE)
- **on_disk**: logical indicating whether to work from memory (FALSE) or disk (TRUE). This should be set to TRUE when the training data is so big that cannot fit into memory. On-disk operations are performed using the **HDF5Array** and **DelayedArray** framework.
- **load_data**: logical indicating whether to load the training data (default is TRUE, it can be memory expensive)
- **remove_outliers**: logical indicating whether to mask outlier values.
- **remove_inactive_factors**: logical indicating whether to remove inactive factors from the model.
- **verbose**: logical indicating whether to print verbose output (default is FALSE)
- **load_interpol_Z**: (MEFISTO) logical indicating whether to load predictions for factor values based on latent processed (only relevant for models trained with covariates and Gaussian processes, where prediction was enabled)

Value

a **MOFA** model

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
```

Description

Function to simulate an example multi-view multi-group data set according to the generative model of MOFA2.
Usage

make_example_data(
 n_views = 3,
 n_features = 100,
 n_samples = 50,
 n_groups = 1,
 n_factors = 5,
 likelihood = "gaussian",
 lscales = 1,
 sample_cov = NULL,
 as.data.frame = FALSE
)

Arguments

n_views number of views
n_features number of features in each view
n_samples number of samples in each group
n_groups number of groups
n_factors number of factors
likelihood likelihood for each view, one of "gaussian" (default), "bernoulli", "poisson", or a character vector of length n_views
lscales vector of lengthscales, needs to be of length n_factors (default is 0 - no smooth factors)
sample_cov (only for use with MEFISTO) matrix of sample covariates for one group with covariates in rows and samples in columns or "equidistant" for sequential ordering, default is NULL (no smooth factors)
as.data.frame return data and covariates as long dataframe

Value

Returns a list containing the simulated data and simulation parameters.

Examples

 # Generate a simulated data set
 MOFAexample <- make_example_data()
MOFA

Class to store a mofa model

Description

The MOFA is an S4 class used to store all relevant data to analyse a MOFA model.

Slots

data The input data
intercepts Feature intercepts
samples_metadata Samples metadata
features_metadata Features metadata.
imputed_data The imputed data.
expectations expected values of the factors and the loadings.
dim_red non-linear dimensionality reduction manifolds.
training_stats model training statistics.
data_options Data processing options.
training_options Model training options.
stochastic_options Stochastic variational inference options.
model_options Model options.
mefisto_options Options for the use of MEFISO
dimensions Dimensionalities of the model: M for the number of views, G for the number of groups, N for the number of samples (per group), C for the number of covariates per sample, D for the number of features (per view), K for the number of factors.
on_disk Logical indicating whether data is loaded from disk.
cache Cache.
status Auxiliary variable indicating whether the model has been trained.
covariates optional slot to store sample covariate for training in MEFISTO
covariates_warped optional slot to store warped sample covariate for training in MEFISTO
interpolated_Z optional slot to store interpolated factor values (used only with MEFISTO)
plot_alignment
Plot covariate alignment across groups

Description

Function to plot the alignment learnt by MEFISTO for the covariate values between different groups.

Usage

```r
plot_alignment(object)
```

Arguments

- `object`
 a MOFA object using MEFISTO with warping

Details

This function requires the functional MEFISTO framework to be used in training. Use `set_covariates` and specify `mefisto_options` when preparing the training using `prepare_mofa`.

Value

ggplot object showing the alignment

plot_ascii_data
Visualize the structure of the data in the terminal

Description

A Fancy printing method.

Usage

```r
plot_ascii_data(object, nonzero = FALSE)
```

Arguments

- `object`
 a MOFA object
- `nonzero`
 a logical value specifying whether to calculate the fraction of non-zero values (non-NA values by default)

Details

This function is helpful to get an overview of the structure of the data as a text output.
Description

Function to plot a heatmap of the data for relevant features, typically the ones with high weights.

Usage

```r
plot_data_heatmap(
  object,  
  factor,  
  view = 1,  
  groups = "all", 
  features = 50, 
  annotation_features = NULL, 
  annotation_samples = NULL, 
  transpose = FALSE, 
  imputed = FALSE, 
  denoise = FALSE, 
  max.value = NULL, 
  min.value = NULL, 
  ...
)
```

Arguments

- **object**: a `MOFA` object.
- **factor**: a string with the factor name, or an integer with the index of the factor.
- **view**: a string with the view name, or an integer with the index of the view. Default is the first view.
- **groups**: groups to plot. Default is "all".
- **features**: if an integer (default), the total number of features to plot based on the absolute value of the weights. If a character vector, a set of manually defined features.
plot_data_heatmap

annotation_features
annotation metadata for features (rows). Either a character vector specifying columns in the feature metadata, or a data.frame that will be passed to pheatmap as annotation_col

annotation_samples
annotation metadata for samples (columns). Either a character vector specifying columns in the sample metadata, or a data.frame that will be passed to pheatmap as annotation_row

transpose
logical indicating whether to transpose the heatmap. Default corresponds to features as rows and samples as columns.

imputed
logical indicating whether to plot the imputed data instead of the original data. Default is FALSE.

denoise
logical indicating whether to plot a denoised version of the data reconstructed using the MOFA factors.

max.value
numeric indicating the maximum value to display in the heatmap (i.e. the matrix values will be capped at max.value).

min.value
numeric indicating the minimum value to display in the heatmap (i.e. the matrix values will be capped at min.value). See predict. Default is FALSE.

...
进一步 arguments that can be passed to pheatmap

Details

One of the first steps for the annotation of a given factor is to visualise the corresponding weights, using for example plot_weights or plot_top_weights. However, one might also be interested in visualising the direct relationship between features and factors, rather than looking at "abstract" weights. This function generates a heatmap for selected features, which should reveal the underlying pattern that is captured by the latent factor.

A similar function for doing scatterplots rather than heatmaps is plot_data_scatter.

Value

A pheatmap object

Examples

Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_data_heatmap(model, factor = 1, show_rownames = FALSE, show_colnames = FALSE)
Description

Function to do a tile plot showing the missing value structure of the input data

Usage

plot_data_overview(
 object,
 covariate = 1,
 colors = NULL,
 show_covariate = FALSE,
 show_dimensions = TRUE
)

Arguments

- **object**: a MOFA object.
- **covariate**: (only for MEFISTO) specifies sample covariate to order samples by in the plot. This should be a character or a numeric index giving the name or position of a column present in the covariates slot of the object. Default is the first sample covariate in covariates slot. NULL does not order by covariate.
- **colors**: a vector specifying the colors per view (see example for details).
- **show_covariate**: (only for MEFISTO) boolean specifying whether to include the covariate in the plot.
- **show_dimensions**: logical indicating whether to plot the dimensions of the data (default is TRUE).

Details

This function is helpful to get an overview of the structure of the data. It shows the model dimensionalities (number of samples, groups, views and features) and it indicates which measurements are missing.

Value

A ggplot object

Examples

Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_data_overview(model)
plot_data_scatter Scatterplots of feature values against latent factors

Description
Function to do a scatterplot of features against factor values.

Usage
plot_data_scatter(
 object,
 factor = 1,
 view = 1,
 groups = "all",
 features = 10,
 sign = "all",
 color_by = "group",
 legend = TRUE,
 alpha = 1,
 shape_by = NULL,
 stroke = NULL,
 dot_size = 2.5,
 text_size = NULL,
 add_lm = TRUE,
 lm_per_group = TRUE,
 imputed = FALSE
)

Arguments

object a MOFA object.
factor string with the factor name, or an integer with the index of the factor.
view string with the view name, or an integer with the index of the view. Default is the first view.
groups groups to plot. Default is "all".
features if an integer (default), the total number of features to plot. If a character vector, a set of manually-defined features.
sign can be 'positive', 'negative' or 'all' (default) to show only positive, negative or all weights, respectively.
color_by specifies groups or values (either discrete or continuous) used to color the dots (samples). This can be either:
 • the string "group": dots are coloured with respect to their predefined groups.
 • a character giving the name of a feature that is present in the input data
 • a character giving the same of a column in the sample metadata slot
plot_data_scatter

- a vector of the same length as the number of samples specifying the value for each sample.
- a dataframe with two columns: "sample" and "color"

legend logical indicating whether to add a legend
alpha numeric indicating dot transparency (default is 1).
shape_by specifies groups or values (only discrete) used to shape the dots (samples). This can be either:
 - the string "group": dots are shaped with respect to their predefined groups.
 - a character giving the name of a feature that is present in the input data
 - a character giving the same of a column in the sample metadata slot
 - a vector of the same length as the number of samples specifying the value for each sample.
 - a dataframe with two columns: "sample" and "shape"

stroke numeric indicating the stroke size (the black border around the dots, default is NULL, inferred automatically).
dot_size numeric indicating dot size (default is 5).
text_size numeric indicating text size (default is 5).
add_lm logical indicating whether to add a linear regression line for each plot
lm_per_group logical indicating whether to add a linear regression line separately for each group
imputed logical indicating whether to include imputed measurements

Details

One of the first steps for the annotation of factors is to visualise the weights using plot_weights or plot_top_weights. However, one might also be interested in visualising the direct relationship between features and factors, rather than looking at "abstract" weights.
A similar function for doing heatmaps rather than scatterplots is plot_data_heatmap.

Value

A ggplot object

Examples

Using an existing trained model
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_data_scatter(model)
plot_data_vs_cov
Scatterplots of feature values against sample covariates

Description

Function to do a scatterplot of features against sample covariate values.

Usage

```r
plot_data_vs_cov(
  object,                  # a MOFA object using MEFISTO.
  covariate = 1,           # string with the covariate name or a samples_metadata column, or an integer with the index of the covariate
  warped = TRUE,           # logical indicating whether to show the aligned covariate (default: TRUE), only relevant if warping has been used to align multiple sample groups
  factor = 1,              # string with the factor name, or an integer with the index of the factor to take top features from
  view = 1,                # string with the view name, or an integer with the index of the view. Default is the first view.
  groups = "all",         # groups to plot. Default is "all".
  features = 10,           # if an integer (default), the total number of features to plot (given by highest weights). If a character vector, a set of manually-defined features.
  sign = "all",           #
  color_by = "group",     #
  legend = TRUE,           #
  alpha = 1,               #
  shape_by = NULL,         #
  stroke = NULL,           #
  dot_size = 2.5,          #
  text_size = NULL,        #
  add_lm = FALSE,          #
  lm_per_group = FALSE,    #
  imputed = FALSE,         #
  return_data = FALSE      #
)
```

Arguments

- **object**: a MOFA object using MEFISTO.
- **covariate**: string with the covariate name or a samples_metadata column, or an integer with the index of the covariate.
- **warped**: logical indicating whether to show the aligned covariate (default: TRUE), only relevant if warping has been used to align multiple sample groups.
- **factor**: string with the factor name, or an integer with the index of the factor to take top features from.
- **view**: string with the view name, or an integer with the index of the view. Default is the first view.
- **groups**: groups to plot. Default is "all".
- **features**: if an integer (default), the total number of features to plot (given by highest weights). If a character vector, a set of manually-defined features.
sign can be 'positive', 'negative' or 'all' (default) to show only features with highest positive, negative or all weights, respectively.

color_by specifies groups or values (either discrete or continuous) used to color the dots (samples). This can be either:

- the string "group": dots are coloured with respect to their predefined groups.
- a character giving the name of a feature that is present in the input data
- a character giving the same of a column in the sample metadata slot
- a vector of the same length as the number of samples specifying the value for each sample.
- a dataframe with two columns: "sample" and "color"

legend logical indicating whether to add a legend

alpha numeric indicating dot transparency (default is 1).

shape_by specifies groups or values (only discrete) used to shape the dots (samples). This can be either:

- the string "group": dots are shaped with respect to their predefined groups.
- a character giving the name of a feature that is present in the input data
- a character giving the same of a column in the sample metadata slot
- a vector of the same length as the number of samples specifying the value for each sample.
- a dataframe with two columns: "sample" and "shape"

stroke numeric indicating the stroke size (the black border around the dots, default is NULL, inferred automatically).

dot_size numeric indicating dot size (default is 5).

text_size numeric indicating text size (default is 5).

add_lm logical indicating whether to add a linear regression line for each plot

lm_per_group logical indicating whether to add a linear regression line separately for each group

imputed logical indicating whether to include imputed measurements

return_data logical indicating whether to return a data frame instead of a plot

Details

One of the first steps for the annotation of factors is to visualise the weights using plot_weights or plot_top_weights and inspect the relationship of the factor to the covariate(s) using plot_factors_vs_cov. However, one might also be interested in visualising the direct relationship between features and covariate(s), rather than looking at "abstract" weights and possibly look at the interpolated and extrapolated values by setting imputed to True.

Value

Returns a ggplot2 object or the underlying dataframe if return_data is set to TRUE.
Examples

```r
# Using an existing trained model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_data_vs_cov(model, factor = 3, features = 2)
```

`plot_dimred`
Plot dimensionality reduction based on MOFA factors

Description

Plot dimensionality reduction based on MOFA factors

Usage

```r
plot_dimred(
  object,
  method = c("UMAP", "TSNE"),
  groups = "all",
  show_missing = TRUE,
  color_by = NULL,
  shape_by = NULL,
  color_name = NULL,
  shape_name = NULL,
  label = FALSE,
  dot_size = 1.5,
  stroke = NULL,
  alpha_missing = 1,
  legend = TRUE,
  rasterize = FALSE,
  return_data = FALSE,
  ...
)
```

Arguments

- **object**: a trained MOFA object.
- **method**: string indicating which method has been used for non-linear dimensionality reduction (either 'umap' or 'tsne')
- **groups**: character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.
- **show_missing**: logical indicating whether to include samples for which shape_by or color_by is missing
color_by specifies groups or values used to color the samples. This can be either: (1) a character giving the name of a feature present in the training data. (2) a character giving the same of a column present in the sample metadata. (3) a vector of the same length as the number of samples specifying discrete groups or continuous numeric values.

shape_by specifies groups or values used to shape the samples. This can be either: (1) a character giving the name of a feature present in the training data, (2) a character giving the same of a column present in the sample metadata. (3) a vector of the same length as the number of samples specifying discrete groups.

color_name name for color legend.
shape_name name for shape legend.
label logical indicating whether to label the medians of the clusters. Only if color_by is specified

dot_size numeric indicating dot size.
stroke numeric indicating the stroke size (the black border around the dots, default is NULL, inferred automatically).
alpha_missing numeric indicating dot transparency of missing data.
legend logical indicating whether to add legend.
rasterize logical indicating whether to rasterize plot using `geom_point_rast`
return_data logical indicating whether to return the long data frame to plot instead of plotting

Details

This function plots dimensionality reduction projections that are stored in the dim_red slot. Typically this contains UMAP or t-SNE projections computed using `run_tsne` or `run_umap`, respectively.

Value

Returns a ggplot2 object or a long data.frame (if return_data is TRUE)

Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Run UMAP
model <- run_umap(model)

Plot UMAP
plot_dimred(model, method = "UMAP")

Plot UMAP, colour by Factor 1 values
plot_dimred(model, method = "UMAP", color_by = "Factor1")
Plot UMAP, colour by the values of a specific feature
plot_dimred(model, method = "UMAP", color_by = "feature_0_view_0")

plot_enrichment
Plot output of gene set Enrichment Analysis

Description
Method to plot the results of the gene set Enrichment Analysis

Usage
plot_enrichment(
 enrichment.results,
 factor,
 alpha = 0.1,
 max.pathways = 25,
 text_size = 1,
 dot_size = 5
)

Arguments
enrichment.results
output of run_enrichment function

factor
a string with the factor name or an integer with the factor index

alpha
p.value threshold to filter out gene sets

max.pathways
maximum number of enriched pathways to display

text_size
text size

dot_size
dot size

Details
it requires run_enrichment to be run beforehand.

Value
a ggplot2 object
plot_enrichment_detailed

Description

Method to plot a detailed output of the Feature Set Enrichment Analysis (FSEA). Each row corresponds to a significant pathway, sorted by statistical significance, and each dot corresponds to a gene. For each pathway, we display the top genes of the pathway sorted by the corresponding feature statistic (by default, the absolute value of the weight) The top genes with the highest statistic (max.genes argument) are displayed and labeled in black. The remaining genes are colored in grey.

Usage

plot_enrichment_detailed(
enrichment.results,
factor,
alpha = 0.1,
max.genes = 5,
max.pathways = 10,
text_size = 3
)

Arguments

enrichment.results
output of run_enrichment function
factor
string with factor name or numeric with factor index
alpha
p.value threshold to filter out feature sets
max.genes
maximum number of genes to display, per pathway
max.pathways
maximum number of enriched pathways to display
text_size
size of the text to label the top genes

Value

a ggplot2 object
plot_enrichment_heatmap

Heatmap of Feature Set Enrichment Analysis results

Description

This method generates a heatmap with the adjusted p-values that result from the feature set enrichment analysis. Rows are feature sets and columns are factors.

Usage

```r
plot_enrichment_heatmap(
  enrichment.results,
  alpha = 0.1,
  cap = 1e-50,
  log_scale = TRUE,
  ...
)
```

Arguments

- `enrichment.results`: output of `run_enrichment` function
- `alpha`: FDR threshold to filter out insignificant feature sets which are not represented in the heatmap. Default is 0.10.
- `cap`: cap p-values below this threshold
- `log_scale`: logical indicating whether to plot the -log of the p-values.
- `...`: extra arguments to be passed to the `pheatmap` function

Value

produces a heatmap

plot_factor

Beeswarm plot of factor values

Description

Beeswarm plot of the latent factor values.
Usage

```r
plot_factor(
  object,
  factors = 1,
  groups = "all",
  group_by = "group",
  color_by = "group",
  shape_by = NULL,
  add_dots = TRUE,
  dot_size = 2,
  dot_alpha = 1,
  add_violin = FALSE,
  violin_alpha = 0.5,
  color_violin = TRUE,
  add_boxplot = FALSE,
  boxplot_alpha = 0.5,
  color_boxplot = TRUE,
  show_missing = TRUE,
  scale = FALSE,
  dodge = FALSE,
  color_name = "",
  shape_name = "",
  stroke = NULL,
  legend = TRUE,
  rasterize = FALSE
)
```

Arguments

- **object**: a trained MOFA object.
- **factors**: character vector with the factor names, or numeric vector with the indices of the factors to use, or "all" to plot all factors.
- **groups**: character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.
- **group_by**: specifies grouping of samples:
 - (default) the string "group": in this case, the plot will color samples with respect to their predefined groups.
 - a character giving the name of a feature that is present in the input data
 - a character giving the name of a column in the sample metadata slot
 - a vector of the same length as the number of samples specifying the value for each sample.
- **color_by**: specifies color of samples. This can be either:
 - (default) the string "group": in this case, the plot will color the dots with respect to their predefined groups.
 - a character giving the name of a feature that is present in the input data
 - a character giving the name of a column in the sample metadata slot
plot_factor

- a vector of the same length as the number of samples specifying the value for each sample.

shape_by specifies shape of samples. This can be either:
- (default) the string "group": in this case, the plot will shape the dots with respect to their predefined groups.
- a character giving the name of a feature that is present in the input data
- a character giving the name of a column in the sample metadata slot
- a vector of the same length as the number of samples specifying the value for each sample.

add_dots logical indicating whether to add dots.

dot_size numeric indicating dot size.

dot_alpha numeric indicating dot transparency.

add_violin logical indicating whether to add violin plots

violin_alpha numeric indicating violin plot transparency.

color_violin logical indicating whether to color violin plots.

add_boxplot logical indicating whether to add box plots

boxplot_alpha numeric indicating boxplot transparency.

color_boxplot logical indicating whether to color box plots.

show_missing logical indicating whether to remove samples for which shape_by or color_by is missing.

scale logical indicating whether to scale factor values.

dodge logical indicating whether to dodge the dots (default is FALSE).

color_name name for color legend (usually only used if color_by is not a character itself).

shape_name name for shape legend (usually only used if shape_by is not a character itself).

stroke numeric indicating the stroke size (the black border around the dots).

legend logical indicating whether to add a legend to the plot (default is TRUE).

rasterize logical indicating whether to rasterize the plot (default is FALSE).

Details

One of the main steps for the annotation of factors is to visualise and color them using known covariates or phenotypic data.
This function generates a Beeswarm plot of the sample values in a given latent factor.
Similar functions are plot_factors for doing scatter plots.

Value

Returns a ggplot2
Examples

Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Plot Factors 1 and 2 and colour by "group"
plot_factor(model, factors = c(1,2), color_by="group")

Plot Factor 3 and colour by the value of a specific feature
plot_factor(model, factors = 3, color_by="feature_981_view_1")

Add violin plots
plot_factor(model, factors = c(1,2), color_by="group", add_violin = TRUE)

Scale factor values from -1 to 1
plot_factor(model, factors = c(1,2), scale = TRUE)

plot_factors

Scatterplots of two factor values

Description

Scatterplot of the values of two latent factors.

Usage

plot_factors(
 object,
 factors = c(1, 2),
 groups = "all",
 show_missing = TRUE,
 scale = FALSE,
 color_by = NULL,
 shape_by = NULL,
 color_name = NULL,
 shape_name = NULL,
 dot_size = 2,
 alpha = 1,
 legend = TRUE,
 stroke = NULL,
 return_data = FALSE
)

Arguments

object a trained MOFA object.
plot_factors

- **factors**: a vector of length two with the factors to plot. Factors can be specified either as a character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.

- **groups**: character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.

- **show_missing**: logical indicating whether to include samples for which shape_by or color_by is missing.

- **scale**: logical indicating whether to scale factor values.

- **color_by**: specifies groups or values used to color the samples. This can be either: (1) a character giving the name of a feature present in the training data, (2) a character giving the name of a column present in the sample metadata, (3) a vector of the same length as the number of samples specifying discrete groups or continuous numeric values.

- **shape_by**: specifies groups or values used to shape the samples. This can be either: (1) a character giving the name of a feature present in the training data, (2) a character giving the name of a column present in the sample metadata, (3) a vector of the same length as the number of samples specifying discrete groups.

- **color_name**: name for color legend.

- **shape_name**: name for shape legend.

- **dot_size**: numeric indicating dot size (default is 2).

- **alpha**: numeric indicating dot transparency (default is 1).

- **legend**: logical indicating whether to add legend.

- **stroke**: numeric indicating the stroke size (the black border around the dots, default is NULL, inferred automatically).

- **return_data**: logical indicating whether to return the data frame to plot instead of plotting.

Details

One of the first steps for the annotation of factors is to visualise and group/color them using known covariates such as phenotypic or clinical data. This method generates a single scatterplot for the combination of two latent factors. TO-FINISH... plot_factors for doing Beeswarm plots for factors.

Value

Returns a ggplot2 object.

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Scatterplot of factors 1 and 2
plot_factors(model, factors = c(1,2))

# Shape dots by a column in the metadata
```

plot_factors_vs_cov

Scatterplots of a factor’s values against the sample covariates

Description

Scatterplots of a factor’s values against the sample covariates

Usage

plot_factors_vs_cov(
 object, # a trained MOFA object using MEFISTO.
 factors = "all", # character or numeric specifying the factor(s) to plot, default is "all"
 covariates = NULL, # specifies sample covariate(s) to plot against: (1) a character giving the name of a column present in the sample covariates or sample metadata. (2) a character giving the name of a feature present in the training data. (3) a vector of the same length as the number of samples specifying continuous numeric values per sample. Default is the first sample covariates in covariates slot
 warped = TRUE, # logical indicating whether to show the aligned covariate (default: TRUE), only relevant if warping has been used to align multiple sample groups
 show_missing = TRUE, # scale = FALSE, # color_by = NULL, # shape_by = NULL, # color_name = NULL, # shape_name = NULL, # dot_size = 1.5, # alpha = 1, # stroke = NULL, # legend = TRUE, # rotate_x = FALSE, # rotate_y = FALSE, # return_data = FALSE, # show_variance = FALSE
)

Arguments

object: a trained MOFA object using MEFISTO.

factors: character or numeric specifying the factor(s) to plot, default is "all"

covariates: specifies sample covariate(s) to plot against: (1) a character giving the name of a column present in the sample covariates or sample metadata. (2) a character giving the name of a feature present in the training data. (3) a vector of the same length as the number of samples specifying continuous numeric values per sample. Default is the first sample covariates in covariates slot

warped: logical indicating whether to show the aligned covariate (default: TRUE), only relevant if warping has been used to align multiple sample groups

Scale factor values from -1 to 1
plot_factors(model, factors = c(1,2), scale = TRUE)
show_missing (for 1-dim covariates) logical indicating whether to include samples for which shape_by or color_by is missing

scale logical indicating whether to scale factor values.

color_by (for 1-dim covariates) specifies groups or values used to color the samples. This can be either: (1) a character giving the name of a feature present in the training data. (2) a character giving the same of a column present in the sample metadata. (3) a vector of the same length as the number of samples specifying discrete groups or continuous numeric values.

shape_by (for 1-dim covariates) specifies groups or values used to shape the samples. This can be either: (1) a character giving the name of a feature present in the training data, (2) a character giving the same of a column present in the sample metadata. (3) a vector of the same length as the number of samples specifying discrete groups.

color_name (for 1-dim covariates) name for color legend.

shape_name (for 1-dim covariates) name for shape legend.

dot_size (for 1-dim covariates) numeric indicating dot size.

alpha (for 1-dim covariates) numeric indicating dot transparency.

stroke (for 1-dim covariates) numeric indicating the stroke size

legend (for 1-dim covariates) logical indicating whether to add legend.

rotate_x (for spatial, 2-dim covariates) Rotate covariate on x-axis

rotate_y (for spatial, 2-dim covariates) Rotate covariate on y-axis

return_data logical indicating whether to return the data frame to plot instead of plotting

show_variance (for 1-dim covariates) logical indicating whether to show the marginal variance of inferred factor values (only relevant for 1-dimensional covariates)

Details

To investigate the factors pattern along the covariates (such as time or a spatial coordinate) this function an be used to plot a scatterplot of the factor againt the values of each covariate

Value

Returns a ggplot2 object

Examples

Using an existing trained model
generic.plot <- plot_factors_vs_cov(model)
Description

Function to plot the correlation matrix between the latent factors.

Usage

```r
plot_factor_cor(object, method = "pearson", ...)
```

Arguments

- `object` a trained MOFA object.
- `method` a character indicating the type of correlation coefficient to be computed: pearson (default), kendall, or spearman.
- `...` arguments passed to `corrplot`

Details

This method plots the correlation matrix between the latent factors.

The model encourages the factors to be uncorrelated, so this function usually yields a diagonal correlation matrix.

However, it is not a hard constraint such as in Principal Component Analysis and correlations between factors can occur, particularly with large number factors.

Generally, correlated factors are redundant and should be avoided, as they make interpretation harder. Therefore, if you have too many correlated factors we suggest you try reducing the number of factors.

Value

Returns a symmetric matrix with the correlation coefficient between every pair of factors.

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Plot correlation between all factors
plot_factor_cor(model)
```
Heatmap plot showing the group-group correlations per factor

Description

Heatmap plot showing the group-group correlations inferred by the model per factor

Usage

plot_group_kernel(object, factors = "all", groups = "all", ...)

Arguments

- **object**: a trained MOFA object using MEFISTO.
- **factors**: character vector with the factors names, or numeric vector indicating the indices of the factors to use
- **groups**: character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.
- **...**: additional parameters that can be passed to pheatmap

Details

The heatmap gives insight into the clustering of the patterns that factors display along the covariate in each group. A correlation of 1 indicates that the module captured by a factor shows identical patterns across groups, a correlation of zero that it shows distinct patterns, a negative correlation that the patterns go in opposite directions.

Value

Returns a ggplot,gg object containing the heatmaps

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_group_kernel(model)
```
Description

make a plot of interpolated covariates versus covariate

Usage

```r
plot_interpolation_vs_covariate(
  object,
  covariate = 1,
  factors = "all",
  only_mean = TRUE,
  show_observed = TRUE
)
```

Arguments

- `object` a trained MOFA object using MEFISTO.
- `covariate` covariate to use for plotting
- `factors` character or numeric specifying the factor(s) to plot, default is "all"
- `only_mean` show only mean or include uncertainties?
- `show_observed` include observed factor values as dots on the plot

Details

to be filled

Value

Returns a ggplot2 object

Examples

```r
# Using an existing trained model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
model <- interpolate_factors(model, new_values = seq(0,1.1,0.1))
plot_interpolation_vs_covariate(model, covariate = "time", factors = 1)
```
plot_sharedness

Barplot showing the sharedness per factor

Description
Barplot indicating a sharedness score (between 0 (non-shared) and 1 (shared)) per factor

Usage
plot_sharedness(object, factors = "all", color = "#B8CF87")

Arguments
- **object**: a trained MOFA object using MEFISTO.
- **factors**: character vector with the factors names, or numeric vector indicating the indices of the factors to use
- **color**: for the shared part of the bar

Details
The sharedness score is calculated as the distance of the learnt group correlation matrix to the identity matrix in terms of the mean absolute distance on the off-diagonal elements.

Value
Returns a ggplot2 object

plot_smoothness

Barplot showing the smoothness per factor

Description
Barplot indicating a smoothness score (between 0 (non-smooth) and 1 (smooth)) per factor

Usage
plot_smoothness(object, factors = "all", color = "cadetblue")

Arguments
- **object**: a trained MOFA object using MEFISTO.
- **factors**: character vector with the factors names, or numeric vector indicating the indices of the factors to use
- **color**: for the smooth part of the bar
The smoothness score is given by the scale parameter for the underlying Gaussian process of each factor.

Value

Returns a ggplot2 object

Examples

```r
# Using an existing trained model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
smoothness_bars <- plot_smoothness(model)
```

Description

Plot top weights for a given factor and view.

Usage

```r
plot_top_weights(
  object,
  view = 1,
  factors = 1,
  nfeatures = 10,
  abs = TRUE,
  scale = TRUE,
  sign = "all"
)
```

Arguments

- **object**: a trained MOFA object.
- **view**: a string with the view name, or an integer with the index of the view.
- **factors**: a character string with factors names, or an integer vector with factors indices.
- **nfeatures**: number of top features to display. Default is 10.
- **abs**: logical indicating whether to use the absolute value of the weights (Default is TRUE).
- **scale**: logical indicating whether to scale all weights from -1 to 1 (or from 0 to 1 if abs=TRUE). Default is TRUE.
- **sign**: can be 'positive', 'negative' or 'all' to show only positive, negative or all weights, respectively. Default is 'all'.
Details

An important step to annotate factors is to visualise the corresponding feature weights. This function displays the top features with highest loading whereas the function `plot_top_weights` plots all weights for a given latent factor and view. Importantly, the weights of the features within a view have relative values and they should not be interpreted in an absolute scale. Therefore, for interpretability purposes we always recommend to scale the weights with `scale=TRUE`.

Value

Returns a ggplot2 object

Examples

```r
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Plot top weights for Factors 1 and 2 and View 1
plot_top_weights(model, view = 1, factors = c(1,2))

# Do not take absolute value
plot_weights(model, abs = FALSE)
```

```
plot_variance_explained

Plot variance explained by the model

Description

plots the variance explained by the MOFA factors across different views and groups, as specified by the user. Consider using cowplot::plot_grid(plotlist = ...) to combine the multiple plots that this function generates.

Usage

plot_variance_explained(
  object,
  x = "view",
  y = "factor",
  split_by = NA,
  plot_total = FALSE,
  factors = "all",
  min_r2 = 0,
  max_r2 = NULL,
  legend = TRUE,
  use_cache = TRUE,
)"
Arguments

- **object**: a MOFA object
- **x**: character specifying the dimension for the x-axis ("view", "factor", or "group").
- **y**: character specifying the dimension for the y-axis ("view", "factor", or "group").
- **split_by**: character specifying the dimension to be faceted ("view", "factor", or "group").
- **plot_total**: logical value to indicate if to plot the total variance explained (for the variable in the x-axis)
- **factors**: character vector with a factor name(s), or numeric vector with the index(es) of the factor(s). Default is "all".
- **min_r2**: minimum variance explained for the color scheme (default is 0).
- **max_r2**: maximum variance explained for the color scheme.
- **legend**: logical indicating whether to add a legend to the plot (default is TRUE).
- **use_cache**: logical indicating whether to use cache (default is TRUE).
- **...**: extra arguments to be passed to `calculate_variance_explained`

Value

A list of ggplot objects (if plot_total is TRUE) or a single ggplot object

Examples

# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Calculate variance explained (R2)
r2 <- calculate_variance_explained(model)

# Plot variance explained values (view as x-axis, and factor as y-axis)
plot_variance_explained(model, x="view", y="factor")

# Plot variance explained values (view as x-axis, and group as y-axis)
plot_variance_explained(model, x="view", y="group")

# Plot variance explained values for factors 1 to 3
plot_variance_explained(model, x="view", y="group", factors=1:3)

# Scale R2 values
plot_variance_explained(model, max_r2=0.25)
plot_variance_explained_by_covariates

Plot variance explained by the smooth components of the model

Description

This function plots the variance explained by the smooth components (Gaussian processes) underlying the factors in MEFISTO across different views and groups, as specified by the user.

Usage

plot_variance_explained_by_covariates(
  object,
  factors = "all",
  x = "view",
  y = "factor",
  split_by = NA,
  min_r2 = 0,
  max_r2 = NULL,
  compare_total = FALSE,
  legend = TRUE
)

Arguments

  object  a MOFA object
  factors character vector with a factor name(s), or numeric vector with the index(es) of the factor(s). Default is "all".
  x       character specifying the dimension for the x-axis ("view", "factor", or "group").
  y       character specifying the dimension for the y-axis ("view", "factor", or "group").
  split_by character specifying the dimension to be faceted ("view", "factor", or "group").
  min_r2  minimum variance explained for the color scheme (default is 0).
  max_r2  maximum variance explained for the color scheme.
  compare_total plot corresponding variance explained in total in addition
  legend   logical indicating whether to add a legend to the plot (default is TRUE).

Details

Note that this function requires the use of MEFISTO. To activate the functional MEFISTO framework, specify mefisto_options when preparing the training using prepare_mofa

Value

A list of ggplot objects (if compare_total is TRUE) or a single ggplot object. Consider using cowplot::plot_grid(plotlist = ...) to combine the multiple plots that this function generates.
Examples

# load_model
file <- system.file("extdata", "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_variance_explained_by_covariates(model)

# compare to total variance explained
plist <- plot_variance_explained_by_covariates(model, compare_total = TRUE)
cowplot::plot_grid(plotlist = plist)

plot_variance_explained_per_feature

Plot variance explained by the model for a set of features Returns a tile plot with a group on the X axis and a feature along the Y axis

Description

Plot variance explained by the model for a set of features

Returns a tile plot with a group on the X axis and a feature along the Y axis

Usage

plot_variance_explained_per_feature(
  object,
  view,
  features = 10,
  split_by_factor = FALSE,
  group_features_by = NULL,
  groups = "all",
  factors = "all",
  min_r2 = 0,
  max_r2 = NULL,
  legend = TRUE,
  return_data = FALSE,
  ...
)

Arguments

object a MOFA object.
view a view name or index.
features a vector with indices or names for features from the respective view, or number of top features to be fetched by their loadings across specified factors. "all" to plot all features.

split_by_factor logical indicating whether to split R2 per factor or plot R2 jointly
group_features_by
  column name of features metadata to group features by
groups
  a vector with indices or names for sample groups (default is all)
factors
  a vector with indices or names for factors (default is all)
min_r2
  minimum variance explained for the color scheme (default is 0).
max_r2
  maximum variance explained for the color scheme.
legend
  logical indicating whether to add a legend to the plot (default is TRUE).
return_data
  logical indicating whether to return the data frame to plot instead of plotting
  extra arguments to be passed to calculate_variance_explained

Value
  ggplot object

Examples

  # Using an existing trained model
  file <- system.file("extdata", "model.hdf5", package = "MOFA2")
  model <- load_model(file)
  plot_variance_explained_per_feature(model, view = 1)

plot_weights
  Plot distribution of feature weights (weights)

Description
  An important step to annotate factors is to visualise the corresponding feature weights.
  This function plots all weights for a given latent factor and view, labeling the top ones.
  In contrast, the function plot_top_weights displays only the top features with highest loading.

Usage
  plot_weights(
    object,
    view = 1,
    factors = 1,
    nfeatures = 10,
    color_by = NULL,
    shape_by = NULL,
    abs = FALSE,
    manual = NULL,
    color_manual = NULL,
    scale = TRUE,
    dot_size = 1,
    text_size = 5,
    legend = TRUE,
    return_data = FALSE
  )
plot_weights

Arguments

object  

view  

factors  

nfeatures  

color_by  

shape_by  

abs  

manual  

color_manual  

scale  

dot_size  

text_size  

legend  

return_data

Value

A ggplot object or a data.frame if return_data is TRUE
Examples

# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Plot distribution of weights for Factor 1 and View 1
plot_weights(model, view = 1, factors = 1)

# Plot distribution of weights for Factors 1 to 3 and View 1
plot_weights(model, view = 1, factors = 1:3)

# Take the absolute value and highlight the top 10 features
plot_weights(model, view = 1, factors = 1, nfeatures = 10, abs = TRUE)

# Change size of dots and text
plot_weights(model, view = 1, factors = 1, text_size = 5, dot_size = 1)

plot_weights_heatmap

Plot heatmap of the weights

Description

Function to visualize the weights for a given set of factors in a given view.
This is useful to visualize the overall pattern of the weights but not to individually characterise the factors.
To inspect the weights of individual factors, use the functions plot_weights and plot_top_weights

Usage

plot_weights_heatmap(
  object,
  view = 1,
  features = "all",
  factors = "all",
  threshold = 0,
  ...
)

Arguments

object  a trained MOFA object.
view    character vector with the view name(s), or numeric vector with the index of the view(s) to use. Default is the first view.
features character vector with the feature name(s), or numeric vector with the index of the feature(s) to use. Default is ‘all’.
plot_weights_scatter

**factors** character vector with the factor name(s), or numeric vector with the index of the factor(s) to use. Default is 'all'.

**threshold** threshold on absolute weight values, so that weights with a magnitude below this threshold (in all factors) are removed

... extra arguments passed to `pheatmap`.

**Value**

A `pheatmap` object

**Examples**

```r
Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_weights_heatmap(model)
```

---

**Description**

Scatterplot of the weights values for two factors

**Usage**

```r
plot_weights_scatter(
 object,
 factors,
 view = 1,
 color_by = NULL,
 shape_by = NULL,
 dot_size = 1,
 name_color = "",
 name_shape = "",
 show_missing = TRUE,
 abs = FALSE,
 scale = TRUE,
 legend = TRUE
)
```

**Arguments**

- **object** a trained MOFA object.
- **factors** a vector of length two with the factors to plot. Factors can be specified either as a characters using the factor names, or as numeric with the index of the factors
plot_weights_scatter

view character vector with the view name, or numeric vector with the index of the view to use. Default is the first view.

color_by specifies groups or values used to color the features. This can be either
  • a character giving the same of a column in the feature metadata slot
  • a vector specifying the value for each feature.
  • a dataframe with two columns: "feature" and "color"

shape_by specifies groups or values used to shape the features. This can be either
  • a character giving the same of a column in the feature metadata slot
  • a vector specifying the value for each feature.
  • a dataframe with two columns: "feature" and "shape"

dot_size numeric indicating dot size.

name_color name for color legend (usually only used if color_by is not a character itself)

name_shape name for shape legend (usually only used if shape_by is not a character itself)

show_missing logical indicating whether to include dots for which shape_by or color_by is missing

abs logical indicating whether to take the absolute value of the weights.

scale logical indicating whether to scale all weights from -1 to 1 (or from 0 to 1 if abs=TRUE).

legend logical indicating whether to add a legend to the plot (default is TRUE).

Details

One of the first steps for the annotation of factors is to visualise and group/color them using known covariates such as phenotypic or clinical data. This method generates a single scatterplot for the combination of two latent factors.

Value

Returns a ggplot2 object.

Examples

# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_weights_scatter(model, factors = 1:2)
**predict**

*Do predictions using a fitted MOFA*

**Description**

This function uses the latent factors and the weights to do data predictions.

**Usage**

```r
predict(
 object,
 views = "all",
 groups = "all",
 factors = "all",
 add_intercept = TRUE
)
```

**Arguments**

- `object` a MOFA object.
- `views` character vector with the view name(s), or numeric vector with the view index(es). Default is "all".
- `groups` character vector with the group name(s), or numeric vector with the group index(es). Default is "all".
- `factors` character vector with the factor name(s) or numeric vector with the factor index(es). Default is "all".
- `add_intercept` add feature intercepts to the prediction (default is TRUE).

**Details**

MOFA generates a denoised and condensed low-dimensional representation of the data that captures the main sources of heterogeneity of the data. This representation can be used to reconstruct a denoised representation of the data, simply using the equation $Y = WX$. For more mathematical details read the supplementary methods of the manuscript.

**Value**

Returns a list with the data reconstructed by the model predictions.

**Examples**

```r
Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Predict observations for all data modalities
predictions <- predict(model)
```
**prepare_mofa**

Prepare a MOFA for training

---

**Description**

Function to prepare a MOFA object for training. It requires defining data, model and training options.

**Usage**

```r
prepare_mofa(
 object,
 data_options = NULL,
 model_options = NULL,
 training_options = NULL,
 stochastic_options = NULL,
 mefisto_options = NULL
)
```

**Arguments**

- **object**
  - an untrained MOFA
- **data_options**
  - list of data options (see `get_default_data_options` details). If NULL, default options are used.
- **model_options**
  - list of model options (see `get_default_model_options` for details). If NULL, default options are used.
- **training_options**
  - list of training options (see `get_default_training_options` for details). If NULL, default options are used.
- **stochastic_options**
  - list of options for stochastic variational inference (see `get_default_stochastic_options` for details). If NULL, default options are used.
- **mefisto_options**
  - list of options for mefisto (see `get_default_mefisto_options` for details). If NULL, default options are used.

**Details**

This function is called after creating a MOFA object (using `create_mofa`) and before starting the training (using `run_mofa`). Here, we can specify different options for the data (data_options), the model (model_options) and the training (training_options, stochastic_options). Take a look at the individual default options for an overview using the get_default_XXX_options functions above.

**Value**

Returns an untrained MOFA with specified options filled in the corresponding slots.
Examples

```r
Using an existing simulated data with two groups and two views
file <- system.file("extdata", "test_data.RData", package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

Prepare MOFA object using default options
MOFAmodel <- prepare_mofa(MOFAmodel)

Prepare MOFA object changing some of the default model options values
model_opts <- get_default_model_options(MOFAmodel)
model_opts$num_factors <- 10
MOFAmodel <- prepare_mofa(MOFAmodel, model_options = model_opts)
```

run_enrichment

Run feature set Enrichment Analysis

Description

Method to perform feature set enrichment analysis. Here we use a slightly modified version of the `pcgse` function.

Usage

```r
run_enrichment(
 object,
 view,
 feature.sets,
 factors = "all",
 set.statistic = c("mean.diff", "rank.sum"),
 statistical.test = c("parametric", "cor.adj.parametric", "permutation"),
 sign = c("all", "positive", "negative"),
 min.size = 10,
 nperm = 1000,
 p.adj.method = "BH",
 alpha = 0.1,
 verbose = TRUE
)
```

Arguments

- **object**: a MOFA object.
- **view**: a character with the view name, or a numeric vector with the index of the view to use.
feature.sets: data structure that holds feature set membership information. Must be a binary membership matrix (rows are feature sets and columns are features). See details below for some pre-built gene set matrices.

factors: character vector with the factor names, or numeric vector with the index of the factors for which to perform the enrichment.

set.statistic: the set statistic computed from the feature statistics. Must be one of the following: "mean.diff" (default) or "rank.sum".

statistical.test: the statistical test used to compute the significance of the feature set statistics under a competitive null hypothesis. Must be one of the following: "parametric" (default), "cor.adj.parametric", "permutation".

sign: use only "positive" or "negative" weights. Default is "all".

min.size: Minimum size of a feature set (default is 10).

nperm: number of permutations. Only relevant if statistical.test is set to "permutation". Default is 1000


alpha: FDR threshold to generate lists of significant pathways. Default is 0.1

verbose: boolean indicating whether to print messages on progress

Details

The aim of this function is to relate each factor to pre-defined biological pathways by performing a gene set enrichment analysis on the feature weights. This function is particularly useful when a factor is difficult to characterise based only on the genes with the highest weight.

We provide a few pre-built gene set matrices in the MOFAdata package. See https://github.com/bioFAM/MOFAdata for details.

The function we implemented is based on the pcgse function with some modifications. Please read this paper https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543476 for details on the math.

Value

a list with five elements:

pval: matrices with nominal p-values.

pval.adj: matrices with FDR-adjusted p-values.

feature.statistics: matrices with the local (feature-wise) statistics.


sigPathways: list with significant pathways per factor.
run_mofa  

Train a MOFA model

Description
Function to train an untrained MOFA object.

Usage
run_mofa(object, outfile = NULL, save_data = TRUE, use_basilisk = FALSE)

Arguments

object an untrained MOFA object
outfile output file for the model (.hdf5 format). If NULL, a temporary file is created.
save_data logical indicating whether to save the training data in the hdf5 file. This is useful for some downstream analysis (mainly functions with the prefix plot_data), but it can take a lot of disk space.
use_basilisk use basilisk to automatically install a conda environment with mofapy2 and all dependencies? If FALSE (default), you should specify the right python binary when loading R with reticulate::use_python(..., force=TRUE) or the right conda environment with reticulate::use_condaenv(..., force=TRUE).

Details
This function is called once a MOFA object has been prepared (using prepare_mofa). In this step the R package calls the mofapy2 Python package, where model training is performed. The interface with Python is done with the reticulate package. If you have several versions of Python installed and R is not detecting the correct one, you can change it using reticulate::use_python when loading the R session. Alternatively, you can let us install mofapy2 for you using basilisk if you set use_basilisk to TRUE.

Value
a trained MOFA object

Examples

# Load data (in data.frame format)
file <- system.file("extdata", "test_data.RData", package = "MOFA2")
load(file)

# Create the MOFA object
MOFAModel <- create_mofa(dt)

# Prepare the MOFA object with default options
MOFAModel <- prepare_mofa(MOFAModel)
# Run the MOFA model
## Not run:  MOFAmodel <- run_mofa(MOFAmodel, use_basilisk = TRUE)

---

**run_tsne**  
*Run t-SNE on the MOFA factors*

**Description**  
Run t-SNE on the MOFA factors

**Usage**  
```
run_tsne(object, factors = "all", groups = "all", ...)
```

**Arguments**  
- `object`: a trained MOFA object.
- `factors`: character vector with the factor names, or numeric vector with the indices of the factors to use, or "all" to use all factors (default).
- `groups`: character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use all groups (default).
- `...`: arguments passed to `Rtsne`

**Details**  
This function calls `Rtsne` to calculate a TSNE representation from the MOFA factors. Subsequently, you can plot the TSNE representation with `plot_dimred` or fetch the coordinates using `plot_dimred(..., method="TSNE", return_data=TRUE)`. Remember to use `set.seed` before the function call to get reproducible results.

**Value**  
Returns a MOFA object with the MOFAobject@dim_red slot filled with the t-SNE output

**Examples**  
```
Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Run
Not run: model <- run_tsne(model, perplexity = 15)

Plot
Not run: model <- plot_dimred(model, method="TSNE")

Fetch data
Not run: tsne.df <- plot_dimred(model, method="TSNE", return_data=TRUE)
```
Run UMAP on the MOFA factors

**Usage**

```r
run_umap(
 object,
 factors = "all",
 groups = "all",
 n_neighbors = 30,
 min_dist = 0.3,
 metric = "cosine",
 ...
)
```

**Arguments**

- `object`: a trained MOFA object.
- `factors`: character vector with the factor names, or numeric vector with the indices of the factors to use, or "all" to use all factors (default).
- `groups`: character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use all groups (default).
- `n_neighbors`: number of neighboring points used in local approximations of manifold structure. Larger values will result in more global structure being preserved at the loss of detailed local structure. In general this parameter should often be in the range 5 to 50.
- `min_dist`: This controls how tightly the embedding is allowed compress points together. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimise more accurately with regard to local structure. Sensible values are in the range 0.01 to 0.5.
- `metric`: choice of metric used to measure distance in the input space
- `...`: arguments passed to `umap`

**Details**

This function calls `umap` to calculate a UMAP representation from the MOFA factors. For details on the hyperparameters of UMAP see the documentation of `umap`. Subsequently, you can plot the UMAP representation with `plot_dimred` or fetch the coordinates using `plot_dimred(..., method="UMAP", return_data=TRUE)`. Remember to use `set.seed` before the function call to get reproducible results.
samples_metadata

Value

Returns a MOFA object with the MOFAobject@dim_red slot filled with the UMAP output

Examples

# Using an existing trained model on simulated dataile <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Change hyperparameters passed to umap
## Not run: model <- run_umap(model, min_dist = 0.01, n_neighbors = 10)
# Plot
## Not run: model <- plot_dimred(model, method="UMAP")

# Fetch data
## Not run: umap.df <- plot_dimred(model, method="UMAP", return_data=TRUE)

samples_metadata samples_metadata: retrieve sample metadata

Description

samples_metadata: retrieve sample metadata

Usage

samples_metadata(object)

samples_metadata(object) <- value

## S4 method for signature 'MOFA'
samples_metadata(object)

## S4 replacement method for signature 'MOFA,data.frame'
samples_metadata(object) <- value

Arguments

object a MOFA object.
value a data frame with sample metadata, it must at least contain the columns sample and group. The order of the rows must match the order of samples_names(object)

Value

a data frame with sample metadata
**samples_names**

*Examples*

```r
Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
samples_metadata(model)
```

---

**Description**

`samples_names`: set and retrieve sample names

**Usage**

```r
samples_names(object)
samples_names(object) <- value
```

```r
S4 method for signature 'MOFA'
samples_names(object)
```

```r
S4 replacement method for signature 'MOFA,list'
samples_names(object) <- value
```

**Arguments**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>a MOFA object.</td>
</tr>
<tr>
<td>value</td>
<td>list of character vectors with the sample names for every group</td>
</tr>
</tbody>
</table>

**Value**

list of character vectors with the sample names for each group

**Examples**

```r
Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
samples_names(model)
```
**select_model**

Select a model from a list of trained MOFA objects based on the best ELBO value.

**Description**

Different objects of MOFA are compared in terms of the final value of the ELBO statistics and the model with the highest ELBO value is selected.

**Usage**

```r
select_model(models, plot = FALSE)
```

**Arguments**

- `models`: a list containing MOFA objects.
- `plot`: boolean indicating whether to show a plot of the ELBO for each model instance.

**Value**

A MOFA object

---

**set_covariates**

Add covariates to a MOFA model.

**Description**

Function to add continuous covariate(s) to a MOFA object for training with MEFISTO.

**Usage**

```r
set_covariates(object, covariates)
```

**Arguments**

- `object`: an untrained MOFA
- `covariates`: Sample-covariates to be passed to the model. This can be either:
  - a character, specifying columns already present in the samples_metadata of the object
  - a data.frame with columns "sample", "covariate", "value". Sample names need to match those present in the data
  - a matrix with smaples in columns and covariate(s) in row(s)

Note that the covariate should be numeric and continuous.
To activate the functional MEFISTO framework, specify mefisto_options when preparing the training using prepare_mofa.

Returns an untrained MOFA with covariates filled in the corresponding slots.

To subset (or sort) factors, use the `subset_factors` function:

```r
subset_factors(object, factors, recalculate_variance_explained = TRUE)
```

**Arguments**

- `object`: a MOFA object.
- `factors`: character vector with the factor names, or numeric vector with the index of the factors.
- `recalculate_variance_explained`: logical indicating whether to recalculate variance explained values. Default is TRUE.

**Value**

A MOFA object.
Examples

# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Subset factors 1 to 3
model <- subset_factors(model, factors = 1:3)

---

subset_features

**Subset features**

**Description**

Method to subset (or sort) features

**Usage**

subset_features(object, view, features)

**Arguments**

- **object**: a MOFA object.
- **view**: character vector with the view name or integer with the view index
- **features**: character vector with the sample names, numeric vector with the feature indices or logical vector with the samples to be kept as TRUE.

**Value**

A MOFA object

---

subset_groups

**Subset groups**

**Description**

Method to subset (or sort) groups

**Usage**

subset_groups(object, groups)

**Arguments**

- **object**: a MOFA object.
- **groups**: character vector with the groups names, numeric vector with the groups indices or logical vector with the groups to be kept as TRUE.


**Value**

A MOFA object

**Examples**

# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# Subset the first group
model <- subset_groups(model, groups = 1)

---

**subset_samples**  **Subset samples**

**Description**

Method to subset (or sort) samples

**Usage**

subset_samples(object, samples)

**Arguments**

object a MOFA object.

samples character vector with the sample names or numeric vector with the sample indices.

**Value**

A MOFA object

**Examples**

# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

# (TO-DO) Remove a specific sample from the model (an outlier)
### subset_views

**Description**

Method to subset (or sort) views

**Usage**

```r
subset_views(object, views)
```

**Arguments**

- `object`: a MOFA object.
- `views`: character vector with the views names, numeric vector with the views indices, or logical vector with the views to be kept as TRUE.

**Value**

A MOFA object

**Examples**

```r
Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)

Subset the first view
model <- subset_views(model, views = 1)
```

---

### summarise_factors

**Description**

Function to summarise factor values using a discrete grouping of samples.

**Usage**

```r
summarise_factors(
 object,
 df,
 factors = "all",
 groups = "all",
 abs = FALSE,
 return_data = FALSE
)
```
views_names

Arguments

object a trained MOFA object.
df a data.frame with the columns "sample" and "level", where level is a factor with discrete group assignments for each sample.
factors character vector with the factor name(s), or numeric vector with the index of the factor(s) to use. Default is 'all'.
groups character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.
abs logical indicating whether to take the absolute value of the factors (default is FALSE).
return_data logical indicating whether to return the fa instead of plotting

Value

A ggplot object or a data.frame if return_data is TRUE

views_names

views_names: set and retrieve view names

Description

views_names: set and retrieve view names

Usage

views_names(object)

views_names(object) <- value

## S4 method for signature 'MOFA'
views_names(object)

## S4 replacement method for signature 'MOFA,character'
views_names(object) <- value

Arguments

object a MOFA object.
value character vector with the names for each view

Value

character vector with the names for each view
Examples

# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
views_names(model)
views_names(model) <- c("viewA", "viewB")

%>% Re-exporting the pipe operator See magrittr::%>% for details.

Description

Re-exporting the pipe operator See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

lhs see magrittr::%>

rhs see magrittr::%>

Value

depending on lhs and rhs
Index

%>%, 92, 92
Rpercent>Rpercent, 92
add_mofa_factors_to_seurat, 4
calculate_contribution_scores, 5
calculate_variance_explained, 6, 69, 72
calculate_variance_explained_per_sample, 7
cluster_samples, 8
corrplot, 11, 63
covariates, MOFA-method
  (covariates_names), 12
covariates_names, 12
covariates_names, MOFA-method
  (covariates_names), 12
covariates_names<-(covariates_names), 12
covariates_names<-, MOFA, vector-method
  (covariates_names), 12
create_mofa, 12, 22, 25–27, 78
create_mofa_from_df, 12, 13
create_mofa_from_matrix, 12, 14
create_mofa_from_MultiAssayExperiment, 13, 15
create_mofa_from_Seurat, 13, 15
create_mofa_from_SingleCellExperiment, 13, 16

delayedarray, 41
factors_names, 17
factors_names, MOFA-method
  (factors_names), 17
factors_names<-(factors_names), 17
factors_names<-, MOFA, vector-method
  (factors_names), 17
features_metadata, 18
features_metadata, MOFA-method
  (features_metadata), 18
features_metadata<-(features_metadata), 18
features_metadata<-, MOFA, data.frame-method
  (features_metadata), 18
features_names, 18
features_names, MOFA-method
  (features_names), 18
features_names<-(features_names), 18
features_names<-, MOFA, list-method
  (features_names), 18
ggplot, 9, 47, 49, 69, 70, 73, 91
groups_names, 37
groups_names, MOFA-method
  (groups_names), 37
groups_names<-(groups_names), 37
groups_names<-, MOFA, character-method
  (groups_names), 37
HDF5Array, 41
impute, 32, 38, 39
interpolate_factors, 39
kmeans, 8
load_model, 40
make_example_data, 41
MOFA-class (MOFA), 43
pcgse, 79, 80
pheatmap, 11, 46, 56, 75
plot_alignment, 44
plot_ascii_data, 44
plot_data_heatmap, 45, 49
plot_data_overview, 47
plot_data_scatter, 46, 48
plot_dimred, 52, 82, 83
plot_enrichment, 54
plot_enrichment_detailed, 55
plot_enrichment_heatmap, 56
plot_factor, 56
plot_factor_cor, 63
plot_factors, 58, 59, 60
plot_factors_vs_cov, 51, 61
plot_group_kernel, 64
plot_interpolation_vs_covariate, 65
plot_shoredness, 66
plot_smoothness, 66
plot_top_weights, 46, 49, 51, 67, 68, 72, 74
plot_variance_explained, 68
plot_variance_explained_by_covariates, 70
plot_variance_explained_per_feature, 71
plot_weights, 46, 49, 51, 72, 74
plot_weights_heatmap, 74
plot_weights_scatter, 75
predict, 46, 77
prepare_mofa, 22, 25–27, 78, 81
reticulate, 81
Rtsne, 82
run_enrichment, 54–56, 79
run_mofa, 22, 25–27, 78, 81
run_tsne, 53, 82
run_umap, 53, 83
samples_metadata, 84
samples_metadata, MOFA-method
(samples_metadata), 84
samples_metadata<-(samples_metadata), 84
samples_names, 85
samples_names, MOFA-method
(samples_names), 85
samples_names<-(samples_names), 85
samples_names<-(MOFA, data.frame-method
(samples_names), 85
select_model, 86
set_covariates, 86
subset_factors, 87
subset_features, 88
subset_groups, 88
subset_samples, 89
subset_views, 90
summarise_factors, 90
umap, 83
views_names, 91
views_names, MOFA-method (views_names), 91
views_names<-(views_names), 91
views_names<-(MOFA, character-method (views_names), 91