Package ‘MSstatsConvert’

May 16, 2024

Title Import Data from Various Mass Spectrometry Signal Processing Tools to MSstats Format

Version 1.14.0

Description
MSstatsConvert provides tools for importing reports of Mass Spectrometry data processing tools into R format suitable for statistical analysis using the MSstats and MSstatsTMT packages.

License Artistic-2.0

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.0

biocViews MassSpectrometry, Proteomics, Software, DataImport, QualityControl

Depends R (>= 4.0)

Imports data.table, log4r, methods, checkmate, utils, stringi

Suggests tinytest, covr, knitr, rmarkdown

Collate 'clean_Metamorpheus.R' 'clean_DIANN.R' 'clean_Philosopher.R'
'clean_Spectronaut.R' 'clean_SpectroMine.R' 'clean_Skyline.R'
'clean_ProteomeDiscoverer.R' 'clean_Progenesis.R'
'clean_OpenSWATH.R' 'clean_OpenMS.R' 'clean_MaxQuant.R'
'clean_DIAUmpire.R' 'MSstatsConvert_core_functions.R'
'converters_DIANNtoMSstatsFormat.R'
'converters_DIAUmpiretoMSstatsFormat.R'
'converters_FragPipetoMSstatsFormat.R'
'converters_MaxQtoMSstatsFormat.R'
'converters_MetamorpheusToMSstatsFormat.R'
'converters_OpenMstoMSstatsFormat.R'
'converters_OpenSWATHtoMSstatsFormat.R'
'converters_PDtoMSstatsFormat.R'
'converters_ProgenesistoMSstatsFormat.R'
'converters_SkylinetoMSstatsFormat.R'
'converters_SpectronauttoMSstatsFormat.R'
'utils_MSstatsConvert.R' 'utils_annotation.R'
'utils_balanced_design.R' 'utils_checks.R' 'utils_classes.R'
'utils_clean_features.R' 'utils_documentation.R'
'utils_dt_operations.R' 'utils_filtering.R' 'utils_fractions.R'
'utils_logging.R' 'utils_shared_peptides.R'

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/MSstatsConvert

git_branch RELEASE_3_19

git_last_commit cf718ed

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-15

Author Mateusz Staniak [aut, cre],
Meena Choi [aut],
Ting Huang [aut],
Olga Vitek [aut]

Maintainer Mateusz Staniak <mtst@mstaniak.pl>

Contents

.addFractions .. 4
.adjustIntensities ... 5
.aggregatePSMstoPeptideIons 5
.checkAnnotation ... 6
.checkDDA ... 6
.checkDuplicatedMeasurements 7
.checkMSstatsParams .. 7
.checkMultiRun .. 8
.checkOverlappedFeatures 8
.cleanByFeature ... 9
.cleanRawDIANN .. 9
.cleanRawDIAUmpire .. 10
.cleanRawMaxQuant ... 10
.cleanRawMetamorpheus 11
.cleanRawOpenMS .. 11
.cleanRawOpenSWATH ... 12
.cleanRawPD ... 12
.cleanRawPDMSstats .. 13
.cleanRawPDTMT ... 14
.cleanRawPhilosopher ... 14
.cleanRawProgenesis ... 15
.cleanRawSkyline ... 16
.cleanRawSpectroMineTMT 16
.cleanRawSpectronaut .. 17
.countCommonFeatures 17
.addFractions

Add a Fraction column to the output of MSstatsPreprocess

Description

Add a Fraction column to the output of MSstatsPreprocess

Usage

.addFractions(input)

Arguments

input output of MSstatsPreprocess

Value

data.table
.adjustIntensities

Fix invalid intensities: infinite to NA, between 0 and 1 to 0

Usage

.adjustIntensities(input)

Arguments

input
data.table

Value
data.table

.aggregatePSMstoPeptideIons

Aggregate multiple PSMs to a single peptide ion.

Description

Aggregate multiple PSMs to a single peptide ion.

Usage

.aggregatePSMstoPeptideIons(input, feature_columns, summary_function = sum)

Arguments

input
data.table preprocessed by one of the cleanRaw* functions.
feature_columns
chr, names of columns that define features.
summary_function
function that will be used to aggregate intensities if needed.

Value
data.table
.checkAnnotation
Check if the annotation is valid

Description

Check if the annotation is valid

Usage

```
.checkAnnotation(input, annotation)
```

Arguments

- `input`: data processed by the MSstatsClean
- `annotation`: annotation created by the MSstatsMakeAnnotation function

Value

TRUE invisibly if the annotation is correct, throws an error otherwise

.checkDDA
Check validity of DDA data

Description

Check validity of DDA data

Usage

```
.checkDDA(input)
```

Arguments

- `input`: data.table preprocessed by one of the cleanRaw* functions.

Value

logical

logical, TRUE means that the input dataset comes from a DDA experiment
.checkDuplicatedMeasurements

Check if there are duplicated measurements within run

Description

Check if there are duplicated measurements within run

Usage

`.checkDuplicatedMeasurements(input)`

Arguments

- `input` output of `MSstatsPreprocess`

Value

character vector of feature labels

.checkMSstatsParams

Check validity of parameters to the `MSstatsImport` function.

Description

Check validity of parameters to the `MSstatsImport` function.

Usage

`.checkMSstatsParams(
 input, annotation, feature_columns, remove_shared_peptides, remove_single_feature_proteins, feature_cleaning
)

Value

none, throws an error if any of the assertions fail
.checkMultiRun

Check if fractionation exists

Description

Check if fractionation exists

Usage

```r
.checkMultiRun(input)
```

Arguments

- `input` output of `MSstatsPreprocess`

Value

list of two elements: `has_fractions` (logical) indicates if fractions was detected in the input dataset, `is_risky` (logical) indicates if there was a problem with detecting fractionation.

.checkOverlappedFeatures

Check if any features are measured in multiple fractions

Description

Check if any features are measured in multiple fractions

Usage

```r
.checkOverlappedFeatures(input)
```

Arguments

- `input` output of `MSstatsPreprocess`

Value

data.table
.cleanByFeature

Perform by-feature operations.

Description
Perform by-feature operations.

Usage
.cleanByFeature(input, feature_columns, cleaning_control)

Arguments
input data.table preprocessed by one of the cleanRaw* functions.
feature_columns character vector of names of columns that define features.
cleaning_control named list of two or three elements. See the documentation for MSstatsImport for details.

Value
data.table

.cleanRawDIANN
Clean raw Diann files

Description
Clean raw Diann files

Usage
.cleanRawDIANN(
 msstats_object,
 MBR = TRUE,
 quantificationColumn = "FragmentQuantCorrected"
)

Arguments
msstats_object an object of class MSstatsDIANNFiles.
MBR True if analysis was done with match between runs
quantificationColumn
Use 'FragmentQuantCorrected' (default) column for quantified intensities. 'FragmentQuantRaw' can be used instead.
.cleanRawDIAUmpire

Clean raw DIAUmpire files

Description

Clean raw DIAUmpire files

Usage

```r
.cleanRawDIAUmpire(msstats_object, use_frag, use_pept)
```

Arguments

- `msstats_object`: Object that inherits from MSstatsInputFiles class.
- `use_frag`: TRUE will use the selected fragment for each peptide. 'Selected_fragments' column is required.
- `use_pept`: TRUE will use the selected fragment for each protein 'Selected_peptides' column is required.

Value

data.table

.data.table

.cleanRawMaxQuant

Clean raw output from MaxQuant

Description

Clean raw output from MaxQuant

Usage

```r
.cleanRawMaxQuant(
  msstats_object,
  protein_id_col,
  remove_by_site = FALSE,
  channel_columns = "Reporterintensitycorrected"
)
```
Arguments

msstats_object object that inherits from MSstatsInputFiles class.
protein_id_col character, name of a column with names of proteins.
remove_by_site logical, if TRUE, proteins only identified by site will be removed.
channel_columns character, regular expression that identifies channel columns in TMT data.

Value
data.table

Description
Clean raw Metamorpheus files

Usage
.cleanRawMetamorpheus(msstats_object)

Arguments
msstats_object an object of class MSstatsMetamorpheusFiles.

Value
data.table

Description
Clean raw output from OpenMS

Usage
.cleanRawOpenMS(msstats_object)

Arguments
msstats_object an object of class MSstatsSpectroMineFiles.

Value
data.table
.cleanRawOpenSWATH
Clean raw OpenSWATH files

Description

Clean raw OpenSWATH files

Usage

```
cleanRawOpenSWATH(msstats_object)
```

Arguments

- `msstats_object` an object of class `MSstatsSpectroMineFiles`.

Value

data.table

.cleanRawPD
Clean raw Proteome Discoverer data

Description

Clean raw Proteome Discoverer data

Usage

```
cleanRawPD(
  msstats_object,  # an object of class MSstatsSpectroMineFiles.
  quantification_column,  # chr, name of a column used for quantification.
  protein_id_column,  # chr, name of a column with protein IDs.
  sequence_column,  # chr, name of a column used for quantification.
  remove_shared,  # remove shared protein groups.
  remove_protein_groups = TRUE,  # remove protein groups.
  intensity_columns_regexp = "Abundance"  # regular expression for intensity columns.
)
```

Arguments

- `msstats_object` an object of class `MSstatsSpectroMineFiles`.
- `quantification_column` chr, name of a column used for quantification.
- `protein_id_column` chr, name of a column with protein IDs.
- `sequence_column` chr, name of a column used for quantification.
- `remove_shared` remove shared protein groups.
- `remove_protein_groups` remove protein groups.
- `intensity_columns_regexp` regular expression for intensity columns.
.cleanRawPDMSstats

sequence_column
chr, name of a column with peptide sequences.
remove_shared
lgl, if TRUE, shared peptides will be removed.
remove_protein_groups
if TRUE, proteins with numProteins > 1 will be removed.
iintensity_columns_regexp
regular expressions that defines intensity columns. Defaults to "Abundance", which means that columns that contain the word "Abundance" will be treated as corresponding to intensities for different channels.

Value
data.table

Description
Clean raw PD output

Usage
.cleanRawPDMSstats(
 msstats_object,
 quantification_column,
 protein_id_column,
 sequence_column,
 remove_shared
)

Arguments
msstats_object an object of class MSstatsSpectroMineFiles.
quantification_column
chr, name of a column used for quantification.
protein_id_column
chr, name of a column with protein IDs.
sequence_column
chr, name of a column with peptide sequences.
remove_shared lgl, if TRUE, shared peptides will be removed.

Value
data.table
.cleanRawPDTMT \hspace{1cm} \textit{Clean raw TMT data from Proteome Discoverer}

Description

Clean raw TMT data from Proteome Discoverer

Usage

```r
.cleanRawPDTMT(
  msstats_object,
  remove_shared = TRUE,
  remove_protein_groups = TRUE,
  protein_id_column = "ProteinAccessions",
  intensity_columns_regexp = "Abundance"
)
```

Arguments

- `msstats_object` an object of class `MSstatsSpectroMineFiles`
- `remove_shared` lgl, if TRUE, shared peptides will be removed.
- `remove_protein_groups` if TRUE, proteins with `numProteins` > 1 will be removed.
- `protein_id_column` chr, name of a column with protein IDs.
- `intensity_columns_regexp` regular expressions that defines intensity columns. Defaults to "Abundance", which means that columns that contain the word "Abundance" will be treated as corresponding to intensities for different channels.

Value

`data.table`

.cleanRawPhilosopher \hspace{1cm} \textit{Clean raw Philosopher files}

Description

Clean raw Philosopher files
`.cleanRawProgenesis`

Usage

```r
.cleanRawPhilosopher(
  msstats_object,
  protein_id_col,
  peptide_id_col,
  channels,
  remove_shared_peptides
)
```

Arguments

- `msstats_object` object of class MSstatsPhilosopherFiles
- `protein_id_col` character name of a column that identifies proteins
- `peptide_id_col` character name of a column that identifies peptides
- `channels` character vector of channel labels
- `remove_shared_peptides` logical, if TRUE, shared peptides will be removed based on the IsUnique column from Philosopher output

Value

data.table

`.cleanRawProgenesis`

`Clean raw Progenesis output`

Description

Clean raw Progenesis output

Usage

```r
.cleanRawProgenesis(msstats_object, runs, fix_colnames = TRUE)
```

Arguments

- `msstats_object` an object of class MSstatsSpectroMineFiles.
- `runs` chr, vector of Run labels.
- `fix_colnames` lgl, if TRUE, one of the rows will be used as colnames.

Value

data.table
`.cleanRawSkyline`

Clean raw data from Skyline

Description

Clean raw data from Skyline

Usage

`.cleanRawSkyline(msstats_object)`

Arguments

- `msstats_object` an object of class `MSstatsSpectroMineFiles`.

Value

data.table

`.cleanRawSpectroMineTMT`

Clean raw SpectroMine TMT data

Description

Clean raw SpectroMine TMT data

Usage

`.cleanRawSpectroMineTMT(msstats_object)`

Arguments

- `msstats_object` an object of class `MSstatsSpectroMineFiles`.

Value

data.table
.cleanRawSpectronaut Clean raw Spectronaut output.

Description
Clean raw Spectronaut output.

Usage
.cleanRawSpectronaut(msstats_object, intensity)

Arguments
msstats_object an object of class MSstatsSpectronautFiles.
intensity chr, specifies which column will be used for Intensity.

Value
data.table

.countCommonFeatures Get common values from two vectors of features

Description
Get common values from two vectors of features

Usage
.countCommonFeatures(features_1, features_2)

Arguments
features_1 vector of feature names
features_2 vector of feature names

Value
character vector of common values of features_1 and features_2
.fillValues

Set column to a single value

Description

Set column to a single value

Usage

`.fillValues(input, fill_list)`

Arguments

- **input**: data.table preprocessed by one of the `cleanRaw*` functions.
- **fill_list**: named list, names correspond to column names, elements to values that will be used in the columns.

Value

data.table

.filterByPattern

Handle filtering by pattern

Description

Handle filtering by pattern

Usage

`.filterByPattern(input, col_name, patterns, filter, drop)`

Arguments

- **input**: data.table preprocessed by one of the `.cleanRaw*` functions.
- **col_name**: chr, name of the column with peptide sequences.
- **filter**: lgl, if TRUE, peptides will be actually filtered.
- **drop**: lgl, if TRUE, the column will be dropped.
- **pattern**: chr, regular expression - matching peptides will be removed from the data.

Value

data.table
.filterByScore

Filter PSMs / proteins by a given score column.

Description

Filter PSMs / proteins by a given score column.

Usage

.filterByScore(
 input,
 score_column,
 score_threshold,
 direction,
 behavior,
 handle_na = "keep",
 fill_value = NA,
 filter = TRUE,
 drop = TRUE
)

Arguments

input data.table preprocessed by one of the .cleanRaw* functions.
score_column chr, name of the column that contains scores.
score_threshold num, values below or above this threshold will be removed from the data.
direction chr, if "greater" only values above the threshold will be retained, if "smaller" - below the threshold.
behavior chr, if "remove", values below/above the threshold will be removed, if "replace", they will be set to fill_value.
fill_value if behavior = "replace", values below/above the threshold will be replaced with fill_value. Defaults to NA.
filter If TRUE, filtering will be performed.
drop if TRUE, score_column will be removed.

Value

data.table
.filterExact
Filter out specified symbols.

Description

Filter out specified symbols.

Usage

```r
.filterExact(  
  input,  
  col_name,  
  filter_symbols,  
  behavior,  
  fill_value,  
  filter,  
  drop  
)
```

Arguments

- `input`: data.table preprocessed by one of the .cleanRaw* functions.
- `col_name`: chr, name of the column that will be the base for filtering.
- `filter_symbols`: character vector of symbols that will be removed.
- `behavior`: chr, if "remove", values below/above the threshold will be removed, if "replace", they will be set to `fill_value`.
- `fill_value`: if `behavior` = "replace", values below/above the threshold will be replaced with `fill_value`. Defaults to NA.
- `filter`: lgl, if TRUE, decoy proteins will be removed from the data.
- `drop`: lgl, if TRUE, column that contains decoy proteins will be dropped.

Value

data.table

.filterFewMeasurements
Remove features with a small number of (non-missing) measurements across runs

Description

Remove features with a small number of (non-missing) measurements across runs
Usage

.filterFewMeasurements(
 input,
 min_intensity,
 remove_few,
 feature_columns = NULL
)

Arguments

input data.table pre-processed by one of the .cleanRaw* functions.
min_intensity minimum intensity that will be considered non-missing.
remove_few logical, if TRUE, features that have less than three measurements will be removed. If FALSE, only features with all missing runs will be removed.
features_columns chr, vector of names of columns that define features.

Value
data.table

.filterManyColumns Filter rows that contain specified symbols in multiple columns.

Description
Filter rows that contain specified symbols in multiple columns.

Usage

.filterManyColumns(input, filter_columns, filter_symbols)

Arguments

input data.table preprocessed by one of the cleanRaw* functions.
filter_columns chr, names of columns in which elements will be matched and removed.
filter_symbols chr, vector of strings. Rows with corresponding elements in filter_columns will be removed.

Value
data.table
.filterOverlapped
Remove overlapped features

Description
Remove overlapped features

Usage
```
.filteredOverlapped(input, summary_function, overlapped_features)
```

Arguments
- `input`: data.table preprocessed by one of the .cleanRaw* functions and merged with annotation.
- `summary_function`: summary function (mean, sum, max) that will be used to pick one feature from multiple overlapping features.
- `overlapped_features`: features that overlap.

Value
data.table

.findAvailable
Select an available options from a set of possibilities

Description
Select an available options from a set of possibilities

Usage
```
.findAvailable(possibilities, option_set, fall_back = NULL)
```

Arguments
- `possibilities`: possible legal values of a variable.
- `option_set`: set of values that includes one of the possibilities.
- `fall_back`: if there is none of the possibilities in option_set, or there are multiple hits, default to fall_back.

Value
same as option_set, usually character
.fixBasicColumns

Description
Remove underscores from sequences and change intensity type to numeric

Usage
.fixBasicColumns(input)

Arguments
input data.table

Value
data.table

.fixColumnTypes
Change classes of multiple columns

Description
Change classes of multiple columns

Usage
.fixColumnTypes(
 input,
 numeric_columns = NULL,
 character_columns = NULL,
 factor_columns = NULL
)

Arguments
input data.table preprocessed by one of the cleanRaw* functions.
numeric_columns chr, vector of names of columns that will be converted to numeric.
character_columns chr, vector of names of columns that will be converted to character.
factor_columns chr, vector of names of columns that will be converted to factor.

Value
data.table
.fixMissingValues Change labels for missing values

Description
Change labels for missing values

Usage
.fixtureMissingValues(input, fix_missing = NULL)

Arguments
- input: output of MSstatsPreprocess
- fix_missing: missing values can be labeled by NA, 0 or both. If NULL, data were processed by Skyline, so missing values will be denoted by both NA and 0. If "na_to_zero", NA values will be replaced by 0. If "zero_to_na", 0 values will be replaced by NA

Value
data.table

.getChannelColumns Get intensity columns from wide-format data

Description
Get intensity columns from wide-format data

Usage
.getChannelColumns(col_names, ...)

Arguments
- col_names: names of columns, where some of the columns store intensity value for different channels
- ...: varying number of strings that define channel columns.

Value
character vector of column names that correspond to channel intensities
.getCorrectFraction

Get a name of fraction with the largest number of measurements or the largest average intensity

Description

Get a name of fraction with the largest number of measurements or the largest average intensity

Usage

.getCorrectFraction(input)

Arguments

input output of MSstatsPreprocess

Value

character - label of the fraction that has most measurements or highest mean intensity for a given feature

.getDataTable

Read file from a provided path or convert given data.frame to data.table

Description

Read file from a provided path or convert given data.frame to data.table

Usage

.getDataTable(input, ...)

Arguments

input report from a signal processing tool or a path to it
... additional parameters for data.table::fread

Value

data.table
.getFullDesign

Create a data.frame of each combination of values for given variables

Description
Create a data.frame of each combination of values for given variables

Usage
.getFullDesign(input, group_col, feature_col, measurement_col, is_tmt)

Arguments
- **input**: output of MSstatsPreprocess
- **group_col**: name of column in input. Combination of values of feature_col and measurement_col will be created within each unique value of this column
- **is_tmt**: if TRUE, data will be treated as coming from TMT experiment.
- **‘feature_column’**: name of the column that labels features
- **‘measurement_col’**: name of a column with measurement labels - Runs in label-free case, Channels in TMT case.

Value
data.table

.getMissingRunsPerFeature

Get names of missing runs

Description
Get names of missing runs

Usage
.getMissingRunsPerFeature(input)

Arguments
- **input**: output of MSstatsPreprocess

Value
data.table
.getOverlappingFeatures

Get features that are overlapped among multiple runs

Description
Get features that are overlapped among multiple runs

Usage
.getOverlappingFeatures(input)

Arguments
input: data.table preprocessed by one of the .cleanRaw* functions and merged with annotation.

Value
data.table

.handleFiltering
Handle PSM/proteins scores

Description
Handle PSM/proteins scores

Usage
.handleFiltering(input, score_filtering, exact_filtering, pattern_filtering)

Arguments
input: data.table preprocessed by one of the .cleanRaw* functions.
score_filtering: list of by-score filtering controls.
exact_filtering: list of exact filtering controls.
pattern_filtering: list of by-pattern filtering controls.

Value
data.table
.handleFractions

Check if there are overlapping features and remove if needed

Description

Check if there are overlapping features and remove if needed

Usage

.handleFractions(input)

Arguments

input: data.table preprocessed by one of the .cleanRaw* functions and merged with annotation.

Value

data.table

.handleFractionsLF

Handle overlapping features

Description

Handle overlapping features

Usage

.handleFractionsLF(input)

Arguments

input: output of MSstatsPreprocess

Value

data.table
.handleFractionsTMT

Remove peptide ions overlapped among multiple fractions of the same biological mixture

Description
Remove peptide ions overlapped among multiple fractions of the same biological mixture

Usage
.handleFractionsTMT(input)

Arguments
input
data.table preprocessed by one of the .cleanRaw* functions and merged with annotation.

Value
data.table

.handleIsotopicPeaks

Handle isotopic peaks

Description
Handle isotopic peaks

Usage
.handleIsotopicPeaks(input, aggregate = FALSE)

Arguments
input
data.table preprocessed by one of the cleanRaw* functions.
aggregate
if TRUE, isotopic peaks will be summed.

Value
data.table
.handleSharedPeptides Handle shared peptides.

Description
Handle shared peptides.

Usage
.handleSharedPeptides(
 input,
 remove_shared = TRUE,
 protein_column = "ProteinName",
 peptide_column = "PeptideSequence"
)

Arguments
input data.table pre-processed by one of the .cleanRaw* functions.
remove_shared lgl, if TRUE, shared peptides will be removed
protein_column chr, name of the column with names of proteins.
peptide_column chr, name of the column with peptide sequences.

Value
data.table

.handleSingleFeaturePerProtein

Remove proteins only identified by a single feature

Description
Remove proteins only identified by a single feature

Usage
.handleSingleFeaturePerProtein(input, remove_single_feature)

Arguments
input data.table pre-processed by one of the .cleanRaw* functions.
remove_single_feature lgl, if TRUE, proteins with a single feature will be removed.
Value

 TRUE invisibly if message was logged

.logConverterOptions

Description

Log information about converter options

Usage

.logConverterOptions(
 feature_columns,
 remove_shared_peptides,
 remove_single_feature_proteins,
 feature_cleaning,
 is_tmt = FALSE
)

Arguments

feature_columns
character vector of names of columns that define spectral features.

remove_shared_peptides
logical, if TRUE shared peptides will be removed.

remove_single_feature_proteins
logical, if TRUE, proteins that only have one feature will be removed.

feature_cleaning
named list with maximum two (for MSstats converters) or three (for MSstatsTMT converter) elements. If handle_few_measurements is set to "remove", feature with less than three measurements will be removed (otherwise it should be equal to "keep"). summarize_multiple_psms is a function that will be used to aggregate multiple feature measurements in a run. It should return a scalar and accept an na.rm parameter. For MSstatsTMT converters, setting remove_psms_with_any_missing will remove features which have missing values in a run from that run.

is_tmt
If TRUE, the dataset comes from a TMT experiment

Value

 TRUE invisibly if message was logged
.logSuccess Make a message about successful data cleaning/importing

Description
Make a message about successful data cleaning/importing

Usage
.logSuccess(tool, event)

Arguments

tool name of a signal processing tool

Value
TRUE invisibly if logging was successful

.makeBalancedDesign Fill missing rows to create balanced design

Description
Fill missing rows to create balanced design

Usage
.makeBalancedDesign(input, fill_missing)

Arguments

input output of MSstatsPreprocess
fill_missing if TRUE, missing Intensities values will be added to data and marked as NA

Value
data.table
.makeExactFilterMessage

Make a message about filtering based on fixed values

Description

Make a message about filtering based on fixed values

Usage

.makeExactFilterMessage(col_name, filter_symbols, behavior, fill_value)

Arguments

col_name chr, name of the column that will be the base for filtering
filter_symbols character vector of symbols that will be removed
behavior chr, if "remove", values below/above the threshold will be removed, if "replace", they will be set to fill_value.
fill_value if behavior = "replace", values below/above the threshold will be replaced with fill_value. Defaults to NA.

Value

character - message

.makeScoreFilterMessage

Make a message about filtering based on a score

Description

Make a message about filtering based on a score

Usage

.makeScoreFilterMessage(
 score_column,
 score_threshold,
 direction,
 behavior,
 fill_value
)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>score_column</td>
<td>chr, name of the column that contains scores.</td>
</tr>
<tr>
<td>score_threshold</td>
<td>num, values below or above this threshold will be removed from the data.</td>
</tr>
<tr>
<td>direction</td>
<td>chr, if "greater" only values above the threshold will be retained, if "smaller" - below the threshold.</td>
</tr>
<tr>
<td>behavior</td>
<td>chr, if "remove", values below/above the threshold will be removed, if "replace", they will be set to fill_value.</td>
</tr>
<tr>
<td>fill_value</td>
<td>if behavior = "replace", values below/above the threshold will be replaced with fill_value. Defaults to NA.</td>
</tr>
</tbody>
</table>

Value

character - message

Description

Merge annotation with feature data

Usage

`.mergeAnnotation(input, annotation)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>annotation</td>
<td>data.table with annotation</td>
</tr>
<tr>
<td>data.table</td>
<td>preprocessed by one of the .cleanRaw* functions.</td>
</tr>
</tbody>
</table>

Value

data.table
.MSstatsFormat

Description
Output format for further analysis by MSstats

Usage
.MSstatsFormat(input)

Arguments
input data.table

Value
object of class MSstatsValidated that inherits from data.frame

.nullAppender

Description
A convenience function written to save time on checking if messages should be printed or logs should be written to a file.

Usage
.nullAppender(level, ...)

Arguments
level log level
... messages - ignored

Value
NULL invisibly
.onLoad

Set default logging object when package is loaded

Description
Set default logging object when package is loaded

Usage
.onLoad(...)

Arguments
... ignored

Value
none, sets options called MSstatsLog and MSstatsMsg

.removeOverlappingFeatures

Replace intensities of overlapped fractions with NA, keeping only one fraction

Description
Replace intensities of overlapped fractions with NA, keeping only one fraction

Usage
.removeOverlappingFeatures(input)

Arguments
input output of MSstatsPreprocess

Value
data.table
.removeSharedPeptides

Remove peptides assigned to more than one protein.

Description
Remove peptides assigned to more than one protein.

Usage
.removeSharedPeptides(input, protein_column, peptide_column)

Arguments
input data.table pre-processed by one of the .cleanRaw* functions.
protein_column chr, name of the column with names of proteins.
peptide_column chr, name of the column with peptide sequences.

Value
data.table

.selectMSstatsColumns
Select columns for MSstats format

Description
Select columns for MSstats format

Usage
.selectMSstatsColumns(input)

Arguments
input data.table

Value
data.table
.sharedParametersAmongConverters

A dummy function to store shared documentation items for converters.

Description

A dummy function to store shared documentation items for converters.

Usage

`.sharedParametersAmongConverters()`

Arguments

- `removeFewMeasurements`
 TRUE (default) will remove the features that have 1 or 2 measurements across runs.

- `useUniquePeptide`
 TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.

- `summaryforMultipleRows`
 max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.

- `removeProtein_with1Feature`
 TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.

- `removeProtein_with1Peptide`
 TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

- `removeOxidationMpeptides`
 TRUE will remove the peptides including ’oxidation (M)’ in modification. FALSE is default.

- `removeMpeptides`
 TRUE will remove the peptides including ’M’ sequence. FALSE is default.

- `use_log_file`
 logical. If TRUE, information about data processing will be saved to a file.

- `append`
 logical. If TRUE, information about data processing will be added to an existing log file.

- `verbose`
 logical. If TRUE, information about data processing will be printed to the console.

- `log_file_path`
 character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If `append = TRUE`, has to be a valid path to a file.

... additional parameters to `data.table::fread`.
.standardizeColnames Change column names to match read.table/read.csv/read.delim conventions

Description
Change column names to match read.table/read.csv/read.delim conventions

Usage
.standardizeColnames(col_names)

Arguments

- col_names chr, vector of column names

Value
character vector

.summarizeMultipleMeasurements
Summarize multiple measurements per feature in a single run

Description
Summarize multiple measurements per feature in a single run

Usage
.summarizeMultipleMeasurements(input, aggregator, feature_columns)

Arguments

- input data.table pre-processed by one of the .cleanRaw* functions.
- aggregator function that will be used to aggregate duplicated values.
- feature_columns chr, vector of names of columns that define features.

Value
data.table
.summarizeMultiplePSMs

Pick one PSM from a data.table of several PSMs.

Description

Pick one PSM from a data.table of several PSMs.

Usage

.summarizeMultiplePSMs(input, summary_function)

Arguments

input data.table preprocessed by one of the .cleanRaw* functions.
summary_function function that will be used to aggregate intensities if needed.

Value

character - label of a chosen PSM

.validatePDTMTInputColumns

Helper method to validate input has necessary columns

Description

Helper method to validate input has necessary columns

Usage

.validatePDTMTInputColumns(
 pd_input,
 protein_id_column,
 num_proteins_column,
 channels
)

Arguments

pd_input data.frame input
protein_id_column column name for protein passed from user
num_proteins_column column name for number of protein groups passed from user
channels list of column names for channels
as.data.frame.MSstatsValidated

Convert output of converters to data.frame

Description

Convert output of converters to data.frame

Usage

S3 method for class 'MSstatsValidated'
as.data.frame(x, ...)

Arguments

x object of class MSstatsValidated
...

Additional arguments to be passed to or from other methods.

Value

data.frame

as.data.table.MSstatsValidated

Convert output of converters to data.table

Description

Convert output of converters to data.table

Usage

S3 method for class 'MSstatsValidated'
as.data.table(x, ...)

Arguments

x object of class MSstatsValidated
...

Additional arguments to be passed to or from other methods.

Value

data.tables
DIANNtoMSstatsFormat Import Diann files

Description
Import Diann files

Usage
DIANNtoMSstatsFormat(
 input,
 annotation = NULL,
 global_qvalue_cutoff = 0.01,
 qvalue_cutoff = 0.01,
 pg_qvalue_cutoff = 0.01,
 useUniquePeptide = TRUE,
 removeFewMeasurements = TRUE,
 removeOxidationMpeptides = TRUE,
 removeProtein_with1Feature = TRUE,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 MBR = TRUE,
 quantificationColumn = "FragmentQuantCorrected",
 ...
)

Arguments
input name of MSstats input report from Diann, which includes feature-level data.
annotation name of 'annotation.txt' data which includes Condition, BioReplicate, Run.
global_qvalue_cutoff The global qvalue cutoff
qvalue_cutoff local qvalue cutoff for library
pg_qvalue_cutoff local qvalue cutoff for protein groups Run should be the same as filename.
useUniquePeptide should unique pepties be removed
removeFewMeasurements should proteins with few measurements be removed
removeOxidationMpeptides should peptides with oxidation be removed
removeProtein_with1Feature should proteins with a single feature be removed
DIAUmpiretoMSstatsFormat

Import DIA-Umpire files

Description

Import DIA-Umpire files

use_log_file
logical. If TRUE, information about data processing will be saved to a file.

append
logical. If TRUE, information about data processing will be added to an existing log file.

verbose
logical. If TRUE, information about data processing will be printed to the console.

log_file_path
character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.

MBR
True if analysis was done with match between runs

quantificationColumn
Use 'FragmentQuantCorrected'(default) column for quantified intensities. 'FragmentQuantRaw' can be used instead.

... additional parameters to data.table::fread.

Value
data.frame in the MSstats required format.

Author(s)
Elijah Willie

Examples

input_file_path = system.file("tinytest/raw_data/DIANN/diann_input.tsv", package="MSstatsConvert")
annotation_file_path = system.file("tinytest/raw_data/DIANN/annotation.csv", package = "MSstatsConvert")
input = data.table::fread(input_file_path)
annot = data.table::fread(annotation_file_path)
output = DIANNtoMSstatsFormat(input, annotation = annot, MBR = FALSE, use_log_file = FALSE)
head(output)
Usage

DIAUmpiretoMSstatsFormat(
 raw.frag,
 raw.pep,
 raw.pro,
 annotation,
 useSelectedFrag = TRUE,
 useSelectedPep = TRUE,
 removeFewMeasurements = TRUE,
 removeProtein_with1Feature = FALSE,
 summaryforMultipleRows = max,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 ...
)

Arguments

raw.frag name of FragSummary_date.xls data, which includes feature-level data.
raw.pep name of PeptideSummary_date.xls data, which includes selected fragments information.
raw.pro name of ProteinSummary_date.xls data, which includes selected peptides information.
annotation name of annotation data which includes Condition, BioReplicate, Run information.
useSelectedFrag TRUE will use the selected fragment for each peptide. 'Selected_fragments' column is required.
useSelectedPep TRUE will use the selected peptide for each protein. 'Selected_peptides' column is required.
removeFewMeasurements TRUE (default) will remove the features that have 1 or 2 measurements across runs.
removeProtein_with1Feature TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.
summaryforMultipleRows max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.
use_log_file logical. If TRUE, information about data processing will be saved to a file.
append logical. If TRUE, information about data processing will be added to an existing log file.
verbose logical. If TRUE, information about data processing will be printed to the console.
fragpipetomsstatsformat

Description

Import FragPipe files

Usage

fragpipetomsstatsformat(
 input,
 useuniquepeptide = TRUE,
 removewfewmeasurements = TRUE,
 log_file_path = character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.
 ... additional parameters to data.table::fread.
)

Value
data.frame in the MSstats required format.

Author(s)

Meena Choi, Olga Vitek

Examples

diau_frag = system.file("tinytest/raw_data/DIAUmpire/dia_frag.csv", package = "MSstatsConvert")
diau_pept = system.file("tinytest/raw_data/DIAUmpire/dia_pept.csv", package = "MSstatsConvert")
diau_prot = system.file("tinytest/raw_data/DIAUmpire/dia_prot.csv", package = "MSstatsConvert")
annot = system.file("tinytest/raw_data/DIAUmpire/annot_diau.csv", package = "MSstatsConvert")
diau_frag = data.table::fread(diau_frag)
diau_pept = data.table::fread(diau_pept)
diau_prot = data.table::fread(diau_prot)
annot = data.table::fread(annot)
diau_frag = diau_frag[, lapply(.SD, function(x) if (is.integer(x)) as.numeric(x) else x)]
In case numeric columns are not interpreted correctly

diau_imported = DIAUmpiretoMSstatsFormat(diau_frag, diau_pept, diau_prot, annot, use_log_file = FALSE)
head(diau_imported)
removeProtein_with1Feature = FALSE,
summaryforMultipleRows = max,
use_log_file = TRUE,
append = FALSE,
verbose = TRUE,
log_file_path = NULL,
...
)

Arguments

input name of FragPipe msstats.csv export. ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity are required.

useUniquePeptide TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.

removeFewMeasurements TRUE (default) will remove the features that have 1 or 2 measurements across runs.

removeProtein_with1Feature TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.

summaryforMultipleRows max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.

use_log_file logical. If TRUE, information about data processing will be saved to a file.

append logical. If TRUE, information about data processing will be added to an existing log file.

verbose logical. If TRUE, information about data processing will be printed to the console.

log_file_path character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.

... additional parameters to data.table::fread.

Value
data.frame in the MSstats required format.

Author(s)
Devon Kohler
getDataType

Examples

fragpipe_raw = system.file("tinytest/raw_data/FragPipe/fragpipe_input.csv", package = "MSstatsConvert")
fragpipe_raw = data.table::fread(fragpipe_raw)
fragpipe_imported = FragPipeToMSstatsFormat(fragpipe_raw, use_log_file = FALSE)
head(fragpipe_imported)

dataTable

getDataType

Get type of dataset from an MSstatsInputFiles object.

Description

Get type of dataset from an MSstatsInputFiles object.

Usage

ggetDataType(msstats_object)

S4 method for signature 'MSstatsInputFiles'
ggetDataType(msstats_object)

Arguments

msstats_object object that inherits from MSstatsInputFiles class.

Value

character - label of a data type. Currently, "MSstats" or "MSstatsTMT"
character "MSstats" or "MSstatsTMT".

Examples

evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert")
pq_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert")
evidence = read.csv(evidence_path)
pq = read.csv(pq_path)
imported = MSstatsImport(list(evidence = evidence, protein_groups = pq), "MSstats", "MaxQuant")
class(imported)
getDataType(imported) # "MSstats"
getInputFile

Get one of files contained in an instance of MSstatsInputFiles class.

Description

Get one of files contained in an instance of MSstatsInputFiles class.

Usage

```
getInputFile(msstats_object, file_type)
## S4 method for signature 'MSstatsInputFiles'
getInputFile(msstats_object, file_type = "input")
## S4 method for signature 'MSstatsPhilosopherFiles'
getInputFile(msstats_object, file_type = "input")
```

Arguments

- `msstats_object`: object that inherits from MSstatsPhilosopherFiles class.
- `file_type`: character name of a type file. Usually equal to "input".

Value

data.table

data.table

data.table

Examples

```r
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv",
                           package = "MSstatsConvert")
pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv",
                      package = "MSstatsConvert")
evidence = read.csv(evidence_path)
pg = read.csv(pg_path)
imported = MSstatsImport(list(evidence = evidence, protein_groups = pg),
                         "MSstats", "MaxQuant")
class(imported)
head(getInputFile(imported, "evidence"))
```
MaxQtoMSstatsFormat

Import MaxQuant files

Description
Import MaxQuant files

Usage
MaxQtoMSstatsFormat(
evidence,
annotation,
proteinGroups,
proteinID = "Proteins",
useUniquePeptide = TRUE,
summaryforMultipleRows = max,
removeFewMeasurements = TRUE,
removeMpeptides = FALSE,
removeOxidationMpeptides = FALSE,
removeProtein_with1Peptide = FALSE,
use_log_file = TRUE,
append = FALSE,
verbose = TRUE,
log_file_path = NULL,
...)

Arguments

- **evidence**: name of 'evidence.txt' data, which includes feature-level data.
- **annotation**: name of 'annotation.txt' data which includes Raw.file, Condition, BioReplicate, Run, IsotopeLabelType information.
- **proteinGroups**: name of 'proteinGroups.txt' data. It needs to matching protein group ID. If proteinGroups=NULL, use 'Proteins' column in 'evidence.txt'.
- **proteinID**: 'Proteins' (default) or 'Leading.razor.protein' for Protein ID.
- **useUniquePeptide**: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- **summaryforMultipleRows**: max (default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.
- **removeFewMeasurements**: TRUE (default) will remove the features that have 1 or 2 measurements across runs.
- **removeMpeptides**: TRUE will remove the peptides including 'M' sequence. FALSE is default.
MetamorpheusToMSstatsFormat

Description

Import Metamorpheus files

Value

data.frame in the MSstats required format.

Note

Warning: MSstats does not support for metabolic labeling or iTRAQ experiments.

Author(s)

Meena Choi, Olga Vitek.

Examples

```r
mq_ev = data.table::fread(system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert"))
mq_pg = data.table::fread(system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert"))
annot = data.table::fread(system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert"))
maxq_imported = MaxQtoMSstatsFormat(mq_ev, annot, mq_pg, use_log_file = FALSE)
head(maxq_imported)
```
Usage

MetamorpheusToMSstatsFormat(
 input,
 annotation = NULL,
 useUniquePeptide = TRUE,
 removeFewMeasurements = TRUE,
 removeProtein_with1Feature = FALSE,
 summaryforMultipleRows = max,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 ...
)

Arguments

- **input**: name of Metamorpheus output file, which is tabular format. Use the AllQuantifiedPeaks.tsv file from the Metamorpheus output.
- **annotation**: name of 'annotation.txt' data which includes Condition, BioReplicate.
- **useUniquePeptide**: TRUE (default) removes peptides that are assigned for more than one protein. We assume to use unique peptide for each protein.
- **removeFewMeasurements**: TRUE (default) will remove the features that have 1 or 2 measurements across runs.
- **removeProtein_with1Feature**: TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.
- **summaryforMultipleRows**: max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.
- **use_log_file**: logical. If TRUE, information about data processing will be saved to a file.
- **append**: logical. If TRUE, information about data processing will be added to an existing log file.
- **verbose**: logical. If TRUE, information about data processing will be printed to the console.
- **log_file_path**: character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.
- **...**: additional parameters to data.table::fread.

Value

data.frame in the MSstats required format.
MSstatsBalancedDesign

Creates balanced design by removing overlapping fractions and filling incomplete rows

Description

Creates balanced design by removing overlapping fractions and filling incomplete rows

Usage

```r
MSstatsBalancedDesign(
  input,
  feature_columns,
  fill_incomplete = TRUE,
  handle_fractions = TRUE,
  fix_missing = NULL,
  remove_few = TRUE
)
```

Arguments

- `input`: data.table processed by the `MSstatsPreprocess` function
- `feature_columns`: str, names of columns that define spectral features
- `fill_incomplete`: if TRUE (default), Intensity values for missing runs will be added as NA
- `handle_fractions`: if TRUE (default), overlapping fractions will be resolved
- `fix_missing`: str, optional. Defaults to NULL, which means no action. If not NULL, must be one of the options: "zero_to_na" or "na_to_zero". If "zero_to_na", Intensity values equal exactly to 0 will be converted to NA. If "na_to_zero", missing values will be replaced by zeros.
remove_few

Igl, if TRUE, features with one or two measurements across runs will be removed.

Value

data.frame of class MSstatsValidated

Examples

unbalanced_data = system.file("tinytest/raw_data/unbalanced_data.csv", package = "MSstatsConvert")
unbalanced_data = data.table::as.data.table(read.csv(unbalanced_data))
balanced = MSstatsBalancedDesign(unbalanced_data,
 c("PeptideSequence", "PrecursorCharge", "FragmentIon", "ProductCharge"))
dim(balanced) # Now balanced has additional rows (with Intensity = NA)
for runs that were not included in the unbalanced_data table

MSstatsClean

Clean files generated by a signal processing tools.

Description

Clean files generated by a signal processing tools.
Clean DIAUmpire files
Clean MaxQuant files
Clean OpenMS files
Clean OpenSWATH files
Clean Progenesis files
Clean ProteomeDiscoverer files
Clean Skyline files
Clean SpectroMine files
Clean Spectronaut files
Clean Philosopher files
Clean DIA-NN files
Clean Metamorpheus files
Usage

MSstatsClean(msstats_object, ...)

S4 method for signature 'MSstatsDIAUmpireFiles'
MSstatsClean(msstats_object, use_frag, use_pept)

S4 method for signature 'MSstatsMaxQuantFiles'
MSstatsClean(msstats_object, protein_id_col, remove_by_site = FALSE, channel_columns = "Reporterintensitycorrected")

S4 method for signature 'MSstatsOpenMSFiles'
MSstatsClean(msstats_object)

S4 method for signature 'MSstatsOpenSWATHFiles'
MSstatsClean(msstats_object)

S4 method for signature 'MSstatsProgenesisFiles'
MSstatsClean(msstats_object, runs, fix_colnames = TRUE)

S4 method for signature 'MSstatsProteomeDiscovererFiles'
MSstatsClean(msstats_object, quantification_column, protein_id_column, sequence_column, remove_shared, remove_protein_groups = TRUE, intensity_columns_regexp = "Abundance")

S4 method for signature 'MSstatsSkylineFiles'
MSstatsClean(msstats_object)

S4 method for signature 'MSstatsSpectroMineFiles'
MSstatsClean(msstats_object)

S4 method for signature 'MSstatsSpectronautFiles'
MSstatsClean(msstats_object, intensity)

S4 method for signature 'MSstatsPhilosopherFiles'
MSstatsClean(msstats_object, protein_id_col, peptide_id_col,
MSstatsClean

channels,
remove_shared_peptides
)

S4 method for signature 'MSstatsDIANNFiles'
MSstatsClean(
 msstats_object,
 MBR = TRUE,
 quantificationColumn = "FragmentQuantCorrected"
)

S4 method for signature 'MSstatsMetamorpheusFiles'
MSstatsClean(msstats_object)

Arguments

msstats_object object that inherits from MSstatsInputFiles class.
...
additional parameter to specific cleaning functions.
use_frag TRUE will use the selected fragment for each peptide. 'Selected_fragments' column is required.
use_pept TRUE will use the selected fragment for each protein 'Selected_peptides' column is required.
protein_id_col character, name of a column with names of proteins.
remove_by_site logical, if TRUE, proteins only identified by site will be removed.
channel_columns character, regular expression that identifies channel columns in TMT data.
rungs chr, vector of Run labels.
fix_colnames lgl, if TRUE, one of the rows will be used as colnames.
quantification_column chr, name of a column used for quantification.
protein_id_column chr, name of a column with protein IDs.
sequence_column chr, name of a column with peptide sequences.
remove_shared lgl, if TRUE, shared peptides will be removed.
remove_protein_groups if TRUE, proteins with numProteins > 1 will be removed.
intensity_columns_regexp regular expressions that defines intensity columns. Defaults to "Abundance", which means that columns that contain the word "Abundance" will be treated as corresponding to intensities for different channels.
intensity chr, specifies which column will be used for Intensity.
peptide_id_col character name of a column that identifies peptides
channels character vector of channel labels
remove_shared_peptides
 logical, if TRUE, shared peptides will be removed based on the IsUnique column from Philosopher output
MBR
 True if analysis was done with match between runs
quantificationColumn
 Use 'FragmentQuantCorrected' (default) column for quantified intensities. 'FragmentQuantRaw' can be used instead.

Value
 data.table
 data.table

Examples
 evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert")
 pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert")
 evidence = read.csv(evidence_path)
 pg = read.csv(pg_path)
 imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant")
 cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins")
 head(cleaned_data)
Main functions

- `MSstatsLogsSettings` for logs management,
- `MSstatsImport` for importing files created by signal processing tools,
- `MSstatsClean` for re-formatting imported files into a consistent format,
- `MSstatsPreprocess` for preprocessing cleaned files,
- `MSstatsBalancedDesign` for handling fractions and creating balanced data.

MSstatsImport
Import files from signal processing tools.

Description

Import files from signal processing tools.

Usage

```r
MSstatsImport(input_files, type, tool, tool_version = NULL, ...)
```

Arguments

- `input_files`
 list of paths to input files or `data.frame` objects. Interpretation of this parameter depends on values of parameters `type` and `tool`.
- `type`
 chr, "MSstats" or "MSstatsTMT".
- `tool`
 chr, name of a signal processing tool that generated input files.
- `tool_version`
 not implemented yet. In the future, this parameter will allow handling different versions of each signal processing tools.
- `...`
 optional additional parameters to `data.table::fread`.

Value

an object of class `MSstatsInputFiles`.

Examples

```r
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert")
pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert")
evidence = read.csv(evidence_path)
pg = read.csv(pg_path)
e evidence, protein_groups = pg), "MSstats", "MaxQuant")
class(imported)
head(getInputFile(imported, "evidence"))
```
Class to model files that describe a single MS dataset.

Description

Class to model files that describe a single MS dataset.

- **MSstatsDIAUmpireFiles**: class for DIAUmpire files.
- **MSstatsMaxQuantFiles**: class for MaxQuant files.
- **MSstatsOpenMSFiles**: class for OpenMS files.
- **MSstatsOpenSWATHFiles**: class for OpenSWATH files.
- **MSstatsProgenesisFiles**: class for Progenesis files.
- **MSstatsProteomeDiscovererFiles**: class for ProteomeDiscoverer files.
- **MSstatsSkylineFiles**: class for Skyline files.
- **MSstatsSpectroMineFiles**: class for SpectroMine files.
- **MSstatsSpectronautFiles**: class for Spectronaut files.
- **MSstatsPhilosopherFiles**: class for Philosopher files.
- **MSstatsDIANNFiles**: class for DIA-NN files.
- **MSstatsFragPipeFiles**: class for FragPipe files.
- **MSstatsMetamorpheusFiles**: class for Metamorpheus files.

Slots

- **files** named list of files generated by a signal processing tools. In most cases, this will be a single file named **input**. In some cases, multiple files are used, for example MaxQuant outputs **evidence** and **proteinGroups** files.

- **type** character: "MSstats" or "MSstatsTMT".

- **tool** character: name of a signal processing tools that generated the output. Possible values are: DIAUmpire, MaxQuant, OpenMS, OpenSWATH, Progenesis, ProteomeDiscoverer, Skyline, SpectroMine, Spectronaut.

- **version** description of a software version of the signal processing tool. Not implemented yet.
MSstatsLogsSettings

Set how MSstats will log information from data processing

Description

Set how MSstats will log information from data processing

Usage

MSstatsLogsSettings(
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 base = "MSstats_log_",
 pkg_name = "MSstats"
)

Arguments

use_log_file logical. If TRUE, information about data processing will be saved to a file.
append logical. If TRUE, information about data processing will be added to an existing log file.
verbose logical. If TRUE, information about data processing will be printed to the console.
log_file_path character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.
base start of the file name.
pkg_name currently "MSstats", "MSstatsPTM" or "MSstatsTMT". Each package can use its own separate log settings.

Value

TRUE invisibly in case of successful logging setup.

Examples

No logging and no messages
MSstatsLogsSettings(FALSE, FALSE, FALSE)
Log, but do not display messages
MSstatsLogsSettings(TRUE, FALSE, FALSE)
Log to an existing file
file.create("new_log.log")
MSstatsLogsSettings(TRUE, TRUE, log_file_path = "new_log.log")
Do not log, but display messages
MSstatsLogsSettings(FALSE)
MSstatsMakeAnnotation Create annotation

Description

Create annotation

Usage

MSstatsMakeAnnotation(input, annotation, ...)

Arguments

input data.table preprocessed by the MSstatsClean function
annotation data.table
... key-value pairs, where keys are names of columns of annotation

Value

data.table

Examples

evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert")
pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert")
evidence = read.csv(evidence_path)
pg = read.csv(pg_path)
imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant")
cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins")
annot_path = system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert")
mq_annot = MSstatsMakeAnnotation(cleaned_data, read.csv(annot_path), Run = "Rawfile")
head(mq_annot)
MSstatsPreprocess

Preprocess outputs from MS signal processing tools for analysis with MSstats

Description

Preprocess outputs from MS signal processing tools for analysis with MSstats

Usage

MSstatsPreprocess(
 input,
 annotation,
 feature_columns,
 remove_shared_peptides = TRUE,
 remove_single_feature_proteins = TRUE,
 feature_cleaning = list(remove_features_with_few_measurements = TRUE,
 summarize_multiple_psms = max),
 score_filtering = list(),
 exact_filtering = list(),
 pattern_filtering = list(),
 columns_to_fill = list(),
 aggregate_isotopic = FALSE,
 ...
)

Arguments

input data.table processed by the MSstatsClean function.
annotation annotation file generated by a signal processing tool.
feature_columns character vector of names of columns that define spectral features.
remove_shared_peptides logical, if TRUE shared peptides will be removed.
remove_single_feature_proteins logical, if TRUE, proteins that only have one feature will be removed.
feature_cleaning named list with maximum two (for MSstats converters) or three (for MSstatsTMT converter) elements. If handle_few_measurements is set to "remove", feature with less than three measurements will be removed (otherwise it should be equal to "keep"). summarize_multiple_psms is a function that will be used to aggregate multiple feature measurements in a run. It should return a scalar and accept an na.rm parameter. For MSstatsTMT converters, setting remove_psms_with_any_missing will remove features which have missing values in a run from that run.
score_filtering
 a list of named lists that specify filtering options. Details are provided in the vignette.

exact_filtering
 a list of named lists that specify filtering options. Details are provided in the vignette.

pattern_filtering
 a list of named lists that specify filtering options. Details are provided in the vignette.

columns_to_fill
 a named list of scalars. If provided, columns with names defined by the names of this list and values corresponding to its elements will be added to the output data.frame.

aggregate_isotopic
 logical. If TRUE, isotopic peaks will by summed.

... additional parameters to data.table::fread.

Value
data.table

Examples

evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert")
pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert")
evidence = read.csv(evidence_path)
pg = read.csv(pg_path)
imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant")
cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins")
annot_path = system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert")
mq_annot = MSstatsMakeAnnotation(cleaned_data, read.csv(annot_path), Run = "Rawfile")

To filter M-peptides and oxidatin peptides
m_filter = list(col_name = "PeptideSequence", pattern = "M", filter = TRUE, drop_column = FALSE)
oxidation_filter = list(col_name = "Modifications", pattern = "Oxidation", filter = TRUE, drop_column = TRUE)
msstats_format = MSstatsPreprocess(
cleaned_data, mq_annot,
feature_columns = c("PeptideSequence", "PrecursorCharge"),
columns_to_fill = list(FragmentIon = NA, ProductCharge = NA),
pattern_filtering = list(oxidation = oxidation_filter, m = m_filter)
)
Output in the standard MSstats format
head(msstats_format)
MSstatsSaveSessionInfo

Save session information

Description

Save session information

Usage

MSstatsSaveSessionInfo(
 path = NULL,
 append = TRUE,
 base = "MSstats_session_info_"
)

Arguments

path optional path to output file. If not provided, "MSstats_session_info" and current timestamp will be used as a file name
append if TRUE and file given by the path parameter already exists, session info will be appended to the file
base beginning of a file name

Value

TRUE invisibly after session info was saved

Examples

MSstatsSaveSessionInfo("session_info.txt")
MSstatsSaveSessionInfo("session_info.txt", base = "MSstatsTMT_session_info_")

OpenMStoMSstatsFormat

Import OpenMS files

Description

Import OpenMS files
Usage

OpenMStoMSstatsFormat(
 input,
 annotation = NULL,
 useUniquePeptide = TRUE,
 removeFewMeasurements = TRUE,
 removeProtein_with1Feature = FALSE,
 summaryforMultipleRows = max,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 ...
)

Arguments

input name of MSstats input report from OpenMS, which includes feature(peptide ion)-level data.
annotation name of ‘annotation.txt’ data which includes Condition, BioReplicate, Run. Run should be the same as filename.
useUniquePeptide TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
removeFewMeasurements TRUE (default) will remove the features that have 1 or 2 measurements across runs.
removeProtein_with1Feature TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.
summaryforMultipleRows max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.
use_log_file logical. If TRUE, information about data processing will be saved to a file.
append logical. If TRUE, information about data processing will be added to an existing log file.
verbose logical. If TRUE, information about data processing will be printed to the console.
log_file_path character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.
...

Value
data.frame in the MSstats required format.
OpenSWATHtoMSstatsFormat

Author(s)
Meena Choi, Olga Vitek.

Examples

```r
openms_raw = data.table::fread(system.file("tinytest/raw_data/OpenMS/openms_input.csv", package = "MSstatsConvert"))
openms_imported = OpenMStoMSstatsFormat(openms_raw, use_log_file = FALSE)
head(openms_imported)
```

OpenSWATHtoMSstatsFormat

Import OpenSWATH files

Description

Import OpenSWATH files

Usage

```r
OpenSWATHtoMSstatsFormat(
  input, annotation,
  filter_with_mscore = TRUE, mscore_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL,
  ...
)
```

Arguments

- `input` name of MSstats input report from OpenSWATH, which includes feature-level data.
- `annotation` name of 'annotation.txt' data which includes Condition, BioReplicate, Run. Run should be the same as filename.
- `filter_with_mscore` TRUE (default) will filter out the features that have greater than mscore_cutoff in m_score column. Those features will be removed.
- `mscore_cutoff` Cutoff for m_score. Default is 0.01.
useUniquePeptide
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.

removeFewMeasurements
TRUE (default) will remove the features that have 1 or 2 measurements across runs.

removeProtein_with1Feature
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.

summaryforMultipleRows
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.

use_log_file
logical. If TRUE, information about data processing will be saved to a file.

append
logical. If TRUE, information about data processing will be added to an existing log file.

verbose
logical. If TRUE, information about data processing wil be printed to the console.

log_file_path
character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.

... additional parameters to data.table::fread.

Value
data.frame in the MSstats required format.

Author(s)
Meena Choi, Olga Vitek.

Examples

```r
os_raw = system.file("tinytest/raw_data/OpenSWATH/openswath_input.csv", package = "MSstatsConvert")
annot = system.file("tinytest/raw_data/OpenSWATH/annot_os.csv", package = "MSstatsConvert")
os_raw = data.table::fread(os_raw)
annot = data.table::fread(annot)

os_imported = OpenSWATHtoMSstatsFormat(os_raw, annot, use_log_file = FALSE)
head(os_imported)
```
PDtoMSstatsFormat

Import Proteome Discoverer files

Description
Import Proteome Discoverer files

Usage
PDtoMSstatsFormat(
 input,
 annotation,
 useNumProteinsColumn = FALSE,
 useUniquePeptide = TRUE,
 summaryforMultipleRows = max,
 removeFewMeasurements = TRUE,
 removeOxidationMpeptides = FALSE,
 removeProtein_with1Peptide = FALSE,
 which.quantification = "Precursor.Area",
 which.proteinid = "Protein.Group.Accessions",
 which.sequence = "Sequence",
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 ...
)

Arguments

input PD report or a path to it.
annotation name of ‘annotation.txt’ or ‘annotation.csv’ data which includes Condition, BioReplicate, Run information. ‘Run’ will be matched with ‘Spectrum.File’.
useNumProteinsColumn TRUE removes peptides which have more than 1 in # Proteins column of PD output.
useUniquePeptide TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
summaryforMultipleRows max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.
removeFewMeasurements TRUE (default) will remove the features that have 1 or 2 measurements across runs.
removeOxidationMpeptides
 TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default.
removeProtein_with1Peptide
 TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.
which.quantification
 Use 'Precursor.Area'(default) column for quantified intensities. 'Intensity' or 'Area' can be used instead.
which.proteinid
 Use 'Protein.Accessions'(default) column for protein name. 'Master.Protein.Accessions' can be used instead.
which.sequence
 Use 'Sequence'(default) column for peptide sequence. 'Annotated.Sequence' can be used instead.
use_log_file
 logical. If TRUE, information about data processing will be saved to a file.
append
 logical. If TRUE, information about data processing will be added to an existing log file.
verbose
 logical. If TRUE, information about data processing will be printed to the console.
log_file_path
 character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append = TRUE, has to be a valid path to a file.
...
 additional parameters to data.table::fread.

Value

data.frame in the MSstats required format.

Author(s)

Meena Choi, Olga Vitek

Examples

pd_raw = system.file("tinytest/raw_data/PD/pd_input.csv", package = "MSstatsConvert")
annot = system.file("tinytest/raw_data/PD/annot_pd.csv", package = "MSstatsConvert")
pd_raw = data.table::fread(pd_raw)
annot = data.table::fread(annot)

pd_imported = PDtoMSstatsFormat(pd_raw, annot, use_log_file = FALSE)
head(pd_imported)
ProgenesistoMSstatsFormat

Import Progenesis files

Description

Import Progenesis files

Usage

```r
ProgenesistoMSstatsFormat(
  input,
  annotation,
  useUniquePeptide = TRUE,
  summaryforMultipleRows = max,
  removeFewMeasurements = TRUE,
  removeOxidationMpeptides = FALSE,
  removeProtein_with1Peptide = FALSE,
  use_log_file = TRUE,
  append = FALSE,
  verbose = TRUE,
  log_file_path = NULL,
  ...
)
```

Arguments

- `input`: name of Progenesis output, which is wide-format. 'Accession', 'Sequence', 'Modification', 'Charge' and one column for each run are required.
- `annotation`: name of 'annotation.txt' or 'annotation.csv' data which includes Condition, BioReplicate, Run information. It will be matched with the column name of input for MS runs.
- `useUniquePeptide`: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- `summaryforMultipleRows`: max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.
- `removeFewMeasurements`: TRUE (default) will remove the features that have 1 or 2 measurements across runs.
- `removeOxidationMpeptides`: TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default.
- `removeProtein_with1Peptide`: TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.
SkylinetoMSstatsFormat

Import Skyline files

Description

Import Skyline files

Usage

SkylinetoMSstatsFormat(
 input,
 annotation = NULL,
 removeIrt = TRUE,
 filter_with_Qvalue = TRUE,
 use_log_file = FALSE,
 append = FALSE,
 verbose = FALSE,
 log_file_path = NULL,
 ...)

Value

data.frame in the MSstats required format.

Author(s)

Meena Choi, Olga Vitek, Ulrich Omasits

Examples

progenesis_raw = system.file("tinytest/raw_data/Progenesis/progenesis_input.csv",
 package = "MSstatsConvert")
annot = system.file("tinytest/raw_data/Progenesis/progenesis_annot.csv",
 package = "MSstatsConvert")
progenesis_raw = data.table::fread(progenesis_raw)
annot = data.table::fread(annot)
progenesis_imported = ProgenesistoMSstatsFormat(progenesis_raw, annot,
 use_log_file = FALSE)
head(progenesis_imported)
SkylinetoMSstatsFormat

 qvalue_cutoff = 0.01,
 useUniquePeptide = TRUE,
 removeFewMeasurements = TRUE,
 removeOxidationMpeptides = FALSE,
 removeProtein_with1Feature = FALSE,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 ...)

Arguments

input
 name of MSstats input report from Skyline, which includes feature-level data.
annotation
 name of 'annotation.txt' data which includes Condition, BioReplicate, Run. If
annotation is already complete in Skyline, use annotation=NULL (default). It
will use the annotation information from input.
removeiRT
 TRUE (default) will remove the proteins or peptides which are labeled 'iRT' in
'StandardType' column. FALSE will keep them.
filter_with_Qvalue
 TRUE(default) will filter out the intensities that have greater than qvalue_cutoff
in DetectionQValue column. Those intensities will be replaced with zero and
will be considered as censored missing values for imputation purpose.
qvalue_cutoff
 Cutoff for DetectionQValue. default is 0.01.
useUniquePeptide
 TRUE (default) removes peptides that are assigned for more than one proteins.
We assume to use unique peptide for each protein.
removeFewMeasurements
 TRUE (default) will remove the features that have 1 or 2 measurements across
runs.
removeOxidationMpeptides
 TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE
is default.
removeProtein_with1Feature
 TRUE will remove the proteins which have only 1 feature, which is the combi-
nation of peptide, precursor charge, fragment and charge. FALSE is default.
use_log_file
 logical. If TRUE, information about data processing will be saved to a file.
append
 logical. If TRUE, information about data processing will be added to an existing
log file.
verbose
 logical. If TRUE, information about data processing will be printed to the con-
sole.
log_file_path
 character. Path to a file to which information about data processing will be
saved. If not provided, such a file will be created automatically. If append =
TRUE, has to be a valid path to a file.
...
 additional parameters to data.table::fread.
SpectronauttoMSstatsFormat

Value

data.frame in the MSstats required format.

Author(s)

Meena Choi, Olga Vitek

Examples

```r
skyline_raw = system.file("tinytest/raw_data/Skyline/skyline_input.csv", 
                          package = "MSstatsConvert")
skyline_raw = data.table::fread(skyline_raw)
skyline_imported = SpectronauttoMSstatsFormat(skyline_raw)
head(skyline_imported)
```

SpectronauttoMSstatsFormat

Import Spectronaut files

Description

Import Spectronaut files

Usage

```r
SpectronauttoMSstatsFormat(
  input, 
  annotation = NULL, 
  intensity = "PeakArea", 
  filter_with_Qvalue = TRUE, 
  qvalue_cutoff = 0.01, 
  useUniquePeptide = TRUE, 
  removeFewMeasurements = TRUE, 
  removeProtein_with1Feature = FALSE, 
  summaryforMultipleRows = max, 
  use_log_file = TRUE, 
  append = FALSE, 
  verbose = TRUE, 
  log_file_path = NULL, 
  ...
)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>name of Spectronaut output, which is long-format. ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity, F.ExcludedFromQuantification are required. Rows with F.ExcludedFromQuantification=True will be removed.</td>
</tr>
<tr>
<td>annotation</td>
<td>name of 'annotation.txt' data which includes Condition, BioReplicate, Run. If annotation is already complete in Spectronaut, use annotation=NULL (default). It will use the annotation information from input.</td>
</tr>
<tr>
<td>intensity</td>
<td>'PeakArea'(default) uses not normalized peak area. 'NormalizedPeakArea' uses peak area normalized by Spectronaut.</td>
</tr>
<tr>
<td>filter_with_Qvalue</td>
<td>TRUE (default) will filter out the intensities that have greater than qvalue_cutoff in EG.Qvalue column. Those intensities will be replaced with zero and will be considered as censored missing values for imputation purpose.</td>
</tr>
<tr>
<td>qvalue_cutoff</td>
<td>Cutoff for EG.Qvalue. default is 0.01.</td>
</tr>
<tr>
<td>useUniquePeptide</td>
<td>TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.</td>
</tr>
<tr>
<td>removeFewMeasurements</td>
<td>TRUE (default) will remove the features that have 1 or 2 measurements across runs.</td>
</tr>
<tr>
<td>removeProtein_with1Feature</td>
<td>TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.</td>
</tr>
<tr>
<td>summaryforMultipleRows</td>
<td>max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.</td>
</tr>
<tr>
<td>use_log_file</td>
<td>logical. If TRUE, information about data processing will be saved to a file.</td>
</tr>
<tr>
<td>append</td>
<td>logical. If TRUE, information about data processing will be added to an existing log file.</td>
</tr>
<tr>
<td>verbose</td>
<td>logical. If TRUE, information about data processing will be printed to the console.</td>
</tr>
<tr>
<td>log_file_path</td>
<td>character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If append=TRUE, has to be a valid path to a file.</td>
</tr>
<tr>
<td>...</td>
<td>additional parameters to data.table::fread.</td>
</tr>
</tbody>
</table>

Value

data.frame in the MSstats required format.

Author(s)

Meena Choi, Olga Vitek
Examples

spectronaut_raw = system.file("tinytest/raw_data/Spectronaut/spectronaut_input.csv",
 package = "MSstatsConvert")
spectronaut_raw = data.table::fread(spectronaut_raw)
spectronaut_imported = SpectronauttoMSstatsFormat(spectronaut_raw, use_log_file = FALSE)
head(spectronaut_imported)
Index

* internal
 - .MSstatsFormat, 35
 - .addFractions, 4
 - .adjustIntensities, 5
 - .aggregatePSMstoPeptideIons, 5
 - .checkAnnotation, 6
 - .checkDDA, 6
 - .checkDuplicatedMeasurements, 7
 - .checkMSstatsParams, 7
 - .checkMultiRun, 8
 - .checkOverlappedFeatures, 8
 - .cleanByFeature, 9
 - .cleanRawDIANN, 9
 - .cleanRawDIAUmpire, 10
 - .cleanRawMaxQuant, 10
 - .cleanRawMetamorpheus, 11
 - .cleanRawOpenMS, 11
 - .cleanRawOpenSWATH, 12
 - .cleanRawPDMSstats, 13
 - .cleanRawPDTMT, 14
 - .cleanRawPhilosopher, 14
 - .cleanRawProgenesis, 15
 - .cleanRawSkyline, 16
 - .cleanRawSpectroMineTMT, 16
 - .cleanRawSpectronaut, 17
 - .countCommonFeatures, 17
 - .fillValues, 18
 - .filterByPattern, 18
 - .filterByScore, 19
 - .filterExact, 20
 - .filterFewMeasurements, 20
 - .filterManyColumns, 21
 - .filterOverlapped, 22
 - .findAvailable, 22
 - .fixBasicColumns, 23
 - .fixColumnTypes, 23
 - .fixMissingValues, 24
 - .getChannelColumns, 24
 - .getCorrectFraction, 25
 - .getDataTable, 25
 - .getFullDesign, 26
 - .getMissingRunsPerFeature, 26
 - .getOverlappingFeatures, 27
 - .handleFiltering, 27
 - .handleFractions, 28
 - .handleFractionsLF, 28
 - .handleFractionsTMT, 29
 - .handleIsotopicPeaks, 29
 - .handleSharedPeptides, 30
 - .handleSingleFeaturePerProtein, 30
 - .logConverterOptions, 31
 - .logSuccess, 32
 - .makeBalancedDesign, 32
 - .makeExactFilterMessage, 33
 - .makeScoreFilterMessage, 33
 - .mergeAnnotation, 34
 - .nullAppender, 35
 - .onLoad, 36
 - .removeOverlappingFeatures, 36
 - .removeSharedPeptides, 37
 - .selectMSstatsColumns, 37
 - .sharedParametersAmongConverters, 38
 - .standardizeColnames, 39
 - .summarizeMultipleMeasurements, 39
 - .summarizeMultiplePSMs, 40
 - .getType, 47
 - .getFullRunInfo, 58
 - .getMSstatsFiles, 58
 - .getMSstatsInfo, 58
 - .getRawFiles, 58
 - .getRawInfo, 58
 - .onLoad, 58
 - .summary, 58
 - .summaryA, 58
 - .summaryB, 58
 - .summaryC, 58
 - .summaryD, 58

75
.cleanByFeature, 9
.cleanRawDIANN, 9
.cleanRawDIAUmpire, 10
.cleanRawMaxQuant, 10
.cleanRawMetamorpheus, 11
.cleanRawOpenMS, 11
.cleanRawOpenSWATH, 12
.cleanRawPD, 12
.cleanRawPDMstats, 13
.cleanRawPDTMT, 14
.cleanRawPhilosopher, 14
.cleanRawProgenesis, 15
.cleanRawSkyline, 16
.cleanRawSpectroMineTMT, 16
.cleanRawSpectronaut, 17
.countCommonFeatures, 17
.fillValues, 18
.filterByPattern, 18
.filterByScore, 19
.filterExact, 20
.filterFewMeasurements, 20
.filterManyColumns, 21
.filterOverlapped, 22
.findAvailable, 22
.fixBasicColumns, 23
.fixColumnTypes, 23
.fixMissingValues, 24
.getChannelColumns, 24
.getCorrectFraction, 25
.getDataTable, 25
.getFullDesign, 26
.getMissingRunsPerFeature, 26
.getOverlappingFeatures, 27
.handleFiltering, 27
.handleFractions, 28
.handleFractionsLF, 28
.handleFractionsTMT, 29
.handleIsotopicPeaks, 29
.handleSharedPeptides, 30
.handleSingleFeaturePerProtein, 30
.getLoggerOptions, 31
.logSuccess, 32
.makeBalancedDesign, 32
.makeExactFilterMessage, 33
.makeScoreFilterMessage, 33
.mergeAnnotation, 34
.nullAppender, 35
.onLoad, 36
.removeOverlappingFeatures, 36
.removeSharedPeptides, 37
.selectMSstatsColumns, 37
.sharedParametersAmongConverters, 38
.standardizeColumnNames, 39
.summarizeMultipleMeasurements, 39
.summarizeMultiplePSMs, 40
.validatePDTMTInputColumns, 40
.as.data.frame.MSstatsValidated, 41
.as.data.table.MSstatsValidated, 41
.DIANNtoMSstatsFormat, 42
.DIAUmpiretoMSstatsFormat, 43
.FragPipeMSstatsFormat, 45
.getDataType, 47
.getDataType, MSstatsInputFiles-method (getDataType), 47
.getInputFile, 48
.getInputFile, MSstatsInputFiles-method (getDataFile), 48
.getInputFile, MSstatsPhilosopherFiles-method (getDataFile), 48
.MaxQttoMSstatsFormat, 49
.MetamorpheustoMSstatsFormat, 50
.MSstatsBalancedDesign, 52, 57
.MSstatsClean, 53, 57
.MSstatsClean, MSstatsDIANNFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsDIAUmpireFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsMaxQuantFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsMetamorpheusFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsOpenMSFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsOpenSWATHFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsPhilosopherFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsProgenesisFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsProteomeDiscovererFiles-method (MSstatsClean), 53
.MSstatsClean, MSstatsSkylineFiles-method (MSstatsClean), 53
MSstatsClean, MSstatsSpectroMineFiles-method
 (MSstatsClean), 53
MSstatsClean, MSstatsSpectronautFiles-method
 (MSstatsClean), 53
MSstatsConvert, 56
MSstatsDIANNFiles-class
 (MSstatsInputFiles-class), 58
MSstatsDIAUmpireFiles-class
 (MSstatsInputFiles-class), 58
MSstatsFragPipeFiles-class
 (MSstatsInputFiles-class), 58
MSstatsImport, 57, 57
MSstatsInputFiles-class, 58
MSstatsLogsSettings, 57, 59
MSstatsMakeAnnotation, 60
MSstatsMaxQuantFiles-class
 (MSstatsInputFiles-class), 58
MSstatsMetamorpheusFiles-class
 (MSstatsInputFiles-class), 58
MSstatsOpenMSFiles-class
 (MSstatsInputFiles-class), 58
MSstatsOpenSWATHFiles-class
 (MSstatsInputFiles-class), 58
MSstatsPhilosopherFiles-class
 (MSstatsInputFiles-class), 58
MSstatsPreprocess, 57, 61
MSstatsProgenesisFiles-class
 (MSstatsInputFiles-class), 58
MSstatsProteomeDiscovererFiles-class
 (MSstatsInputFiles-class), 58
MSstatsSaveSessionInfo, 63
MSstatsSkylineFiles-class
 (MSstatsInputFiles-class), 58
MSstatsSpectroMineFiles-class
 (MSstatsInputFiles-class), 58
MSstatsSpectronautFiles-class
 (MSstatsInputFiles-class), 58

OpenMStoMSstatsFormat, 63
OpenSWATHtoMSstatsFormat, 65
PDtoMSstatsFormat, 67
ProgenesistoMSstatsFormat, 69
SkylinetoMSstatsFormat, 70
SpectronauttoMSstatsFormat, 72