Package ‘MSstatsTMT’

May 30, 2024

Title Protein Significance Analysis in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling

Version 2.12.1

Date 2024-04-23

Description The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including data visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine.

License Artistic-2.0

Depends R (>= 4.2)

Imports limma, lm4, lmerTest, methods, data.table, stats, utils, ggplot2, grDevices, graphics, MSstats, MSstatsConvert, checkmate, plotly, htmltools

Suggests BiocStyle, knitr, rmarkdown, testthat

VignetteBuilder knitr

biocViews ImmunoOncology, MassSpectrometry, Proteomics, Software

Encoding UTF-8

LazyData true

URL http://msstats.org/msstatstmt/

BugReports https://groups.google.com/forum/#!forum/msstats

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/MSstatsTMT
git_branch RELEASE_3_19
git_last_commit 0c2b7dc
git_last_commit_date 2024-05-20

Repository Bioconductor 3.19

Date/Publication 2024-05-29
Author Devon Kohler [aut, cre],
Ting Huang [aut],
Meena Choi [aut],
Mateusz Staniak [aut],
Sicheng Hao [aut],
Olga Vitek [aut]

Maintainer Devon Kohler <kohler.d@northeastern.edu>

Contents

.. calculatePower ... 3
.. checkContrastMatrix 4
.. checkSummarizationParams 4
.. countRunsWithNorm 6
.. documentFunction 6
.. getMedianSigmaRun 7
.. getMedianSigmaSubject 8
.. getNormalizationAbundance 8
..getNumSample 9
.. getPhilosopherInput 9
.. getRunsMedian 10
.. getVarComponentTMT 10
.. handleSingleContrastTMT 11
.. logSum ... 11
.. logSummarizationParams 12
.. makeContrastSingleTMT 13
.. makeFactorColumnsTMT 13
.. medianPolish 14
.. normalizePeptides 14
.. normalizeProteins 15
.. prepareForSummarization 15
.. removeRedundantChannels 16
.. summarizeMSstats 16
.. summarizeSimpleStat 17
.. summarizeTMP 18
.. summarizeTMT 18
annotation.mine 19
annotation.mq 20
annotation.pd 21
dataProcessPlotsTMT 22
designSampleSizeTMT 24
evidence ... 26
getProcessedTMT 27
getSummarizedTMT 27
groupComparisonTMT 28
input.pd .. 29
MaxQtoMSstatsTMTFormat 30
.calculatePower

Power calculation

Description

Power calculation

Usage

.calculatePower(
 desiredFC,
 FDR,
 delta,
 median_sigma_error,
 median_sigma_subject,
 median_sigma_run,
 numSample
)
Arguments

- **desiredFC**: the range of a desired fold change which includes the lower and upper values of the desired fold change.
- **FDR**: a pre-specified false discovery ratio (FDR) to control the overall false positive rate. Default is 0.05
- **delta**: difference between means (?)
- **median_sigma_error**: median of error standard deviation
- **median_sigma_subject**: median standard deviation per subject
- **numSample**: minimal number of biological replicates per condition. TRUE represents you require to calculate the sample size for this category, else you should input the exact number of biological replicates.

.checkContrastMatrix

check whether pairwise comparison. If pairwise, generate a contrast matrix.

Description

check whether pairwise comparison. If pairwise, generate a contrast matrix.

Usage

`.checkContrastMatrix(contrast_matrix)`

Value

a contrast matrix

.checkSummarizationParams

Check validity of parameters to proteinSummarization function

Description

Check validity of parameters to proteinSummarization function
Usage

`.checkSummarizationParams(
 data,
 method,
 global_norm,
 reference_norm,
 remove_norm_channel,
 remove_empty_channel,
 MBimpute,
 maxQuantileforCensored
)

Arguments

data Name of the output of PDtoMSstatsTMTFormat function or peptide-level quantified data from other tools. It should have columns ProteinName, PeptideSequence, Charge, PSM, Mixture, TechRepMixture, Run, Channel, Condition, BioReplicate, Intensity

method Four different summarization methods to protein-level can be performed: "msstats" (default), "MedianPolish", "Median", "LogSum".

global_norm Global median normalization on peptide level data (equalizing the medians across all the channels and MS runs). Default is TRUE. It will be performed before protein-level summarization.

reference_norm Reference channel based normalization between MS runs on protein level data. TRUE (default) needs at least one reference channel in each MS run, annotated by 'Norm' in Condition column. It will be performed after protein-level summarization. FALSE will not perform this normalization step. If data only has one run, then reference_norm=FALSE.

remove_norm_channel TRUE (default) removes ‘Norm’ channels from protein level data.

remove_empty_channel TRUE (default) removes ‘Empty’ channels from protein level data.

MBimpute only for method="msstats". TRUE (default) imputes missing values by Accelerated failure model. FALSE uses minimum value to impute the missing value for each peptide precursor ion.

maxQuantileforCensored We assume missing values are censored. maxQuantileforCensored is Maximum quantile for deciding censored missing value, for instance, 0.999. Default is Null.

Value

TRUE invisibly if all parameters are valid
.countRunsWithNorm

Utility function: count runs with "Norm" channel

Description
Utility function: count runs with "Norm" channel

Usage
.countRunsWithNorm(run, condition)

Arguments

run vector of run labels
condition vector of condition labels

Value
integer

.documentFunction
A dummy function to store shared documentation items.

Description
A dummy function to store shared documentation items.

Usage
.documentFunction(
 fewMeasurements,
 useUniquePeptide,
 summaryforMultipleRows,
 removeProtein_with1Feature,
 removeProtein_with1Protein,
 removeOxidationMpeptides,
 removeMpeptides
)
Arguments

- `fewMeasurements`:
 - 'remove'(default) will remove the features that have 1 or 2 measurements across runs.

- `useUniquePeptide`:
 - TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.

- `summaryForMultipleRows`:
 - max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities.

- `removeProtein_with1Feature`:
 - TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.

- `removeOxidationMpeptides`:
 - TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default.

- `removeMpeptides`:
 - TRUE will remove the peptides including 'M' sequence. FALSE is default.

- `removeProtein_with1Peptide`:
 - TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

- `use_log_file`:
 - logical. If TRUE, information about data processing will be saved to a file.

- `append`:
 - logical. If TRUE, information about data processing will be added to an existing log file.

- `verbose`:
 - logical. If TRUE, information about data processing will be printed to the console.

- `log_file_path`:
 - character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If 'append = TRUE', has to be a valid path to a file.

Value

NULL.

Description

Get median per subject or group by subject

Usage

`.getMedianSigmaRun(var_component)`
Arguments

- var_component
 data.frame, output of `getVarComponent`

.getMedianSigmaSubject

Get median per run or run by mix

Description

Get median per run or run by mix

Usage

`.getMedianSigmaSubject(var_component)`

Arguments

- var_component
 data.frame, output of `getVarComponent`

.getNormalizationAbundance

Utility function: get mean abundance for "Norm" channels

Description

Utility function: get mean abundance for "Norm" channels

Usage

`.getNormalizationAbundance(abundance, condition)`

Arguments

- abundance
 vector of abundances
- condition
 vector of condition labels

Value

numeric
.getNumSample

Description

Get sample size

Usage

.getNumSample(
 desiredFC,
 power,
 alpha,
 delta,
 median_sigma_error,
 median_sigma_subject,
 median_sigma_run
)

Arguments

desiredFC: the range of a desired fold change which includes the lower and upper values of the desired fold change.

power: a pre-specified statistical power which defined as the probability of detecting a true fold change. TRUE represent you require to calculate the power for this category, else you should input the average of power you expect. Default is 0.9

alpha: significance level

delta: difference between means (?)

median_sigma_error: median of error standard deviation

median_sigma_subject: median standard deviation per subject

.getPhilosopherInput

Convert Philosopher parameters to consistent format

Description

Convert Philosopher parameters to consistent format

Usage

.getPhilosopherInput(input, path, folder)

Arguments

input: data.frame of ‘msstats.csv’ file produced by Philosopher
.getVarComponentTMT

Get variances from models fitted by the groupComparison function

Description
Get variances from models fitted by the groupComparison function

Usage
getVarComponentTMT(fitted_models)

Arguments
fitted_models FittedModels element of groupComparison output

.getRunsMedian

Utility function: get median from unique values per run

Description
Utility function: get median from unique values per run

Usage
.getRunsMedian(input)

Arguments
input data.table / list

Value
numeric
Description

perform statistical inference for single protein and single contrast

Usage

```r
.handleSingleContrastTMT(
  contrast,
  fit,
  single_protein,
  coefs,
  protein,
  groups,
  s2_posterior,
  rho,
  vss,
  df_prior,
  s2_df
)
```

Description

Utility function: compute log of sum of 2^x

Usage

```r
.logSum(x)
```

Arguments

- `x` numeric

Value

numeric
Description

Log parameters for proteinSummarization function

Usage

.logSummarizationParams(
 method,
 global_norm,
 reference_norm,
 remove_norm_channel,
 remove_empty_channel
)

Arguments

- method: Four different summarization methods to protein-level can be performed: "msstats" (default), "MedianPolish", "Median", "LogSum".
- global_norm: Global median normalization on peptide level data (equalizing the medians across all the channels and MS runs). Default is TRUE. It will be performed before protein-level summarization.
- reference_norm: Reference channel based normalization between MS runs on protein level data. TRUE (default) needs at least one reference channel in each MS run, annotated by 'Norm' in Condition column. It will be performed after protein-level summarization. FALSE will not perform this normalization step. If data only has one run, then reference_norm=FALSE.
- remove_norm_channel: TRUE (default) removes 'Norm' channels from protein level data.
- remove_empty_channel: TRUE (default) removes 'Empty' channels from protein level data.

Value

TRUE invisibly after logging successfully
.makeContrastSingleTMT

Make a contrast

Description
Make a contrast

Usage
.makeContrastSingleTMT(fit, contrast, single_protein, coefs)

Value
a contrast vector

.makeFactorColumnsTMT Converts required columns to factor in summarization output

Description
Converts required columns to factor in summarization output

Usage
.makeFactorColumnsTMT(input)

Arguments
input data.table

Value
a data table with factored columns
.medianPolish
Tukey median polish

Description
Tukey median polish

Usage
```
.medianPolish(intensities, num_channels)
```

Arguments
- **intensities**: vector of log-intensities per protein and run
- **num_channels**: number of channels

Value
numeric vector with length 'num_channels'

.normalizePeptides
Normalization between channels (before summarization)

Description
Normalization between channels (before summarization)

Usage
```
.normalizePeptides(input, normalize)
```

Arguments
- **input**: data.table
- **normalize**: logical, if TRUE, 'input' data will be normalized

Value
data.table
normalizeProteins

Normalization between MS runs (after protein summarization)

Description
Normalization between MS runs (after protein summarization)

Usage
.normalizeProteins(input, normalize)

Arguments
input: data.table
normalize: logical, if TRUE, data will be normalized

Value
data.table

prepareForSummarization

Prepare TMT data for protein-level summarization

Description
Prepare TMT data for protein-level summarization

Usage
.prepareForSummarization(input)

Arguments
input: data.table

Value
data.table with required column types
.removeRedundantChannels

Remove empty and normalization channels

Description
Remove empty and normalization channels

Usage
.removeRedundantChannels(input, remove_empty_channel, remove_norm_channel)

Arguments
input: data.table processed by the protein summarization function
remove_empty_channel: TRUE (default) removes 'Empty' channels from protein level data.
remove_norm_channel: TRUE (default) removes 'Norm' channels from protein level data.

Value
data.table

.summarizeMSstats

Summarization based on MSstats

Description
Summarization based on MSstats

Usage
.summarizeMSstats(
 input,
 annotation,
 impute,
 max_quantile_censored = NULL,
 log_file_path = NULL
)
Arguments

- **input**: data.table
- **annotation**: data.table with run and channel annotation
- **impute**: only for method="msstats". TRUE (default) imputes missing values by Accelerated failure model. FALSE uses minimum value to impute the missing value for each peptide precursor ion.
- **max_quantile_censored**: We assume missing values are censored. maxQuantileforCensored is Maximum quantile for deciding censored missing value, for instance, 0.999. Default is NULL.
- **log_file_path**: path to a MSstats log file

Value

data.table

`.summarizeSimpleStat` *Summarize TMT data with a simple aggregate of log-intensities*

Description

Summarize TMT data with a simple aggregate of log-intensities

Usage

`.summarizeSimpleStat(input, annotation, stat_aggregate)`

Arguments

- **input**: data.table
- **annotation**: data.table with run and channel annotation
- **stat_aggregate**: function that will be used to compute protein-level summary

Value

data.table
.summarizeTMP

Summarize TMT data with median polish

Description
Summarize TMT data with median polish

Usage
.summarizeTMP(input, annotation)

Arguments

input : data.table
annotation : data.table with run and channel annotation

Value
data.table with summarized protein intensities

.summarizeTMT
Performs summarization for TMT data

Description
Performs summarization for TMT data

Usage
.summarizeTMT(
 input,
 method,
 annotation,
 impute,
 max_quantile_censored,
 log_file_path
)

Arguments

input : data.table
method : "mstats"/"MedianPolish"/"LogSum"/"Median"
annotation : data.table with run and channel annotation
`impute` only for method="msstats". TRUE (default) imputes missing values by Accelerated failure model. FALSE uses minimum value to impute the missing value for each peptide precursor ion.

`max_quantile_censored` We assume missing values are censored. maxQuantileforCensored is Maximum quantile for deciding censored missing value, for instance, 0.999. Default is Null.

`log_file_path` path to a MSstats log file

Value

data.table

Description

Annotation of example data, raw.mine, in this package. It should be prepared by users. The variables are as follows:

Usage

`annotation.mine`

Format

A data frame with 72 rows and 7 variables.

Details

- Run : MS run ID. It should be the same as R.FileName info in raw.mine
- Channel : Labeling information (TMT6_126, ..., TMT6_131). The channels should be consistent with the channel columns in raw.mine.
- Condition : Condition (ex. Healthy, Cancer, Time0). If the channel doesn’t have sample, please add 'Empty' under Condition.
- Mixture : Mixture of samples labeled with different TMT reagents, which can be analyzed in a single mass spectrometry experiment.
- TechRepMixture : Technical replicate of one mixture. One mixture may have multiple technical replicates. For example, if 'TechRepMixture' = 1, 2 are the two technical replicates of one mixture, then they should match with same 'Mixture' value.
- Fraction : Fraction ID. One technical replicate of one mixture may be fractionated into multiple fractions to increase the analytical depth. Then one technical replicate of one mixture should correspond to multiple fractions. For example, if 'Fraction' = 1, 2, 3 are three fractions of the first technical replicate of one TMT mixture of biological subjects, then they should have same 'TechRepMixture' and 'Mixture' value.
- BioReplicate: Unique ID for biological subject. If the channel doesn’t have sample, please add ‘Empty’ under BioReplicate

Examples

head(annotation.mq)

Example of annotation file for evidence, which is the output of MaxQuant.

Description

Annotation of example data, evidence, in this package. It should be prepared by users. The variables are as follows:

Usage

annotation.mq

Format

A data frame with 150 rows and 7 variables.

Details

- Run: MS run ID. It should be the same as Raw.file info in raw.mq
- Channel: Labeling information (channel.0, ..., channel.9). The channel index should be consistent with the channel columns in raw.mq.
- Condition: Condition (ex. Healthy, Cancer, Time0)
- Mixture: Mixture of samples labeled with different TMT reagents, which can be analyzed in a single mass spectrometry experiment. If the channel doesn’t have sample, please add ‘Empty’ under Condition.
- TechRepMixture: Technical replicate of one mixture. One mixture may have multiple technical replicates. For example, if ‘TechRepMixture’ = 1, 2 are the two technical replicates of one mixture, then they should match with same ‘Mixture’ value.
- Fraction: Fraction ID. One technical replicate of one mixture may be fractionated into multiple fractions to increase the analytical depth. Then one technical replicate of one mixture should correspond to multiple fractions. For example, if ‘Fraction’ = 1, 2, 3 are three fractions of the first technical replicate of one TMT mixture of biological subjects, then they should have same ‘TechRepMixture’ and ‘Mixture’ value.
- BioReplicate: Unique ID for biological subject. If the channel doesn’t have sample, please add ‘Empty’ under BioReplicate.
Examples

head((annotation.mq))
Description

To illustrate the quantitative data and quality control of MS runs, `dataProcessPlotsTMT` takes the quantitative data and summarized data from function `proteinSummarization` as input and generate two types of figures in pdf files as output: (1) profile plot (specify "ProfilePlot" in option type), to identify the potential sources of variation for each protein; (2) quality control plot (specify "QCPlot" in option type), to evaluate the systematic bias between MS runs and channels.

Usage

```r
dataProcessPlotsTMT(
  data,
  type,
  featureName = "Transition",
  ylimUp = FALSE,
  ylimDown = FALSE,
  x.axis.size = 10,
  y.axis.size = 10,
  text.size = 2,
  text.angle = 90,
  legend.size = 7,
  dot.size.profile = 2,
  ncol.guide = 5,
  width = 10,
  height = 10,
  which.Protein = "all",
  originalPlot = TRUE,
  summaryPlot = TRUE,
  address = "",
  isPlotly = FALSE
)
```

Arguments

- **data**: the output of `proteinSummarization` function. It is a list with data frames ‘FeatureLevelData’ and ‘ProteinLevelData’
- **type**: choice of visualization. "ProfilePlot" represents profile plot of log intensities across MS runs. "QCPlot" represents box plots of log intensities across channels and MS runs.
- **featureName**: for "ProfilePlot" only. "Transition" (default) means printing feature legend in transition-level; "Peptide" means printing feature legend in peptide-level; "NA" means no feature legend printing. FALSE(Default) for Profile Plot and QC Plot uses the upper limit as rounded off maximum of log2(intensities) after normalization + 3.
dataProcessPlotsTMT

ylimUp upper limit for y-axis in the log scale.
ylimDown lower limit for y-axis in the log scale. FALSE (Default) for Profile Plot and QC Plot uses 0..
x.axis.size size of x-axis labeling for "Run" and "channel in Profile Plot and QC Plot.
y.axis.size size of y-axis labels. Default is 10.
text.size size of labels represented each condition at the top of Profile plot and QC plot. Default is 4.
text.angle angle of labels represented each condition at the top of Profile plot and QC plot. Default is 0.
legend.size size of legend above Profile plot. Default is 7.
dot.size.profile size of dots in Profile plot. Default is 2.
col.guide number of columns for legends at the top of plot. Default is 5.
width width of the saved pdf file. Default is 10.
height height of the saved pdf file. Default is 10.
which.Protein Protein list to draw plots. List can be names of Proteins or order numbers of Proteins. Default is "all", which generates all plots for each protein. For QC plot, "allonly" will generate one QC plot with all proteins.
originalPlot TRUE (default) draws original profile plots, without normalization.
summaryPlot TRUE (default) draws profile plots with protein summarization for each channel and MS run.
address the name of folder that will store the results. Default folder is the current working directory. The other assigned folder has to be existed under the current working directory. An output pdf file is automatically created with the default name of "ProfilePlot.pdf" or "QCplot.pdf". The command address can help to specify where to store the file as well as how to modify the beginning of the file name. If address=FALSE, plot will be not saved as pdf file but showed in window.
isPlotly Parameter to use Plotly or ggplot2. If set to TRUE, MSstats will save Plotly plots as HTML files. If set to FALSE MSstats will save ggplot2 plots as PDF files

Value

plot or pdf

Examples

data(input.pd)
quant.msstats = proteinSummarization(input.pd,
 method="msstats",
 global_norm=TRUE,
 reference_norm=TRUE)

Profile plot
designSampleSizeTMT

Planning future experimental designs of Tandem Mass Tag (TMT) experiments acquired with Data-Dependent Acquisition (DDA or shotgun)

Description

Calculate sample size for future experiments of a TMT experiment based on intensity-based linear model. Two options of the calculation: (1) number of biological replicates per condition, (2) power.

Usage

designSampleSizeTMT(
 data,
 desiredFC,
 FDR = 0.05,
 numSample = TRUE,
 power = 0.9,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL
)

Arguments

data: 'FittedModel' in testing output from function groupComparisonTMT.
desiredFC: the range of a desired fold change which includes the lower and upper values of the desired fold change.
FDR: a pre-specified false discovery ratio (FDR) to control the overall false positive rate. Default is 0.05
numSample: minimal number of biological replicates per condition. TRUE represents you require to calculate the sample size for this category, else you should input the exact number of biological replicates.
designSampleSizeTMT

power

A pre-specified statistical power which defined as the probability of detecting a true fold change. TRUE represent you require to calculate the power for this category, else you should input the average of power you expect. Default is 0.9

use_log_file

Logical. If TRUE, information about data processing will be saved to a file.

append

Logical. If TRUE, information about data processing will be added to an existing log file.

verbose

Logical. If TRUE, information about data processing will be printed to the console.

log_file_path

Character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If ‘append = TRUE’, has to be a valid path to a file.

Details

The function fits the model and uses variance components to calculate sample size. The underlying model fitting with intensity-based linear model with technical MS run replication. Estimated sample size is rounded to 0 decimal. The function can only obtain either one of the categories of the sample size calculation (numSample, numPep, numTran, power) at the same time.

Value

Data.frame - sample size calculation results including variables: desiredFC, numSample, FDR, and power.

Examples

data(input.pd)
use protein.summarization() to get protein abundance data
quant.pd/msstats = proteinSummarization(input.pd,
 method="msstats",
 global_norm=TRUE,
 reference_norm=TRUE)

test.pairwise = groupComparisonTMT(quant.pd/msstats, save_fitted_models = TRUE)
head(test.pairwise$ComparisonResult)

Calculate sample size for future experiments:
#(1) Minimal number of biological replicates per condition
designSampleSizeTMT(data=test.pairwise$FittedModel, numSample=TRUE,
 desiredFC=c(1.25,1.75), FDR=0.05, power=0.8)

#(2) Power calculation
designSampleSizeTMT(data=test.pairwise$FittedModel, numSample=2,
 desiredFC=c(1.25,1.75), FDR=0.05, power=TRUE)
Example of evidence.txt from MaxQuant. It is the input for MaxQtoMSstatsTMTFormat function, with proteinGroups.txt and annotation file. Annotation file should be made by users. It includes peak intensities for 10 proteins among 15 MS runs with TMT10. The important variables are as follows:

Usage

evidence

Format

A data frame with 1075 rows and 105 variables.

Details

- Proteins
- Protein.group.IDs
- Modified.sequence
- Charge
- Raw.file
- Score
- Potential.contaminant
- Reverse
- Channels: Reporter.intensity.corrected.0, ..., Reporter.intensity.corrected.9

Examples

head(evidence)
getProcessedTMT

Get processed feature-level data

Description
Get processed feature-level data

Usage
getProcessedTMT(summarized, input)

Arguments
- summarized: output of the MSstatsSummarizeTMT function
- input: output of MSstatsNormalizeTMT function

Value
data.table

getSummarizedTMT

Get protein-level data from MSstatsSummarizeTMT output

Description
Get protein-level data from MSstatsSummarizeTMT output

Usage
getSummarizedTMT(summarized)

Arguments
- summarized: output of the MSstatsSummarizeTMT function

Value
data.table
Finding differentially abundant proteins across conditions in TMT experiment

Description

Tests for significant changes in protein abundance across conditions based on a family of linear mixed-effects models in TMT experiment. Experimental design of case-control study (patients are not repeatedly measured) is automatically determined based on proper statistical model.

Usage

groupComparisonTMT(
 data,
 contrast.matrix = "pairwise",
 moderated = FALSE,
 adj.method = "BH",
 remove_norm_channel = TRUE,
 remove_empty_channel = TRUE,
 save_fitted_models = FALSE,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL
)

Arguments

data
 the output of proteinSummarization function. It is a list with data frames `FeatureLevelData` and `ProteinLevelData`.
contrast.matrix
 Comparison between conditions of interests. 1) default is "pairwise", which compare all possible pairs between two conditions. 2) Otherwise, users can specify the comparisons of interest. Based on the levels of conditions, specify 1 or -1 to the conditions of interests and 0 otherwise. The levels of conditions are sorted alphabetically.
moderated
 TRUE will moderate t statistic; FALSE (default) uses ordinary t statistic.
adj.method
 adjusted method for multiple comparison. "BH" is default.
remove_norm_channel
 TRUE(default) removes "Norm" channels from protein level data.
remove_empty_channel
 TRUE(default) removes "Empty" channels from protein level data.
save_fitted_models
 logical, if TRUE, fitted models will be added to
use_log_file
 logical. If TRUE, information about data processing will be saved to a file.
append logical. If TRUE, information about data processing will be added to an existing log file.

verbose logical. If TRUE, information about data processing will be printed to the console.

log_file_path character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If ‘append = TRUE’, has to be a valid path to a file.

Value

a list that consists of the following elements: (1) ComparisonResult: statistical testing results; (2) FittedModel: the fitted linear models

Examples

data(input.pd)
use protein.summarization() to get protein abundance data
quant.pd.msstats = proteinSummarization(input.pd, method="msstats", global_norm=TRUE, reference_norm=TRUE)

test.pairwise = groupComparisonTMT(quant.pd.msstats, moderated = TRUE)
head(test.pairwise$ComparisonResult)

Only compare condition 0.125 and 1
levels(quant.pd.msstats$ProteinLevelData$Condition)

Compare condition 1 and 0.125
comparison=matrix(c(-1,0,0,1),nrow=1)

Set the names of each row
row.names(comparison)="1-0.125"

Set the column names
colnames(comparison)= c("0.125", "0.5", "0.667", "1")
test.contrast = groupComparisonTMT(data = quant.pd.msstats, contrast.matrix = comparison, moderated = TRUE)
head(test.contrast$ComparisonResult)

input.pd Example of output from PDtoMSstatsTMTFormat function

Description

It is made from raw.pd and annotation.pd, which is the output of PDtoMSstatsTMTFormat function. It should include the required columns as below.
Usage

input.pd

Format

A data frame with 20110 rows and 11 variables.

Details

- ProteinName : Protein ID
- PeptideSequence : peptide sequence
- Charge : peptide charge
- PSM : peptide ion and spectra match
- Channel : Labeling information (126, ... 131)
- Condition : Condition (ex. Healthy, Cancer, Time0)
- BioReplicate : Unique ID for biological subject.
- Run : MS run ID
- Mixture : Unique ID for TMT mixture.
- TechRepMixture : Unique ID for technical replicate of one TMT mixture.
- Intensity: Protein Abundance

Examples

head(input.pd)
\begin{verbatim}
rmProtein_with1Feature = FALSE,
summaryforMultipleRows = sum,
use_log_file = TRUE,
append = FALSE,
verbose = TRUE,
log_file_path = NULL,
...
)

Arguments

 evidence name of 'evidence.txt' data, which includes feature-level data.
 proteinGroups name of 'proteinGroups.txt' data.
 annotation data frame which contains column Run, Fraction, TechRepMixture, Mixture,
 Channel, BioReplicate, Condition. Refer to the example 'annotation.mq' for the
 meaning of each column.

 which.proteinid
 Use 'Proteins' (default) column for protein name. 'Leading.proteins' or 'Leading.
 razor.proteins' or 'Gene.names' can be used instead to get the protein ID
 with single protein. However, those can potentially have the shared peptides.

 rmProt_Only.identified.by.site
 TRUE will remove proteins with '+' in 'Only.identified.by.site' column from
 proteinGroups.txt, which was identified only by a modification site. FALSE is
 the default.

 useUniquePeptide
 TRUE (default) removes peptides that are assigned for more than one proteins.
 We assume to use unique peptide for each protein.

 rmPSM_withfewMea_withinRun
 TRUE (default) will remove the features that have 1 or 2 measurements within
 each Run.

 rmProtein_with1Feature
 TRUE will remove the proteins which have only 1 peptide and charge. Default
 is FALSE.

 summaryforMultipleRows
 sum (default) or max - when there are multiple measurements for certain feature
 in certain run, select the feature with the largest summation or maximal value.

 use_log_file
 logical. If TRUE, information about data processing will be saved to a file.

 append
 logical. If TRUE, information about data processing will be added to an existing
 log file.

 verbose
 logical. If TRUE, information about data processing will be printed to the con-
 sole.

 log_file_path
 character. Path to a file to which information about data processing will be
 saved. If not provided, such a file will be created automatically. If 'append =
 TRUE', has to be a valid path to a file.

 ...
 additional parameters to 'data.table::fread'.
\end{verbatim}
Value

data.frame of class "MSstatsTMT"

Examples

```r
head(evidence)
head(proteinGroups)
head(annotation.mq)
input.mq <- MaxQtoMSstatsTMTFormat(evidence, proteinGroups, annotation.mq)
head(input.mq)
```

MSstatsComparisonModelSingleTMT

Fit a linear model for group comparison for a single protein

Description

Fit a linear model for group comparison for a single protein

Usage

```r
MSstatsComparisonModelSingleTMT(single_protein, protein_name)
```

Arguments

- `single_protein` protein-level data for a single protein (single element of list created by the `MSstatsPrepareForGroupComparisonTMT` function)
- `protein_name` name of a protein from the `single_protein` data.table

Value

list

MSstatsFitComparisonModelsTMT

Fit linear models for group comparison

Description

Fit linear models for group comparison

Usage

```r
MSstatsFitComparisonModelsTMT(input)
```
MSstatsGroupComparisonOutputTMT

Arguments

| input | output of the MSstatsPrepareForGroupComparisonTMT function |

Value

list

MSstatsGroupComparisonOutputTMT

Combine testing results for individual proteins

Description

Combine testing results for individual proteins

Usage

MSstatsGroupComparisonOutputTMT(testing_results, adj_method)

Arguments

| testing_results | output of the MSstatsGroupComparisonTMT function |
| adj_method | method that will be used to adjust p-values for multiple comparisons |

Value

data.table

MSstatsGroupComparisonTMT

Group comparison for TMT data

Description

Group comparison for TMT data

Usage

MSstatsGroupComparisonTMT(fitted_models, contrast_matrix)

Arguments

| fitted_models | output of the MSstatsModerateTTest function |
| contrast_matrix | contrast matrix |
MSstatsModerateTTest
Moderate T statistic for group comparison

Description
Moderate T statistic for group comparison

Usage

```r
MSstatsModerateTTest(summarized, fitted_models, moderated)
```

Arguments
- `summarized`: protein-level data produced by the `proteinSummarization` function
- `fitted_models`: output of the `MSstatsFitComparisonModelsTMT` function
- `moderated`: if TRUE, moderation will be performed

Value
list

MSstatsNormalizeTMT
Normalization for TMT data

Description
Normalization for TMT data

Usage

```r
MSstatsNormalizeTMT(input, type, normalize)
```

Arguments
- `input`: data.table
- `type`: "peptides" for peptide normalization between channel and run, "proteins" for protein normalization
- `normalize`: logical, if TRUE, data will be normalized

Value
data.table
MSstatsPrepareForGroupComparisonTMT

Prepare output of proteinSummarization for group comparison

Description

Prepare output of proteinSummarization for group comparison

Usage

```r
MSstatsPrepareForGroupComparisonTMT(
  input,
  remove_norm_channel,
  remove_empty_channel
)
```

Arguments

- **input**: output of proteinSummarization
- **remove_norm_channel**: if TRUE, "Norm" channel will be removed
- **remove_empty_channel**: if TRUE, empty channel will be removed

Value

data.table

MSstatsPrepareForSummarizationTMT

Prepare output of MSstatsTMT converters for protein-level summarization

Description

Prepare output of MSstatsTMT converters for protein-level summarization

Usage

```r
MSstatsPrepareForSummarizationTMT(
  data,
  method,
  global_norm,
  reference_norm,
  remove_norm_channel,
)
```
MSstatsSummarizationOutputTMT

Combine feature-level and protein-level data into single output

Description

Combine feature-level and protein-level data into single output
Usage

MSstatsSummarizationOutputTMT(
 summarized,
 processed,
 remove_empty_channel,
 remove_norm_channel
)

Arguments
summarized output of the getSummarizedTMT function
processed output of the getProcessedTMT function
remove_empty_channel
 TRUE (default) removes 'Empty' channels from protein level data.
remove_norm_channel
 TRUE (default) removes 'Norm' channels from protein level data.

Value
list that consists of two dataframes with feature-level and protein-level data

MSstatsSummarizeTMT Protein summarization for TMT data

Description
Protein summarization for TMT data

Usage

MSstatsSummarizeTMT(
 input,
 method,
 impute,
 max_quantile_censored = NULL,
 log_file_path = NULL
)

Arguments
input data.table with TM quant data
method Four different summarization methods to protein-level can be performed: "msstats" (default), "MedianPolish", "Median", "LogSum".
impute only for method="msstats". TRUE (default) imputes missing values by Accelerated failure model. FALSE uses minimum value to impute the missing value for each peptide precursor ion.
max_quantile_censored

We assume missing values are censored. maxQuantileForCensored is Maximum quantile for deciding censored missing value, for instance, 0.999. Default is Null.

log_file_path path to a MSstats log file

Value
data.table

MSstatsTestSingleProteinTMT

Hypothesis tests for a single protein in TMT data

Description

Hypothesis tests for a single protein in TMT data

Usage

MSstatsTestSingleProteinTMT(fitted_model, contrast_matrix)

Arguments

fitted_model single element of the MSstatsModerateTTest output
contrast_matrix contrast matrix

Value

list

MSstatsTMT

MSstatsTMT: A package for protein significance analysis in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling

Description

A set of tools for detecting differentially abundant peptides and proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling.
functions

- **PDtoMSstatsTMTFormat**: generates MSstatsTMT required input format for Proteome discoverer output.
- **MaxQtoMSstatsTMTFormat**: generates MSstatsTMT required input format for MaxQuant output.
- **SpectroMinetoMSstatsTMTFormat**: generates MSstatsTMT required input format for SpectroMine output.
- **OpenMStoMSstatsTMTFormat**: generates MSstatsTMT required input format for OpenMS output.
- **proteinSummarization**: summarizes PSM level quantification to protein level quantification.
- **dataProcessPlotsTMT**: visualizes for explanatory data analysis.
- **groupComparisonTMT**: tests for significant changes in protein abundance across conditions.

Author(s)

Maintainer: Devon Kohler <kohler.d@northeastern.edu>

Authors:

- Ting Huang <thuang0703@gmail.com>
- Meena Choi <mnchoi67@gmail.com>
- Mateusz Staniak <mtst@mstaniak.pl>
- Sicheng Hao <hao.sic@husky.neu.edu>
- Olga Vitek <o.vitek@northeastern.edu>

See Also

Useful links:

- http://msstats.org/msstatstmt/
- Report bugs at https://groups.google.com/forum/#!forum/msstats

OpenMStoMSstatsTMTFormat

Generate MSstatsTMT required input format for OpenMS output

Description

Generate MSstatsTMT required input format for OpenMS output
Usage

OpenMStoMSstatsTMTFormat(
 input,
 useUniquePeptide = TRUE,
 rmPSM_withfewMea_withinRun = TRUE,
 rmProtein_with1Feature = FALSE,
 summaryforMultiplePSMs = sum,
 use_log_file = TRUE,
 append = FALSE,
 verbose = TRUE,
 log_file_path = NULL,
 ...
)

Arguments

input MSstatsTMT report from OpenMS
useUniquePeptide TRUE (default) removes peptides that are assigned for more than one proteins.
 We assume to use unique peptide for each protein.
rmPSM_withfewMea_withinRun TRUE (default) will remove the features that have 1 or 2 measurements within each Run.
rmProtein_with1Feature TRUE will remove the proteins which have only 1 peptide and charge. Default is FALSE.
summaryforMultiplePSMs sum (default) or max - when there are multiple measurements for certain feature in certain run, select the feature with the largest summation or maximal value.
use_log_file logical. If TRUE, information about data processing will be saved to a file.
append logical. If TRUE, information about data processing will be added to an existing log file.
verbose logical. If TRUE, information about data processing will be printed to the console.
log_file_path character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If `append = TRUE`, has to be a valid path to a file.
...
additional parameters to `data.table::fread`.

Value

'data.frame' of class 'MSstatsTMT'.

Examples

head(raw.om)
input.om <- OpenMStoMSstatsTMTFormat(raw.om)
head(input.om)

PDtoMSstatsTMTFormat
Convert Proteome Discoverer output to MSstatsTMT format.

Description
Convert Proteome Discoverer output to MSstatsTMT format.

Usage

```r
PDtoMSstatsTMTFormat(
  input,
  annotation,
  which.proteinid = "Protein.Accessions",
  useNumProteinsColumn = TRUE,
  useUniquePeptide = TRUE,
  rmPSM_withfewMea_withinRun = TRUE,
  rmProtein_with1Feature = FALSE,
  summaryforMultipleRows = sum,
  use_log_file = TRUE,
  append = FALSE,
  verbose = TRUE,
  log_file_path = NULL,
  ...
)
```

Arguments

- **input**: PD report or a path to it.
- **annotation**: annotation with Run, Fraction, TechRepMixture, Mixture, Channel, BioReplicate, Condition columns or a path to file. Refer to the example 'annotation' for the meaning of each column.
- **which.proteinid**: Use 'Protein.Accessions'(default) column for protein name. 'Master.Protein.Accessions' can be used instead to get the protein name with single protein.
- **useNumProteinsColumn**: logical, TRUE(default) remove shared peptides by information of # Proteins column in PSM sheet.
- **useUniquePeptide**: logical, if TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- **rmPSM_withfewMea_withinRun**: TRUE (default) will remove the features that have 1 or 2 measurements within each Run.
PhilosophertoMSstatsTMTFormat

`PhilosophertoMSstatsTMTFormat`

Convert Philosopher (Fragpipe) output to MSstatsTMT format.

Description

Convert Philosopher (Fragpipe) output to MSstatsTMT format.

Usage

```r
PhilosophertoMSstatsTMTFormat(
  input,
  annotation,
  protein_id_col = "Protein",
  peptide_id_col = "Peptide.Sequence",
  Purity_cutoff = 0.6,
  PeptideProphet_prob_cutoff = 0.7,
  useUniquePeptide = TRUE,
...
```

Parameters

- `rmProtein_with1Feature`: `TRUE` will remove the proteins which have only 1 peptide and charge. Default is `FALSE`.
- `summaryforMultipleRows`: `sum` (default) or `max` - when there are multiple measurements for certain feature in certain run, select the feature with the largest summation or maximal value.
- `use_log_file`: logical. If `TRUE`, information about data processing will be saved to a file.
- `append`: logical. If `TRUE`, information about data processing will be added to an existing log file.
- `verbose`: logical. If `TRUE`, information about data processing will be printed to the console.
- `log_file_path`: character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If `append = TRUE`, has to be a valid path to a file.
- ... additional parameters to `data.table::fread`.

Value

`'data.frame'` of class `'MSstatsTMT'`

Examples

```r
head(raw.pd)
head(annotation.pd)
input.pd <- PDtoMSstatsTMTFormat(raw.pd, annotation.pd)
head(input.pd)
```
Arguments

input data.frame of 'msstats.csv' file produced by Philosopher

annotation annotation with Run, Fraction, TechRepMixture, Mixture, Channel, BioReplicate, Condition columns or a path to file. Refer to the example 'annotation' for the meaning of each column. Channel column should be consistent with the channel columns (Ignore the prefix "Channel ") in msstats.csv file. Run column should be consistent with the Spectrum.File columns in msstats.csv file.

protein_id_col Use 'Protein'(default) column for protein name. 'Master.Protein.Accessions' can be used instead to get the protein ID with single protein.

peptide_id_col Use 'Peptide.Sequence'(default) column for peptide sequence. 'Modified.Peptide.Sequence' can be used instead to get the modified peptide sequence.

Purity_cutoff Cutoff for purity. Default is 0.6

PeptideProphet_prob_cutoff Cutoff for the peptide identification probability. Default is 0.7. The probability is confidence score determined by PeptideProphet and higher values indicate greater confidence.

useUniquePeptide logical, if TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.

rmPSM_withfewMea_withinRun TRUE (default) will remove the features that have 1 or 2 measurements within each Run.

rmPeptide_OxidationM TRUE (default) will remove the peptides including oxidation (M) sequence.

rmProtein_with1Feature TRUE will remove the proteins which have only 1 peptide and charge. Default is FALSE.

summaryforMultipleRows sum (default) or max - when there are multiple measurements for certain feature in certain run, select the feature with the largest summation or maximal value.

use_log_file logical. If TRUE, information about data processing will be saved to a file.

append logical. If TRUE, information about data processing will be added to an existing log file.
proteinGroups

Verbose logical. If TRUE, information about data processing will be printed to the console.

log_file_path character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If `append = TRUE`, has to be a valid path to a file.

... additional parameters to `data.table::fread`.

Value

'data.frame' of class 'MSstatsTMT'

proteinGroups Example of proteinGroups file from MaxQuant for TMT-10plex experiments.

Description

Example of proteinGroup.txt file from MaxQuant, which is identified protein group information file. It is the input for MaxQtoMSstatsTMTFormat function, with evidence.txt and annotation file. It includes identified protein groups for 10 proteins among 15 MS runs with TMT10. The important variables are as follows:

Usage

proteinGroups

Format

A data frame with 1075 rows and 105 variables.

Details

- id
- Protein.IDs
- Only.identified.by.site
- Potential.contaminant
- Reverse

Examples

head(proteinGroups)
proteinSummarization

Summary: peptide level quantification to protein level quantification

Description

We assume missing values are censored and then impute the missing values. Protein-level summarization from peptide level quantification are performed. After all, global median normalization on peptide level data and normalization between MS runs using reference channels will be implemented.

Usage

```r
proteinSummarization(
  data,
  method = "msstats",
  global_norm = TRUE,
  reference_norm = TRUE,
  remove_norm_channel = TRUE,
  remove_empty_channel = TRUE,
  MBimpute = TRUE,
  maxQuantileforCensored = NULL,
  use_log_file = TRUE,
  append = FALSE,
  verbose = TRUE,
  log_file_path = NULL,
  msstats_log_path = NULL
)
```

Arguments

- **data**: Name of the output of PDtoMSstatsTMTFormat function or peptide-level quantified data from other tools. It should have columns ProteinName, PeptideSequence, Charge, PSM, Mixture, TechRepMixture, Run, Channel, Condition, BioReplicate, Intensity.
- **method**: Four different summarization methods to protein-level can be performed: "msstats" (default), "MedianPolish", "Median", "LogSum".
- **global_norm**: Global median normalization on peptide level data (equalizing the medians across all the channels and MS runs). Default is TRUE. It will be performed before protein-level summarization.
- **reference_norm**: Reference channel based normalization between MS runs on protein level data. TRUE (default) needs at least one reference channel in each MS run, annotated by 'Norm' in Condition column. It will be performed after protein-level summarization. FALSE will not perform this normalization step. If data only has one run, then reference_norm=FALSE.
quant.pd.msstats

- **remove_norm_channel**
 TRUE (default) removes 'Norm' channels from protein level data.

- **remove_empty_channel**
 TRUE (default) removes 'Empty' channels from protein level data.

- **MBimpute**
 only for method="msstats". TRUE (default) imputes missing values by Accelerated failure model. FALSE uses minimum value to impute the missing value for each peptide precursor ion.

- **maxQuantileforCensored**
 We assume missing values are censored. maxQuantileforCensored is Maximum quantile for deciding censored missing value, for instance, 0.999. Default is Null.

- **use_log_file**
 logical. If TRUE, information about data processing will be saved to a file.

- **append**
 logical. If TRUE, information about data processing will be added to an existing log file.

- **verbose**
 logical. If TRUE, information about data processing will be printed to the console.

- **log_file_path**
 character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If 'append = TRUE', has to be a valid path to a file.

- **msstats_log_path**
 path to a MSstats log file

Value

list that consists of two data.frames with feature-level (FeatureLevelData) and protein-level data (ProteinLevelData)

Examples

```r
data(input.pd)
quant.pd.msstats <- proteinSummarization(input.pd,
    method = "msstats",
    global_norm = TRUE,
    reference_norm = TRUE)

head(quant.pd.msstats$ProteinLevelData)
```

result

```
  ProteinLevelData
```

Example of output from proteinSummarization function

Description

It is made from input.pd. It is the output of proteinSummarization function. It is a list that consists of two data.frames with feature-level (FeatureLevelData) and protein-level data (ProteinLevelData). ProteinLevelData should include the required columns as below.
Usage
quant.pd.msstats

Format
A data frame with 100 rows and 8 variables.

Details
• Run : MS run ID
• Protein : Protein ID
• Abundance: Protein-level summarized abundance
• Channel : Labeling information (126, ... 131)
• Condition : Condition (ex. Healthy, Cancer, Time0)
• BioReplicate : Unique ID for biological subject.
• TechRepMixture : Unique ID for technical replicate of one TMT mixture.
• Mixture : Unique ID for TMT mixture.

Examples
head(quant.pd.msstats$ProteinLevelData)

raw.mine

Example of output from SpectroMine for TMT-6plex experiments.

Description
Example of SpectroMine PSM sheet. It is the output of SpectroMine and the input for SpectroMine-toMSstatsTMTFormat function, with annotation file. Annotation file should be made by users. It includes peak intensities for 10 proteins among 12 MS runs with TMT-6plex. The important variables are as follows:

Usage
raw.mine

Format
A data frame with 170 rows and 28 variables.
Details
• PG.ProteinAccessions
• P.MoleculeID
• PP.Charge
• R.FileName
• PG.QValue
• PSM.Qvalue
• Channels : PSM.TMT6_126..Raw., ..., PSM.TMT6_131..Raw.

Examples
head(raw.mine)

raw.om Example of MSstatsTMT report from OpenMS for TMT-10plex experiments.

Description
Example of MSstatsTMT PSM sheet from MaxQuant. It is the input for OpenMStoMSstatsTMT-Format function. It includes peak intensities for 10 proteins among 27 MS runs from three TMT10 mixtures. The important variables are as follows:

Usage
raw.om

Format
A data frame with 860 rows and 13 variables.

Details
• RetentionTime
• ProteinName
• PeptideSequence
• Charge
• Channel
• Condition
• BioReplicate
• Run
• Mixture
Example of output from Proteome Discoverer 2.2 for TMT-10plex experiments.

Description

Example of Proteome discover PSM sheet. It is the input for PDtoMSstatsTMTFormat function, with annotation file. Annotation file should be made by users. It includes peak intensities for 10 proteins among 15 MS runs with TMT-10plex. The variables are as follows:

Usage

raw.pd

Format

A data frame with 2858 rows and 50 variables.

Details

- Master.Protein.Accessions
- Protein.Accessions
- Annotated.Sequence
- Charge
- Ions.Score
- Spectrum.File
- Quan.Info
- Channels: 126, ..., 131

Examples

head(raw.pd)
SpectroMinetoMSstatsTMTFormat

Import data from SpectroMine

Description

Import data from SpectroMine

Usage

```r
SpectroMinetoMSstatsTMTFormat(
  input,
  annotation,
  filter_with_Qvalue = TRUE,
  qvalue_cutoff = 0.01,
  useUniquePeptide = TRUE,
  rmPSM_withfewMea_withinRun = TRUE,
  rmProtein_with1Feature = FALSE,
  summaryforMultipleRows = sum,
  use_log_file = TRUE,
  append = FALSE,
  verbose = TRUE,
  log_file_path = NULL,
  ...
)
```

Arguments

- `input` : data name of SpectroMine PSM output. Read PSM sheet.
- `annotation` : data frame which contains column Run, Fraction, TechRepMixture, Mixture, Channel, BioReplicate, Condition. Refer to the example ‘annotation.mine’ for the meaning of each column.
- `filter_with_Qvalue` : TRUE (default) will filter out the intensities that have greater than qvalue_cutoff in EG.Qvalue column. Those intensities will be replaced with NA and will be considered as censored missing values for imputation purpose.
- `qvalue_cutoff` : Cutoff for EG.Qvalue. default is 0.01.
- `useUniquePeptide` : TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- `rmPSM_withfewMea_withinRun` : TRUE (default) will remove the features that have 1 or 2 measurements within each Run.
- `rmProtein_with1Feature` : TRUE will remove the proteins which have only 1 peptide and charge. Default is FALSE.
summaryforMultipleRows

sum(default) or max - when there are multiple measurements for certain feature in certain run, select the feature with the largest summation or maximal value.

use_log_file

logical. If TRUE, information about data processing will be saved to a file.

append

logical. If TRUE, information about data processing will be added to an existing log file.

verbose

logical. If TRUE, information about data processing will be printed to the console.

log_file_path

character. Path to a file to which information about data processing will be saved. If not provided, such a file will be created automatically. If `append = TRUE`, has to be a valid path to a file.

... additional parameters to `data.table::fread`.

Value

`'data.frame'` of class ``MSstatsTMT`'

Examples

```r
head(raw.mine)
head(annotation.mine)
input.mine <- SpectroMinetoMSstatsTMTFormat(raw.mine, annotation.mine)
head(input.mine)
```

test.pairwise

Example of output from `groupComparisonTMT` function

Description

It is the output of `groupComparisonTMT` function, which is made from `quant.pd.msstats`. It is a list that consists of the following elements: (1) `ComparisonResult`: statistical testing results; (2) `FittedModel`: the fitted linear models `ComparisonResult` should include the columns as below.

Usage

`test.pairwise`

Format

A data frame with 60 rows and 7 variables.
Details

- Protein: Protein ID
- Label: Label of the pairwise comparison or contrast
- log2FC: Log2 fold change
- SE: Standard error of the comparison of contrast results
- DF: Degree of freedom
- pvalue: Value of p statistic of the test
- adj.pvalue: adjusted p value
- issue: used for indicating the reason why a comparison is not testable. NA means the comparison is testable. 'oneConditionMissing' means the protein has no measurements in one condition of the comparison. Furthermore, when 'issue = oneConditionMissing', 'log2FC = Inf' means the negative condition (with coefficient -1 in the Label column) is missing and 'log2FC = -Inf' means the positive condition (with coefficient 1 in the Label column) is missing. 'completeMissing' means the protein has no measurements in all the conditions of the comparison. 'unfittableModel' means there is no enough measurements to fit the linear model. In other words, each condition has only one measurement.

Examples

head(test.pairwise$ComparisonResult)
Index

* datasets
 annotation.mine, 19
 annotation.mq, 20
 annotation.pd, 21
 evidence, 26
 input.pd, 29
 proteinGroups, 44
 raw.mine, 47
 raw.om, 48
 raw.pd, 49

* internal
 .calculatePower, 3
 .checkContrastMatrix, 4
 .checkSummarizationParams, 4
 .countRunsWithNorm, 6
 .documentFunction, 6
 .getMedianSigmaRun, 7
 .getMedianSigmaSubject, 8
 .getNormalizationAbundance, 8
 .getNumSample, 9
 .getPhilosopherInput, 9
 .getRunsMedian, 10
 .getVarComponentTMT, 10
 .handleSingleContrastTMT, 11
 .logSum, 11
 .logSummarizationParams, 12
 .makeContrastSingleTMT, 13
 .makeFactorColumnsTMT, 13
 .medianPolish, 14
 .normalizePeptides, 14
 .normalizeProteins, 15
 .prepareForSummarization, 15
 .removeRedundantChannels, 16
 .sumarizeMSstats, 16
 .sumarizeSimpleStat, 17
 .sumarizeTMP, 18
 .sumarizeTMT, 18
 getProcessedTMT, 27
 getSummarizedTMT, 27
 MSstatsComparisonModelSingleTMT, 32
 MSstatsFitComparisonModelsTMT, 32
 MSstatsGroupComparisonOutputTMT, 33
 MSstatsGroupComparisonTMT, 33
 MSstatsModerateTTest, 34
 MSstatsNormalizeTMT, 34
 MSstatsPrepareForGroupComparisonTMT, 35
 MSstatsPrepareForSummarizationTMT, 35
 MSstatsSummarizationOutputTMT, 36
 MSstatsSummarizeTMT, 37
 MSstatsTestSingleProteinTMT, 38
 quant.pd.msstats, 46
 test.pairwise, 51
 .calculatePower, 3
 .checkContrastMatrix, 4
 .checkSummarizationParams, 4
 .countRunsWithNorm, 6
 .documentFunction, 6
 .getMedianSigmaRun, 7
 .getMedianSigmaSubject, 8
 .getNormalizationAbundance, 8
 .getNumSample, 9
 .getPhilosopherInput, 9
 .getRunsMedian, 10
 .getVarComponentTMT, 10
 .handleSingleContrastTMT, 11
 .logSum, 11
 .logSummarizationParams, 12
 .makeContrastSingleTMT, 13
 .makeFactorColumnsTMT, 13
 .medianPolish, 14
 .normalizePeptides, 14
 .normalizeProteins, 15
 .prepareForSummarization, 15
 .removeRedundantChannels, 16

53
.summarizeMSstats, 16
.summarizeSimpleStat, 17
.summarizeTMP, 18
.summarizeTMT, 18

annotation.mine, 19
annotation.mq, 20
annotation.pd, 21, 29

dataProcessPlotsTMT, 22, 39
designSampleSizeTMT, 24

evidence, 26
getProcessedTMT, 27
getSummarizedTMT, 27
groupComparisonTMT, 28, 39

input.pd, 29, 46
MaxQtoMSstatsTMTFormat, 30, 39
MSstatsComparisonModelSingleTMT, 32
MSstatsFitComparisonModelsTMT, 32
MSstatsGroupComparisonOutputTMT, 33
MSstatsGroupComparisonTMT, 33
MSstatsModerateTTest, 34
MSstatsNormalizeTMT, 34
MSstatsPrepareForGroupComparisonTMT, 35
MSstatsPrepareForSummarizationTMT, 35
MSstatsSummarizationOutputTMT, 36
MSstatsSummarizeTMT, 37
MSstatsTestSingleProteinTMT, 38
MSstatsTMT, 38
MSstatsTMT-package (MSstatsTMT), 38

OpenMStoMSstatsTMTFormat, 39, 39
PDtoMSstatsTMTFormat, 39, 41
PhilosophertoMSstatsTMTFormat, 42
proteinGroups, 44
proteinSummarization, 22, 28, 39, 45
quant.pd.msstats, 46, 51

raw.mine, 47
raw.om, 48
raw.pd, 29, 49
SpectroMinetoMSstatsTMTFormat, 39, 50

test.pairwise, 51