Package ‘MetCirc’

May 30, 2024

Type Package

Title Navigating mass spectral similarity in high-resolution MS/MS metabolomics data

Version 1.34.0

Date 2023-04-18

Author Thomas Naake <thomasnaake@googlemail.com>, Johannes Rainer <johannes.rainer@eurac.edu> and Emmanuel Gaquerel <emmanuel.gaquerel@ibmp-cnrs.unistra.fr>

Maintainer Thomas Naake <thomasnaake@googlemail.com>

VignetteBuilder knitr

Depends R (>= 3.5), amap (>= 0.8), circlize (>= 0.3.9), scales (>= 0.3.0), shiny (>= 1.0.0), Spectra (>= 1.4.3)

Imports ggplot2 (>= 3.2.1), MsCoreUtils (>= 1.9.2), S4Vectors (>= 0.22.0)

Suggests BiocGenerics, graphics (>= 3.5), grDevices (>= 3.5), knitr (>= 1.11), testthat (>= 2.2.1)

biocViews ShinyApps, Metabolomics, MassSpectrometry, Visualization

Description MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data. MetCirc uses the Spectra object infrastructure defined in the package Spectra that stores MS/MS spectra. MetCirc offers functionality to calculate similarity between precursors based on the normalised dot product, neutral losses or user-defined functions and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features.

License GPL (>= 3)

RoxygenNote 7.2.2

git_url https://git.bioconductor.org/packages/MetCirc

git_branch RELEASE_3_19

git_last_commit 52a8ee6
Contents

cart2Polar ... 3
circosLegend .. 3
compartmentTissue .. 5
convertExampleDF ... 5
convertMsp2Spectra .. 6
createLink0df .. 7
createLinkDf .. 8
cutLinkDf ... 9
getLinkDfIndices .. 10
highlight ... 11
minFragCart2Polar ... 12
msp2spectra .. 14
neutralloss ... 14
orderSimilarityMatrix .. 16
plotCircos ... 17
plotSpectra ... 19
printInformationSelect ... 20
recordPlotFill_degreeFeatures 21
recordPlotHighlight .. 22
replayPlotAdd .. 23
replayPlotOrder .. 24
sd01_outputXCMS ... 25
sd02_deconvoluted .. 26
select ... 26
shinyCircos .. 27
similarityMat .. 28
spectraCondition ... 29
sps_tissue ... 30
thresholdLinkDf ... 31
tissue ... 32
typeMatch_link0 ... 32

Index ... 34
cart2Polar

Calculate polar coordinates from cartesian coordinates

Description

cart2Polar calculates polar coordinates from cartesian coordinates.

Usage

cart2Polar(x, y)

Arguments

- **x** numeric cartesian x coordinate
- **y** numeric cartesian y coordinate

Details

cart2Polar is employed to translate cartesian coordinates into polar coordinates especially in interactive shiny applications when using hovering and clicking features.

Value

cart2Polar returns a list of polar coordinates r and theta

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
x <- 1; y <- 1
cart2Polar(x, y)
```

circosLegend

Plot a legend for circos plot

Description

circosLegend plots a legend for circos plot using group names.

Usage

circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)
Arguments

- **groupname**: character vector containing "group" and "name" to display that is a unique identifier of the features. "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element.
- **highlight**: logical, should colours be adjusted to highlight settings?
- **colour**: NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used.
- **cex**: numeric, parameter that controls size of the legend in the plot.

Details

Internal use in shinyCircos or outside of shinyCircos to reproduce figures.

Value

The function will open a new plot and display colours together with labels.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")

create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
 FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

linkDf <- createLinkDf(similarityMatrix = similarityMat,
 sps = sps_tissue[1:10],
 condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.01, upper = 1)

cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
 as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)

plot legend
circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)
Description

The `data.frame` `compartmentTissue` is used in the subsection 'Preparing the tissue data set for analysis' in the vignette of 'MetCirc'. In `compartmentTissue`, information on the organ-localisation of each MS/MS spectrum is stored.

Format

`'data.frame'`

Value

`'data.frame'`

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

internal

Description

`convertExampleDF` is a `data.frame` which comprises information on a specific metabolite per row stating the average retention time, average m/z, the name of the metabolite, the adduct ion name and the spectrum reference file name. The function `allocatePrecursor2mz` uses `data.frame`s of the kind of `sd01\outputXCMS` and `sd02\deconvoluted` to create a `data.frame` of the kind of `convertExampleDF`. Allocation of precursor ions to candidate m/z values is based on minimal distance of m/z and deviance of retention time based on an objective function. See `?allocatePrecursor2mz` for further information.

Format

`'data.frame'`

Value

`'data.frame'`
Description
Convert msp data frame into object of class `Spectra()`

Usage

```r
convertMsp2Spectra(msp)
```

Arguments

- `msp`
data.frame that mimicks the .msp file format, see Details for further information.

Details

`msp` is a data frame of a .msp file, a typical data file for MS/MS libraries. The data frame has two columns and contains in the first column the entries "NAME:", "PRECURSORMZ:" (or "EXACTMASS:"), "RETENTIONTIME:", Num Peaks:" and information on fragments and peak areas/intensities and will extract the respective information in the second column.

Value

`convertMsp2Spectra` returns an object of class `Spectra`

Examples

```r
data("convertMsp2Spectra", package = "MetCirc")
convertMsp2Spectra(msp = msp2spectra)
```
createLink0df

Create a link matrix

Description

Create a link matrix which links every feature in similarity matrix with another.

Usage

createLink0df(similarityMatrix, sps, condition)

Arguments

- `similarityMatrix`: matrix, a similarity matrix that contains the NDP similarity measure between all precursors in the data set
- `sps`: Spectra object
- `condition`: character, which conditions should be included?

Details

`createLink0df` creates a matrix from a similarity matrix which includes all connections between features in the similarity matrix, but exclude links which have a similarity of exactly 0.

Value

`createLink0df` returns a `matrix` that gives per each row information on linked features

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
link0df <- createLink0df(similarityMatrix = similarityMat,
                         sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
```
createLinkDf

Create a data frame which contains features to link (indices)

Description

Create a data frame which contains features to link (indices).

Usage

createLinkDf(similarityMatrix, sps, condition, lower, upper)

Arguments

similarityMatrix
 matrix, a similarity matrix that contains the similarity measure between all pre-
cursors in the data set
sps
 Spectra object containing spectral data corresponding to features in similarityMatrix
condition
 character vector containing the conditions/samples for which a linkDf is created
lower
 numeric(1), threshold value for similarity values, linked features below this value will not be included
upper
 numeric(1), threshold value for similarity values, linked features above this value will not be included

Details

lower and upper are numerical values and truncate spectra based on their similarity. The function createLinkDf is a wrapper for the functions createLink0df and thresholdLinkDf.

Value

createLinkDf returns a data.frame that gives per each row information on linked features

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
link0df <- createLink0df(similarityMatrix = similarityMat,
sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
createLinkDf(similarityMatrix = similarityMat, sps = sps_tissue,
 condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.5, upper = 1)
cutLinkDf

Create a cut data frame with information on links

Description

Create a cut link data frame

Usage

cutLinkDf(linkDf, type = c("all", "inter", "intra"))

Arguments

linkDf data.frame, that gives per each row information on linked features
type character, one of "all", "inter" or "intra"

Details

This function is used to truncate features from linkDf. If type = "all", linkDf will not be changed; if type = "inter" the returned linkDf will only contain entries of links which are between groups and not inside groups; contrary to that, if type = "intra" the returned linkDf will only contain entries of links which are inside groups and not between groups.

Value

cutLinkDf returns a data.frame that gives per each row information on linked features

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
linkDf <- createLinkDf(similarityMatrix = similarityMat,
 sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"),
 lower = 0.75, upper = 1)
cutLinkDf(linkDf = linkDf, type = "all")
getLinkDfIndices Get indices in linkDf of feature

Description

Gets indices in linkDf of feature

Usage

getLinkDfIndices(groupnameselected, linkDf)

Arguments

- groupnameselected
 - character vector with groupname of selected feature, vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element

- linkDf
 - data.frame, in each row there is information about features to be connected

Details

Internal use for function highlight

Value

getLinkDfIndices returns indices concerning linkDf to which groupnameselected connects

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

Not run: getLinkDfIndices(groupnameselected, linkMatrix)
Description

A function to add links and highlight sectors to an initialised and plotted circlize plot with one track.

Usage

highlight(
 groupname,
 ind,
 linkDf,
 colour = NULL,
 transparency = 0.4,
 links = TRUE
)

Arguments

groupname character vector containing "group" and "name" to display that is a unique identifier of the features, "group" and "name" have to be separated by ": " where "group" is the first and "name" is the last element

ind numeric, indices which will be highlighted

linkDf data.frame, in each row there is information about features to be connected

colour NULL or character, colour defines the colours which are used for plotting, if 'NULL' default colours are used

transparency numeric, defines the transparency of the colours

links logical, should links of unselected features be plotted

Details

Internal use for shinyCircos or outside of shinyCircos to reproduce the figure.

Value

The function will update an existing plot by highlighting a specified sector and connected links.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
Examples

```r
data("spectra", package = "MetCirc")

## create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
    FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

## order similarityMat according to retentionTime and update rownames
simM <- orderSimilarityMatrix(similarityMat, sps = sps_tissue[1:10],
    type = "retentionTime")

## create link matrix
linkDf <- createLinkDf(similarityMatrix = simM, sps = sps_tissue,
    condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.01, upper = 1)

## cut link matrix (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")

## set circlize parameters
circos.clear()
circos.par(gap.degree = 0, cell.padding = c(0.0, 0.0, 0.0, 0),
    track.margin = c(0.0, 0.0))

## here: set indSelected arbitrarily
indSelected <- c(2,3)

## actual plotting
plotCircos(groupname, linkDf_cut, initialize = TRUE,
    featureNames = TRUE, cexFeatureNames = 0.2, groupSector = TRUE,
    groupName = FALSE, links = FALSE, highlight = TRUE)

## highlight
highlight(groupname = groupname, ind = indSelected, linkDf = linkDf_cut,
    colour = NULL, transparency = 0.4, links = TRUE)
```

minFragCart2Polar

Calculate the nearest feature in polar coordinates given cartesian coordinates

Description

Calculates the nearest feature in polar coordinates given cartesian coordinates.

Usage

`minFragCart2Polar(x, y, degreeOfFeatures)`
minFragCart2Polar

Arguments

- `x` numeric, cartesian x coordinate
- `y` numeric, cartesian y coordinate
- `degreeOfFeatures` list of positions of features

Details

`minFragCart2Polar` is employed to find the feature with the smallest distance from given cartesian coordinates.

Value

`minFragCart2Polar` returns the index of the feature that has the smallest distance to the given coordinates. As `minFragCart2Polar` is used in `shinyCircos` for the track 1 only polar r coordinates between 0.8 and 1 will be used to find the feature with smallest distance.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
library("MsCoreUtils")
data("spectra", package = "MetCirc")

## create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
    FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

linkDf <- createLinkDf(similarityMatrix = similarityMat,
    sps = sps_tissue[1:10],
    condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.5, upper = 1)

## cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
    as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)

## set circlize parameters
circos.clear()
circos.par(gap.degree = 0, cell.padding = c(0.0, 0, 0.0, 0),
    track.margin = c(0.0, 0))
plotCircos(groupname, NULL, initialize = TRUE, featureNames = FALSE,
    groupName = FALSE, groupSector = FALSE, links = FALSE, highlight = FALSE)
x <- 1
y <- 0
degreeFeatures <- lapply(groupname,
    function(x)
**msp2spectra**  
*Example data for ‘MetCirc’: ‘msp2spectra’*

**Description**

`convertMsp2Spectra` contains the object ‘msp2spectra’ that is a data frame in .MSP format, a typical format for MS/MS library building. Each entry consists of the metabolite name (NAME), the precursor mz (PRECURSORMZ), the retention time (RETENTIONTIME), number of peaks (Num Peaks), together with fragments and their intensity values. In the example used in the function `convertMsp2Spectra` the ‘data.frame’ ‘msp2spectra’ is used to construct an object of class ‘MSpectra’.

**Format**

‘data.frame’

**Value**

‘data.frame’

**Author(s)**

Thomas Naake, <thomasnaake@googlemail.com>

**Source**


**neutralloss**  
*Calculate similarity based on neutral losses*

**Description**

Calculate similarity based on neutral losses (NLS)

**Usage**

`neutralloss(x, y, m = 0.5, n = 2, na.rm = TRUE, ...)`
Arguments

x  Spectra object from Spectra containing intensity and m/z values, first MS/MS spectrum
y  Spectra object from Spectra containing intensity and m/z values, second MS/MS spectrum
m  numeric(1), exponent to calculate peak intensity-based weights
n  numeric(1), exponent to calculate m/z-based weights
na.rm  logical(1), if NA values should be removed
...
... further arguments

Details

Similarities of spectra based on neutral losses are calculated according to the following formula:

\[
NLS = \frac{\sum (W_{S1,i} \cdot W_{S2,i})^2}{\sum (W_{S1,i}^2) \cdot \sum (W_{S2,i}^2)}
\]

with \( W = [\text{peakintensity}]^m \cdot [\text{NL}]^n \) and \( NL = |m/z - \text{precursor}/z| \). For further information see Li et al. (2015): Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. PNAS, E4147–E4155.

In here, the precursor m/z is taken by the m/z feature with the highest intensity.

\text{neutralloss} returns a numeric value ranging between 0 and 1, where 0 indicates no similarity between the two MS/MS features, while 1 indicates that the MS/MS features are identical. Prior to calculating

\( W_{S1} \)

or

\( W_{S2} \)

all intensity values are divided by the maximum intensity value.

Value

\text{neutralloss} returns a numeric similarity coefficient between 0 and 1

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
Spectra::compareSpectra(sps_tissue[1:10], FUN = neutralloss, m = 0.5, n = 2)
orderSimilarityMatrix

Order columns and rows of a similarity matrix according to m/z, retention time and clustering

Description

Internal function for shiny application. May also be used outside of shiny to reconstruct figures.

Usage

orderSimilarityMatrix(
  similarityMatrix,
  sps,
  type = c("retentionTime", "mz", "clustering"),
  group = FALSE
)

Arguments

- similarityMatrix: matrix, similarityMatrix contains pair-wise similarity coefficients which give information about the similarity between precursors
- sps: Spectra object containing spectra that are compared in similarityMatrix
- type: character(1), one of "retentionTime", "mz", or "clustering"
- group: logical(1), if TRUE group separated by "_" will be cleaved from rownames/colnames of similarityMatrix and matched against names of sps (sps$name), if FALSE rownames/colnames of similarityMatrix are taken as are and matched against names of sps (sps$name)

Details

orderSimilarityMatrix takes a similarity matrix, Spectra object (sps, containing information on m/z and retention time), and a character vector as arguments. It will then reorder rows and columns of the similarityMatrix object such, that it orders rows and columns of similarityMatrix according to m/z, retention time or clustering in each group.

orderSimilarityMatrix is employed in the shinyCircos function to create similarityMatrix objects which will allow to switch between different types of ordering in between groups (sectors) in the circos plot. It may be used as well externally, to reproduce plots outside of the reactive environment (see vignette for a workflow).

Value

matrix, orderSimilarityMatrix returns a similarity matrix with ordered rownames according to the character vector type
Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
    FUN = MsCoreUtils::ndotproduct, ppm = 10)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

## order according to retention time
orderSimilarityMatrix(similarityMatrix = similarityMat,
    sps = sps_tissue, type = "retentionTime", group = FALSE)

Description

Circular plot to visualize similarity.

Usage

plotCircos(
    groupname, linkDf, initialize = c(TRUE, FALSE),
    featureNames = c(TRUE, FALSE), cexFeatureNames = 0.3,
    groupSector = c(TRUE, FALSE), groupName = c(TRUE, FALSE),
    links = c(TRUE, FALSE), highlight = c(TRUE, FALSE),
    colour = NULL, transparency = 0.2
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupname</td>
<td>character vector containing &quot;group&quot; and &quot;name&quot; to display that is a unique</td>
</tr>
<tr>
<td></td>
<td>identifier of the features. &quot;group&quot; and &quot;name&quot; have to be separated by &quot;_&quot;</td>
</tr>
<tr>
<td></td>
<td>where &quot;group&quot; is the first and &quot;name&quot; is the last element</td>
</tr>
<tr>
<td>linkDf</td>
<td>data.frame containing linked features in each row, has five columns (group1,</td>
</tr>
<tr>
<td></td>
<td>spectrum1, group2, spectrum2, similarity)</td>
</tr>
<tr>
<td>initialize</td>
<td>logical, should plot be initialized?</td>
</tr>
<tr>
<td>featureNames</td>
<td>logical, should feature names be displayed?</td>
</tr>
</tbody>
</table>
plotCircos

cexFeatureNames numeric size of feature names

groupSector logical, should groups be displayed with background colours?

groupName logical, should group names (e.g. compartment names or individual names) be displayed?

links logical, should links be plotted?

highlight logical, highlight is set to TRUE by default

colour NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used

transparency numeric, defines the transparency of the colours

Details
Internal use for shinyCircos or used outside of shinyCircos to reproduce figure

Value
The function will initialize a circlize plot and/or will plot features of a circlize plot.

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples
library("MsCoreUtils")
data("spectra", package = "MetCirc")

## create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
    FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

## order similarityMat according to retentionTime
simM <- orderSimilarityMatrix(similarityMat, sps = sps_tissue[1:10],
    type = "retentionTime")

## create link data.frame
linkDf <- createLinkDf(similarityMatrix = simM, sps = sps_tissue,
    condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.01, upper = 1)
## cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")

## set circlize paramters
circos.clear()
circos.par(gap.degree = 0, cell.padding = c(0.0, 0, 0.0, 0),
    track.margin = c(0.0, 0))
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
    as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)
plotSpectra

## actual plotting
plotCircos(groupname, linkDf_cut, initialize = TRUE,
   featureNames = TRUE, cexFeatureNames = 0.3, groupSector = TRUE,
   groupName = FALSE, links = FALSE, highlight = FALSE, colour = NULL,
   transparency = 0.2)

---

plotSpectra | *Plot pair-wise spectra*

### Description

plotSpectra plots a spectra of a subject and query spectra. plotSpectra uses ggplot plotting functionality.

### Usage

```r
plotSpectra(sps, subject, query)
```

### Arguments

- `sps` Spectra object
- `subject` character, name of spectra that is aligned against, character with preceding sample name
- `query` character, name of spectra that is aligned to subject, character with preceding sample name

### Details

Internally, all intensities are normalized to 100%.

### Value

`ggplot2` plot

### Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

### Examples

```r
data("spectra", package = "MetCirc")
plotSpectra(sps = sps_tissue, subject = "SPL_1", query = "SPL_2")
```
printInformationSelect

Display information on connected features of selected features

Description

Displays information on connected features of selected features.

Usage

printInformationSelect(
  select,
  sps = NULL,
  linkDfInd,
  linkDf,
  similarityMatrix,
  roundDigits = 2
)

Arguments

  select character, obtained from groupname, character of selected feature
  sps Spectra object containing spectra that are compared in similarityMatrix
  linkDfInd numeric indices of selected features
  linkDf data.frame that contains information of linked features for given thresholds
  similarityMatrix matrix that is used to get information on the degree of similarity, similarityMatrix is an ordered version of a similarity matrix, see ?orderSimilarityMatrix
  roundDigits numeric(1), how many digits should be displayed?

Details

printInformationSelect is for internal use.

Value

character that is in HTML format

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
Examples

data("spectra", package = "MetCirc")
sps_tissue@metadata$names <- rep("Unknown", 259)
sps_tissue@metadata$information <- rep("Unknown", 259)
sps_tissue@metadata$classes <- rep("Unknown", 259)
sps_tissue@metadata$adduct <- rep("Unknown", 259)
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
    FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]
linkDf <- createLinkDf(similarityMatrix = similarityMat,
    sps = sps_tissue[1:10],
    condition = c("SPL" ,"LIM" , "ANT" , "STY" ), lower = 0.01, upper = 1)

## cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
    as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)

## arbitrarily select a feature
ind <- 2
linkDfInds <- getLinkDfIndices(groupname[ind], linkDf_cut)
MetCirc:::printInformationSelect(select = groupname[ind],
    sps = sps_tissue[1:10], linkDfInd = linkDfInds,
    linkDf = linkDf_cut, similarityMatrix = similarityMat)

recordPlotFill_degreeFeatures

Record a plot of filled features and the degree of features

Description

recordPlotFill_degreeFeatures records a plot of filled features and returns the degree of features.

Usage

recordPlotFill_degreeFeatures(type_match, ...)

Arguments

type_match character, ordered vector according to type
... further arguments passed to plotCircos

Details

Helper function for shinyCircos.
Value

list of length 2, entry plotFill is of recordedplot and entry degreeFeatures is a list of vectors of numeric(1)

Author(s)

Thomas Naake,<thomasnaake@googlemail.com>

Examples

type_match <- c("a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "c_1", "c_2")
MetCirc:::recordPlotFill_degreeFeatures(type_match)

recordPlotHighlight

Return a recordedplot of plotCircos plot with highlight = TRUE

Description

recordPlotHighlight returns a recordedplot object of plotCircos with highlight = TRUE

Usage

recordPlotHighlight(type_match, ...)

Arguments

dataSet a factor, ordered vector according to type
... further arguments passed to plotCircos

Details

Helper function for shinyCircos.

Value

recordedplot

Author(s)

Thomas Naake,<thomasnaake@googlemail.com>

Examples

type_match <- c("a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "c_1", "c_2")
MetCirc:::recordPlotHighlight(type_match)
**replayPlotAdd**

*Plot plotCircos or highlight*

---

**Description**

replayPlotAdd plots additional plots on a plot, either plots plotCircos or highlight.

**Usage**

```r
customUsage(replayPlotAdd,
 orderMatch = "mz",
onCircle = FALSE,
linkDf,
mz_match,
rt_match,
clust_match,
ind,
indMz,
indRT,
indCluster)
```

**Arguments**

- `orderMatch` character(1), either "mz", "retentionTime", or "clustering"
- `onCircle` logical, are coordinates on circle. If FALSE and no features are selected (length(ind) == 0), then filled plots are replayed, otherwise highlighted plots are replayed.
- `linkDf` data.frame that contains information of linked features for given thresholds
- `mz_match` character, ordered vector according to m/z
- `rt_match` character, ordered vector according to retention time
- `clust_match` character, ordered vector according to clustering
- `ind` numeric, indices of clicked features
- `indMz` numeric, indices of clicked features for "mz" ordering
- `indRT` numeric, indices of clicked features for "retentionTime" ordering
- `indCluster` numeric, indices of clicked features for "clustering" ordering

**Details**

Helper function for shinyCircos.

**Value**

Depending on onCircle and indMz either returns plotCircos or highlight.
Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
similarityMat <- Spectra:::compareSpectra(sps_tissue[1:10],
   FUN = MsCoreUtils::ndotproduct, ppm = 10, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

## order according to m/z
mz_match <- MetCirc:::typeMatch_link0(similarityMatrix = similarityMat,
   sps = sps_tissue, type = "mz",
   condition = c("SPL", "LIM", "ANT", "STY"))
linkDf <- mz_match[["link0df"]]
mz_match <- mz_match[["type_match"]]

## order according to retention time
rt_match <- MetCirc:::typeMatch_link0(similarityMatrix = similarityMat,
   sps = sps_tissue, type = "retentionTime",
   condition = c("SPL", "LIM", "ANT", "STY"))
rt_match <- rt_match[["type_match"]]

## order according to clustering
clust_match <- MetCirc:::typeMatch_link0(similarityMatrix = similarityMat,
   sps = sps_tissue, type = "clustering",
   condition = c("SPL", "LIM", "ANT", "STY"))
circos.initialize(mz_match,##, levels = mz_match),
   xlim = matrix(rep(c(0,1), length(mz_match)), ncol = 2, byrow = TRUE))
#circos.trackPlotRegion(factor(mz_match, levels = mz_match), ylim = c(0,1))
MetCirc:::replayPlotAdd(orderMatch = "mz", onCircle = FALSE, linkDf = linkDf,
   mz_match = mz_match, rt_match = rt_match, clust_match = clust_match,
   ind = 1, indMz = NULL, indRT = NULL, indCluster = NULL)

---

replayPlotOrder  Wrapper for replayPlot

Description

replayPlotOrder will call replayPlot from grDevices with a recordedplot object based on orderMatch.

Usage

replayPlotOrder(orderMatch = "mz", onCircle = FALSE, plot_l, ind)
**Arguments**

- **orderMatch** character, either "mz", "retentionTime" or "clustering"
- **onCircle** logical, are coordinates on circle. If FALSE and no features are selected (length(ind) == 0), then filled plots are replayed, otherwise highlighted plots are replayed.
- **plot_l** list with plots
- **ind** numeric, indices of clicked features

**Details**

Helper function for shinyCircos.

**Value**

replayedplot

**Author(s)**

Thomas Naake, <thomasnaake@googlemail.com>

**Examples**

```r
type_match <- c("a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "c_1", "c_2")
plotCircos(type_match, NULL, initialize = TRUE, featureNames = TRUE,
groupSector = TRUE, groupName = FALSE, links = FALSE,
highlight = TRUE)
p <- recordPlot()
plot.new()
plot_l <- list(highlightMz = p)
MetCirc:::replayPlotOrder(orderMatch = "mz", onCircle = TRUE,
plot_l = plot_l, ind = NULL)
```

---

**sd01_outputXCMS**

Example data for ‘MetCirc’: ‘sd01_outputXCMS’

**Description**

‘sd01_outputXCMS’ is the output file from the package ‘XCMS’ using the data from Li et al. (2015). See Li et al. (2015) for further details.

**Format**

‘data.frame’

**Value**

‘data.frame’
Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

Li et al. (2015)

sd02_deconvoluted

Example data for 'MetCirc': sd02_deconvoluted

Description

'sd02_deconvoluted' contains MS/MS data from Li et al. (2015). It is a 'data.frame' which hosts m/z values, retention time, intensity and the respective precursor m/z values. 'sd02_deconvoluted' originates from Li et al. (2015). See Li et al. (2015) for further information.

Format

'data.frame'

Value

'data.frame'

select

Select variable based on condition

Description

select returns mz, rt or clust depending on condition.

Usage

select(condition, mz, rt, clust)
**Arguments**

- **condition**: character(1), either "mz", "retentionTime", or "clustering"
- **mz**: object to return if condition == "mz"
- **rt**: object to return if condition == "retentionTime"
- **clust**: object to return if condition == "clustering"

**Details**

Helper function for shinyCircos, replayPlotOrder and replayPlotAdd.

**Value**

mz, rt or clust depending on condition

**Author(s)**

Thomas Naake <thomasnaake@googlemail.com>

**Examples**

```r
mz <- 1
rt <- 2
clust <- 3
MetCirc:::select(condition = "mz", mz = mz, rt = rt, clust = clust)
```

---

**Description**

Visualise the similarity of MS/MS features in a reactive context. See Details the vignette for further descriptions on how to use shinyCircos.

**Usage**

`shinyCircos(similarityMatrix, sps, condition, ...)`

**Arguments**

- **similarityMatrix**: matrix, similarityMatrix contains pair-wise similarity coefficients which give information about the similarity between MS/MS features
- **sps**: Spectra, sps will be used to display information about the selected feature and will store information of annotation
- **condition**: character vector, specifies which conditions/samples are displayed
- **...**: further arguments passed to shinyCircos, e.g. cexFeatureNames to pass to plotCircos to set font size in plotCircos of feature names
Details

The function is based on the shiny and circlize package. The user can choose interactively thresholds, type of links (between or within groups), display information about MS/MS features, permanently select MS/MS features and export selected precursors. The Spectra object stores annotation information about the MS/MS features. Names of features within the similarityMatrix have to be found as entries in Spectra. sps$name are used as identifiers and colnames/rownames from similarityMatrix are cleaved by the group identifier (separated by "_"). Annotation information is taken from spectra from the columns "names", "information", "classes" and "adduct" in the slot metadata of spectra. After exiting the application, the annotation will be written to the respective columns in the slot metadata. If one or several of these columns is already present in metadata, the column(s) will be used as the source of annotation information.

Value

character, shinyCircos returns a character vector with the permanently selected precursors and an object with the MSpectra object containing the annotation.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
FUN = MsCoreUtilities::ndotproduct, ppm = 10, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]
## Not run:
shinyCircos(similarityMatrix = similarityMat,
            sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
## End(Not run)

Description

'similarityMat' is a 'matrix' containing the pair-wise similarity scores derived from the 'idMSM-Stissueproject' data set. See the vignette for a workflow to reproduce the object 'similarityMat'.

Format

'matrix'

Value

'matrix'
spectraCondition

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Source

data("spectra", package = "MetCirc") similarityMat <- Spectra::compareSpectra(sps_tissue, fun = ndotproduct, ppm = 10) rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$sname save(similarityMat, file = "similarityMat.RData", compress = "xz")

spectraCondition

Get MS/MS spectra that are present in condition

Description
spectraCondition returns the names of Spectra that are present in condition, corresponding to the slot metadata.

Usage
spectraCondition(sps, condition)

Arguments
sps Spectra object of Spectra package
condition character, vector with conditions found as columns in the metadata slot

Details
Helper function in createLink0df and shinyCircos.

Value
list, named list with character vector as entries that contains the names of the MS/MS entries in spectra that are present in the condition (tissues, stress conditions, time points, etc.)

Author(s)
Thomas Naake <thomasnaake@googlemail.com>

Examples
data("spectra", package = "MetCirc")
MetCirc:::spectraCondition(sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
Description

‘sps_tissue’ is a ‘Spectra’ object derived from the ‘idMSMStissueproject’ data set. See the vignette for a workflow to reproduce the object ‘spectra’.

Format

‘matrix’

Value

‘matrix’

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

data("idMSMStissueproject", package = "MetCirc") ## get all MS/MS spectra tissue <- tissue[tissue[, "id"] id_uniq <- unique(tissue[, "id")
## obtain precursor m/z from id_uniq prec_mz <- lapply(strsplit(as.character(id_uniq), split = "_"), 
"[", 1) >> unlist() >> as.numeric()
## obtain m/z from fragments per precursor m/z mz_l <- lapply(id_uniq, function(id_i) tissue[tissue[, 
"id"] == id_i, "mz")]
## obtain corresponding intensity values int_l <- lapply(id_uniq, function(id_i) tissue[tissue[, "id"] 
== id_i, "intensity")]
## order mz and intensity values int_l <- lapply(seq_along(int_l), function(i) sort(mz_l[[i]]))
## obtain retention time by averaging all retention time values rt <- lapply(id_uniq, function(id_i) tissue[tissue[, "id"] == id_i, "rt")]
## create list of Spectra objects and concatenate sps_l <- lapply(seq_len(length(mz_l)), function(i) spd <- S4Vectors::DataFrame( name = as.character(i), rtime = rt[i], msLevel = 2L, precursorMz = prec_mz[i]) spd$mz <- list(mz_l[[i]]) spd$intensity <- list(int_l[[i]]) Spectra::Spectra(spd)) sps_tissue <- Reduce(c, sps_l)
## combine list of spectrum2 objects to MSpectra object, ## use SPL, LIM, ANT, STY for further analysis sps_tissue@metadata <- data.frame( compartmentTissue[, c("SPL", "LIM", "ANT", "STY")])
save(sps_tissue, file = "spectra.RData", compress = "xz")
thresholdLinkDf

Description

Threshold a link data frame based on lower and upper similarity values. The function will return the links that lie within the defined bounds.

Usage

```r
thresholdLinkDf(link0df, lower = 0.75, upper = 1)
```

Arguments

- `link0df` data.frame, a link data frame that gives per each row information on linked features
- `lower` numeric, threshold value for similarity values, below this value linked features will not be returned
- `upper` numeric, threshold value for similarity values, above this value linked features will not be returned

Details

- `lower` and `upper` are numerical values and truncate mass spectra based on their similarity values.

Value

The function returns a data.frame that gives per each row information on linked features which are linked within certain thresholds.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
link0df <- createLink0df(similarityMatrix = similarityMat, sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
thresholdLinkDf(link0df = link0df, lower = 0.5, upper = 1)
```
**Example data for ‘MetCirc’: ‘tissue’**

**Description**

The ‘data.frame’ ‘tissue’ is used in the subsection 'Preparing the tissue data set for analysis' in the vignette of ‘MetCirc’. MS/MS data are merged across floral organs in this ‘data.frame’.

**Format**

‘data.frame’

**Value**

‘data.frame’

**Author(s)**

Thomas Naake, <thomasnaake@googlemail.com>

**Source**

internal

---

**typeMatch_link0**

*Get typeMatch and link0 data frame*

**Description**

`typeMatch_link0` returns a list with accessors "link0df" and "type_match"

**Usage**

`typeMatch_link0(similarityMatrix, sps, type, condition)`

**Arguments**

- `similarityMatrix` matrix with pairwise similarity values
- `sps` Spectra object
- `type` character(1), either "mz", "retentionTime", "clustering"
- `condition` character

**Details**

Helper function for shinyCircos.
Value

list of length 2, entry `link0df` is a `data.frame` and entry `type_match` is a character vector

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
    FUN = MsCoreUtils::ndotproduct, ppm = 10, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

## order according to retention time
MetCirc::typeMatch(similarityMatrix = similarityMat,
    sps = sps_tissue, type = "mz",
    condition = c("SPL", "LIM", "ANT", "STY"))
Index

cart2Polar, 3
circosLegend, 3
compartmentTissue, 5
convertExampleDF, 5
convertMsp2Spectra, 6
createLink0df, 7
createLinkDf, 8
cutLinkDf, 9
getLinkDFIndices, 10
highlight, 11
minFragCart2Polar, 12
msp2spectra, 14
neutralloss, 14
orderSimilarityMatrix, 16
plotCircos, 17
plotSpectra, 19
printInformationSelect, 20
recordPlotFill_degreeFeatures, 21
recordPlotHighlight, 22
replayPlotAdd, 23
replayPlotOrder, 24
sd01_outputXCMS, 25
sd02_deconvoluted, 26
select, 26
shinyCircos, 27
similarityMat, 28
spectraCondition, 29
sps_tissue, 30
thresholdLinkDf, 31
tissue, 32
typeMatch_link0, 32