Package ‘MetCirc’

January 12, 2024

Type Package
Title Navigating mass spectral similarity in high-resolution MS/MS metabolomics data metabolomics data
Version 1.32.0
Date 2023-04-18
Author Thomas Naake <thomasnaake@googlemail.com>,
 Johannes Rainer <johannes.rainer@eurac.edu> and Emmanuel Gaquerel
 <emmanuel.gaquerel@ibmp-cnrs.unistra.fr>
Maintainer Thomas Naake <thomasnaake@googlemail.com>
VignetteBuilder knitr
Depends R (>= 3.5), amap (>= 0.8), circlize (>= 0.3.9), scales (>= 0.3.0), shiny (>= 1.0.0), Spectra (>= 1.4.3)
Imports ggplot2 (>= 3.2.1), MsCoreUtils (>= 1.9.2), S4Vectors (>= 0.22.0)
Suggests BiocGenerics, graphics (>= 3.5), grDevices (>= 3.5), knitr
 (>= 1.11), testthat (>= 2.2.1)
bicViews ShinyApps, Metabolomics, MassSpectrometry, Visualization
Description MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data. MetCirc uses the Spectra object infrastructure defined in the package Spectra that stores MS/MS spectra. MetCirc offers functionality to calculate similarity between precursors based on the normalised dot product, neutral losses or user-defined functions and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features.
License GPL (>= 3)
RoxygenNote 7.2.2
git_url https://git.bioconductor.org/packages/MetCirc
git_branch RELEASE_3_18
git_last_commit 6008706
R topics documented:

cart2Polar ... 3
circosLegend .. 3
compartmentTissue .. 5
convertExampleDF .. 5
convertMsp2Spectra ... 6
createLink0df ... 7
createLinkDf ... 8
cutLinkDf ... 9
getLinkDfIndices ... 10
highlight ... 11
minFragCart2Polar ... 12
msp2spectra .. 14
neutralloss ... 14
orderSimilarityMatrix .. 16
plotCircos ... 17
plotSpectra .. 19
printInformationSelect .. 20
recordPlotFill_degreeFeatures 21
recordPlotHighlight .. 22
replayPlotAdd ... 23
replayPlotOrder ... 24
sd01_outputXCMS ... 25
sd02_deconvoluted ... 26
select ... 26
shinyCircos .. 27
similarityMat .. 28
spectraCondition ... 29
sps_tissue ... 30
thresholdLinkDf ... 31
tissue ... 32
typeMatch_link0 .. 32

Index 34
cart2Polar

Calculate polar coordinates from cartesian coordinates

Description

`cart2Polar` calculates polar coordinates from cartesian coordinates.

Usage

`cart2Polar(x, y)`

Arguments

- `x` numeric cartesian x coordinate
- `y` numeric cartesian y coordinate

Details

`cart2Polar` is employed to translate cartesian coordinates into polar coordinates especially in interactive shiny applications when using hovering and clicking features.

Value

`cart2Polar` returns a list of polar coordinates r and theta

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
x <- 1; y <- 1
cart2Polar(x, y)
```

circosLegend

Plot a legend for circos plot

Description

`circosLegend` plots a legend for circos plot using group names.

Usage

`circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)`
Arguments

groupname
- character vector containing "group" and "name" to display that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element

highlight
- logical, should colours be adjusted to highlight settings?

colour
- NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used

cex
- numeric, parameter that controls size of the legend in the plot

Details

Internal use in shinyCircos or outside of shinyCircos to reproduce figures.

Value

The function will open a new plot and display colours together with labels.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")

create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
 FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

linkDf <- createLinkDf(similarityMatrix = similarityMat,
 sps = sps_tissue[1:10],
 condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.01, upper = 1)

cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
 as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)

circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)
compartmentTissue

Example data for ‘MetCirc’: ‘compartmentTissue’

Description
The ‘data.frame’ ‘compartmentTissue’ is used in the subsection 'Preparing the tissue data set for analysis' in the vignette of ‘MetCirc’. In ‘compartmentTissue’, information on the organ-localisation of each MS/MS spectrum is stored.

Format
‘data.frame’

Value
‘data.frame’

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Source
internal

convertExampleDF

Example data for ‘MetCirc’: convertExampleDF

Description
‘convertExampleDF’ is a ‘data.frame’ which comprises information on a specific metabolite per row stating the average retention time, average m/z, the name of the metabolite, the adduct ion name and the spectrum reference file name. The function ‘allocatePrecursor2mz’ uses ‘data.frame’ s of the kind of ‘sd01_outputXCMS’ and ‘sd02_deconvoluted’ to create a ‘data.frame’ of the kind of ‘convertExampleDF’. Allocation of precursor ions to candidate m/z values is based on minimal distance of m/z and deviance of retention time based on an objective function. See ‘?allocatePrecursor2mz’ for further information.

Format
‘data.frame’

Value
‘data.frame’
convertMsp2Spectra

Description
Convert MSP data frame into object of class `Spectra()`

Usage
`convertMsp2Spectra(msp)`

Arguments
- `msp` data.frame that mimicks the .msp file format, see Details for further information.

Details
msp is a data frame of a .msp file, a typical data file for MS/MS libraries. The data frame has two columns and contains in the first column the entries "NAME:", "PRECURSORMZ:" (or "EXACTMASS:"), "RETENTIONTIME:", Num Peaks:" and information on fragments and peak areas/intensities and will extract the respective information in the second column.

Value
`convertMsp2Spectra` returns an object of class ‘Spectra’

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples
```r
data("convertMsp2Spectra", package = "MetCirc")
convertMsp2Spectra(msp = msp2spectra)
```
createLink0df

Create a link matrix

Description

Create a link matrix which links every feature in similarity matrix with another.

Usage

createLink0df(similarityMatrix, sps, condition)

Arguments

similarityMatrix
 matrix, a similarity matrix that contains the NDP similarity measure between all precursors in the data set
sps
 Spectra object
condition
 character, which conditions should be included?

Details

createLink0df creates a matrix from a similarity matrix which includes all connections between features in the similarity matrix, but exclude links which have a similarity of exactly 0.

Value

createLink0df returns a ‘matrix‘ that gives per each row information on linked features

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
link0df <- createLink0df(similarityMatrix = similarityMat,
 sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
createLinkDf

Create a data frame which contains features to link (indices)

Description
Create a data frame which contains features to link (indices).

Usage
createLinkDf(similarityMatrix, sps, condition, lower, upper)

Arguments
- **similarityMatrix**: matrix, a similarity matrix that contains the similarity measure between all precursors in the data set
- **sps**: Spectra object containing spectral data corresponding to features in similarityMatrix
- **condition**: character vector containing the conditions/samples for which a linkDf is created
- **lower**: numeric(1), threshold value for similarity values, linked features below this value will not be included
- **upper**: numeric(1), threshold value for similarity values, linked features above this value will not be included

Details
lower and upper are numerical values and truncate spectra based on their similarity. The function createLinkDf is a wrapper for the functions createLink0df and thresholdLinkDf.

Value
createLinkDf returns a data.frame that gives per each row information on linked features

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples
data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
link0df <- createLink0df(similarityMatrix = similarityMat,
sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
createLinkDf(similarityMatrix = similarityMat, sps = sps_tissue,
condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.5, upper = 1)
cutLinkDf

Create a cut data frame with information on links

Description
Create a cut link data frame

Usage
cutLinkDf(linkDf, type = c("all", "inter", "intra"))

Arguments
linkDf data.frame, that gives per each row information on linked features
type character, one of "all", "inter" or "intra"

Details
This function is used to truncate features from linkDf. If type = "all", linkDf will not be changed; if type = "inter" the returned linkDf will only contain entries of links which are between groups and not inside groups; contrary to that, if type = "intra" the returned linkDf will only contain entries of links which are inside groups and not between groups.

Value
cutLinkDf returns a data.frame that gives per each row information on linked features

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples
data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
linkDf <- createLinkDf(similarityMatrix = similarityMat,
sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"),
lower = 0.75, upper = 1)
cutLinkDf(linkDf = linkDf, type = "all")
getLinkDfIndices

Get indices in linkDf of feature

Description

Gets indices in linkDf of feature

Usage

getLinkDfIndices(groupnameselected, linkDf)

Arguments

groupnameselected
 character vector with groupname of selected feature, vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element

linkDf
 data.frame, in each row there is information about features to be connected

Details

Internal use for function highlight

Value

getLinkDfIndices returns indices concerning linkDf to which groupnameselected connects

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

Not run: getLinkDfIndices(groupnameselected, linkMatrix)
highlight

Description

A function to add links and highlight sectors to an initialised and plotted circlize plot with one track.

Usage

highlight(
 groupname,
 ind,
 linkDf,
 colour = NULL,
 transparency = 0.4,
 links = TRUE
)

Arguments

groupname character vector containing "group" and "name" to display that is a unique identifier of the features, "group" and "name" have to be separated by "," where "group" is the first and "name" is the last element

ind numeric, indices which will be highlighted

linkDf data.frame, in each row there is information about features to be connected

colour NULL or character, colour defines the colours which are used for plotting, if 'NULL' default colours are used

transparency numeric, defines the transparency of the colours

links logical, should links of unselected features be plotted

Details

Internal use for shinyCircos or outside of shinyCircos to reproduce the figure.

Value

The function will update an existing plot by highlighting a specified sector and connected links.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
Examples

data("spectra", package = "MetCirc")

create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
 FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

order similarityMat according to retentionTime and update rownames
simM <- orderSimilarityMatrix(similarityMat, sps = sps_tissue[1:10],
 type = "retentionTime")

create link matrix
linkDf <- createLinkDf(similarityMatrix = simM, sps = sps_tissue,
 condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.01, upper = 1)

cut link matrix (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")

set circlize parameters
circos.clear()
circos.par(gap.degree = 0, cell.padding = c(0.0, 0, 0.0, 0),
 track.margin = c(0.0, 0))
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
 as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)

here: set indSelected arbitrarily
indSelected <- c(2,3)

actual plotting
plotCircos(groupname, linkDf_cut, initialize = TRUE,
 featureNames = TRUE, cexFeatureNames = 0.2, groupSector = TRUE,
 groupName = FALSE, links = FALSE, highlight = TRUE)

highlight
highlight(groupname = groupname, ind = indSelected, linkDf = linkDf_cut,
 colour = NULL, transparency = 0.4, links = TRUE)

Object Description

minFragCart2Polar Calculate the nearest feature in polar coordinates given cartesian coordinates

Usage

minFragCart2Polar(x, y, degreeOfFeatures)
Arguments

- \(x\) numeric, cartesian x coordinate
- \(y\) numeric, cartesian y coordinate
- degreeOfFeatures list of positions of features

Details

\text{minFragCart2Polar} is employed to find the feature with the smallest distance from given cartesian coordinates.

Value

\text{minFragCart2Polar} returns the index of the feature that has the smallest distance to the given coordinates. As \text{minFragCart2Polar} is used in \text{shinyCircos} for the track 1 only polar \(r\) coordinates between 0.8 and 1 will be used to find the feature with smallest distance.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
library("MsCoreUtils")
data("spectra", package = "MetCirc")

## create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
    FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

linkDf <- createLinkDf(similarityMatrix = similarityMat,
    sps = sps_tissue[1:10],
    condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.5, upper = 1)

## cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")

## set circlize parameters
circlize::circlize()
circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circlize::circliz
```

```r
x <- 1
y <- 0
degreeFeatures <- lapply(groupname,
    function(x)
```
msp2spectra

Example data for 'MetCirc': 'msp2spectra'

Description

'convertMsp2Spectra' contains the object 'msp2spectra' that is a data frame in .MSP format, a typical format for MS/MS library building. Each entry consists of the metabolite name (NAME), the precursor mz (PRECURSORMZ), the retention time (RETENTIONTIME), number of peaks (Num Peaks), together with fragments and their intensity values. In the example used in the function 'convertMsp2Spectra' the 'data.frame' 'msp2spectra' is used to construct an object of class 'MSpectra'.

Format

'data.frame'

Value

'data.frame'

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

neutralloss

Calculate similarity based on neutral losses

Description

Calculate similarity based on neutral losses (NLS)

Usage

neutralloss(x, y, m = 0.5, n = 2, na.rm = TRUE, ...)

mean(circlize::get.sector.data(x)[c("start.degree", "end.degree")])

minFragCart2Polar(x, y, degreeOfFeatures = degreeFeatures)
neutralloss

Arguments

- `x` Spectra object from Spectra containing intensity and m/z values, first MS/MS spectrum
- `y` Spectra object from Spectra containing intensity and m/z values, second MS/MS spectrum
- `m` numeric(1), exponent to calculate peak intensity-based weights
- `n` numeric(1), exponent to calculate m/z-based weights
- `na.rm` logical(1), if NA values should be removed
- ... further arguments

Details

Similarities of spectra based on neutral losses are calculated according to the following formula:

\[
NLS = \frac{\sum(W_{S1,i} \cdot W_{S2,i})^2}{\sum(W_{S1,i}^2) \cdot \sum(W_{S2,i}^2)}
\]

with \(W = [\text{peak intensity}]^m \cdot [\text{NL}]^n \) and \(NL = |m/z - \text{precursor m/z}| \). For further information see Li et al. (2015): Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. PNAS, E4147–E4155.

In here, the precursor m/z is taken by the m/z feature with the highest intensity.

neutralloss returns a numeric value ranging between 0 and 1, where 0 indicates no similarity between the two MS/MS features, while 1 indicates that the MS/MS features are identical. Prior to calculating

\[
W_{S1}
\]

or

\[
W_{S2}
\]

all intensity values are divided by the maximum intensity value.

Value

neutralloss returns a numeric similarity coefficient between 0 and 1

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("spectra", package = "MetCirc")
Spectra::compareSpectra(sps_tissue[1:10], FUN = neutralloss, m = 0.5, n = 2)
```
orderSimilarityMatrix

Order columns and rows of a similarity matrix according to m/z, retention time and clustering

Description

Internal function for shiny application. May also be used outside of shiny to reconstruct figures.

Usage

```r
orderSimilarityMatrix(
  similarityMatrix, 
  sps, 
  type = c("retentionTime", "mz", "clustering"), 
  group = FALSE
)
```

Arguments

- `similarityMatrix`
 matrix, `similarityMatrix` contains pair-wise similarity coefficients which give information about the similarity between precursors

- `sps`
 Spectra object containing spectra that are compared in `similarityMatrix`

- `type`
 character(1), one of "retentionTime", "mz", or "clustering"

- `group`
 logical(1), if TRUE group separated by "_" will be cleaved from rownames/colnames of `similarityMatrix` and matched against names of `sps` (`sps$name`, if FALSE rownames/colnames of `similarityMatrix` are taken as are and matched against names of `sps` (`sps$name`)

Details

`orderSimilarityMatrix` takes a similarity matrix, Spectra object (`sps`, containing information on m/z and retention time), and a character vector as arguments. It will then reorder rows and columns of the `similarityMatrix` object such, that it orders rows and columns of `similarityMatrix` according to m/z, retention time or clustering in each group.

`orderSimilarityMatrix` is employed in the shinyCircos function to create `similarityMatrix` objects which will allow to switch between different types of ordering in between groups (sectors) in the circos plot. It may be used as well externally, to reproduce plots outside of the reactive environment (see vignette for a workflow).

Value

- matrix, `orderSimilarityMatrix` returns a similarity matrix with ordered rownames according to the character vector type
Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
FUN = MsCoreUtils::ndotproduct, ppm = 10)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

order according to retention time
orderSimilarityMatrix(similarityMatrix = similarityMat,
 sps = sps_tissue, type = "retentionTime", group = FALSE)

plotCircos

Circular plot to visualize similarity

Description

Circular plot to visualize similarity.

Usage

plotCircos(
 groupname,
 linkDf,
 initialize = c(TRUE, FALSE),
 featureNames = c(TRUE, FALSE),
 cexFeatureNames = 0.3,
 groupSector = c(TRUE, FALSE),
 groupName = c(TRUE, FALSE),
 links = c(TRUE, FALSE),
 highlight = c(TRUE, FALSE),
 colour = NULL,
 transparency = 0.2
)

Arguments

groupname character vector containing "group" and "name" to display that is a unique identifier of the features. "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element

linkDf data.frame containing linked features in each row, has five columns (group1, spectrum1, group2, spectrum2, similarity)

initialize logical, should plot be initialized?

featureNames logical, should feature names be displayed?
plotCircos

cexFeatureNames numeric size of feature names

groupSector logical, should groups be displayed with background colours?
groupName logical, should group names (e.g. compartment names or individual names) be displayed?

links logical, should links be plotted?

highlight logical, highlight is set to TRUE by default
colour NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used
transparency numeric, defines the transparency of the colours

Details

Internal use for shinyCircos or used outside of shinyCircos to reproduce figure

Value

The function will initialize a circlize plot and/or will plot features of a circlize plot.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
library("MsCoreUtils")
data("spectra", package = "MetCirc")

## create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

## order similarityMat according to retentionTime
simM <- orderSimilarityMatrix(similarityMat, sps = sps_tissue[1:10],
    type = "retentionTime")

## create link data.frame
linkDf <- createLinkDf(similarityMatrix = simM, sps = sps_tissue,
    condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.01, upper = 1)
## cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")

## set circlize paramters
circos.clear()
circos.par(gap.degree = 0, cell.padding = c(0.0, 0, 0.0, 0),
    track.margin = c(0.0, 0))
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
    as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)
```
plotSpectra

actual plotting
plotCircos(groupname, linkDf_cut, initialize = TRUE,
featureNames = TRUE, cexFeatureNames = 0.3, groupSector = TRUE,
groupName = FALSE, links = FALSE, highlight = FALSE, colour = NULL,
transparency = 0.2)

plotSpectra

Plot pair-wise spectra

Description

plotSpectra plots a spectra of a subject and query spectra. plotSpectra uses ggplot plotting functionality.

Usage

plotSpectra(sps, subject, query)

Arguments

sps
Spectra object

subject
character, name of spectra that is aligned against, character with preceding sample name

query
character, name of spectra that is aligned to subject, character with preceding sample name

Details

Internally, all intensities are normalized to 100%.

Value

ggplot2 plot

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
plotSpectra(sps = sps_tissue, subject = "SPL_1", query = "SPL_2")
printInformationSelect

Display information on connected features of selected features

Description
Displays information on connected features of selected features.

Usage

printInformationSelect(
 select,
 sps = NULL,
 linkDfInd,
 linkDf,
 similarityMatrix,
 roundDigits = 2
)

Arguments

select character, obtained from groupname, character of selected feature
sps Spectra object containing spectra that are compared in similarityMatrix
linkDfInd numeric indices of selected features
linkDf data.frame that contains information of linked features for given thresholds
similarityMatrix matrix that is used to get information on the degree of similarity, similarityMatrix is an ordered version of a similarity matrix, see \(?orderSimilarityMatrix\)
roundDigits numeric(1), how many digits should be displayed?

Details
printInformationSelect is for internal use.

Value
character that is in HTML format

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>
Examples

data("spectra", package = "MetCirc")
sps_tissue@metadata$names <- rep("Unknown", 259)
sps_tissue@metadata$information <- rep("Unknown", 259)
sps_tissue@metadata$classes <- rep("Unknown", 259)
sps_tissue@metadata$adduct <- rep("Unknown", 259)
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
 FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]
linkDF <- createLinkDF(similarityMatrix = similarityMat,
 sps = sps_tissue[1:10],
 condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.01, upper = 1)

cut link data.frame (here: only display links between groups)
linkDF_cut <- cutLinkDF(linkDF, type = "inter")
groupname <- c(as.character(linkDF_cut[, "spectrum1"]),
 as.character(linkDF_cut[, "spectrum2"]))
groupname <- unique(groupname)

arbitrarily select a feature
ind <- 2
linkDFinds <- getLinkDFIndices(groupname[ind], linkDF_cut)
MetCirc:::printInformationSelect(select = groupname[ind],
 sps = sps_tissue[1:10], linkDFInd = linkDFinds,
 linkDF = linkDF_cut, similarityMatrix = similarityMat)

recordPlotFill_degreeFeatures

Record a plot of filled features and the degree of features

Description

recordPlotFill_degreeFeatures records a plot of filled features and returns the degree of features.

Usage

recordPlotFill_degreeFeatures(type_match, ...)

Arguments

type_match character, ordered vector according to type

... further arguments passed to plotCircos

Details

Helper function for shinyCircos.
recordPlotHighlight

Value

list of length 2, entry plotFill is of recordedplot and entry degreeFeatures is a list of vectors of numeric(1)

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

type_match <- c("a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "c_1", "c_2")
MetCirc:::recordPlotFill_degreeFeatures(type_match)

recordPlotHighlight Return a recordedplot of plotCircos plot with highlight = TRUE

Description

recordPlotHighlight returns a recordedplot object of plotCircos with highlight = TRUE

Usage

recordPlotHighlight(type_match, ...)

Arguments

type_match character, ordered vector according to type

... further arguments passed to plotCircos

Details

Helper function for shinyCircos.

Value

recordedplot

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

type_match <- c("a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "c_1", "c_2")
MetCirc:::recordPlotHighlight(type_match)
replayPlotAdd

Plot plotCircos or highlight

Description

replayPlotAdd plots additional plots on a plot, either plots plotCircos or highlight.

Usage

```r
replayPlotAdd(
  orderMatch = "mz",
  onCircle = FALSE,
  linkDf,
  mz_match,
  rt_match,
  clust_match,
  ind,
  indMz,
  indRT,
  indCluster
)
```

Arguments

- `orderMatch` character(1), either "mz", "retentionTime", or "clustering"
- `onCircle` logical, are coordinates on circle. If FALSE and no features are selected (length(ind) == 0), then filled plots are replayed, otherwise highlighted plots are replayed.
- `linkDf` data.frame that contains information of linked features for given thresholds
- `mz_match` character, ordered vector according to m/z
- `rt_match` character, ordered vector according to retention time
- `clust_match` character, ordered vector according to clustering
- `ind` numeric, indices of clicked features
- `indMz` numeric, indices of clicked features for "mz" ordering
- `indRT` numeric, indices of clicked features for "retentionTime" ordering
- `indCluster` numeric, indices of clicked features for "clustering" ordering

Details

Helper function for shinyCircos.

Value

Depending on onCircle and indMz either returns plotCircos or highlight
Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("spectra", package = "MetCirc")
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
  FUN = MsCoreUtils::ndotproduct, ppm = 10, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

## order according to m/z
mz_match <- MetCirc:::typeMatch_link0(similarityMatrix = similarityMat,
  type = "mz",
  condition = c("SPL", "LIM", "ANT", "STY"))
linkDf <- mz_match[["link0df"]]
mz_match <- mz_match[["type_match"]]

## order according to retention time
rt_match <- MetCirc:::typeMatch_link0(similarityMatrix = similarityMat,
  type = "retentionTime",
  condition = c("SPL", "LIM", "ANT", "STY"))
rt_match <- rt_match[["type_match"]]

## order according to clustering
clust_match <- MetCirc:::typeMatch_link0(similarityMatrix = similarityMat,
  type = "clustering",
  condition = c("SPL", "LIM", "ANT", "STY"))
clust_match <- clust_match[["type_match"]]
circos.initialize(mz_match,##, levels = mz_match),
  xlim = matrix(rep(c(0,1), length(mz_match)), ncol = 2, byrow = TRUE))
#circos.trackPlotRegion(factor(mz_match, levels = mz_match), ylim = c(0,1))
MetCirc:::replayPlotAdd(orderMatch = "mz", onCircle = FALSE, linkDf = linkDf,
  mz_match = mz_match, rt_match = rt_match, clust_match = clust_match,
  ind = 1, indMz = NULL, indRT = NULL, indCluster = NULL)
```

replayPlotOrder

Wrapper for `replayPlot`

Description

`replayPlotOrder` will call `replayPlot` from `grDevices` with a recorded plot object based on `orderMatch`.

Usage

```r
replayPlotOrder(orderMatch = "mz", onCircle = FALSE, plot_l, ind)
```
Arguments

orderMatch character, either "mz", "retentionTime" or "clustering"

onCircle logical, are coordinates on circle. If FALSE and no features are selected (length(ind) == 0), then filled plots are replayed, otherwise highlighted plots are replayed.

plot_l list with plots

ind numeric, indices of clicked features

Details

Helper function for shinyCircos.

Value

replayedplot

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
type_match <- c("a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "c_1", "c_2")
plotCircos(type_match, NULL, initialize = TRUE, featureNames = TRUE,
           groupSector = TRUE, groupName = FALSE, links = FALSE,
           highlight = TRUE)
p <- recordPlot()
plot.new()
plot_l <- list(highlightMz = p)
MetCirc:::replayPlotOrder(orderMatch = "mz", onCircle = TRUE,
                          plot_l = plot_l, ind = NULL)
```

sd01_outputXCMS

Example data for ‘MetCirc’: ‘sd01_outputXCMS’

Description

‘sd01_outputXCMS’ is the output file from the package ‘XCMS’ using the data from Li et al. (2015). See Li et al. (2015) for further details.

Format

‘data.frame’

Value

‘data.frame’
Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Source
Li et al. (2015)

sd02_deconvoluted Example data for ‘MetCirc’: sd02_deconvoluted

Description
‘sd02_deconvoluted’ contains MS/MS data from Li et al. (2015). It is a ‘data.frame’ which hosts m/z values, retention time, intensity and the respective precursor m/z values. ‘sd02_deconvoluted’ originates from Li et al. (2015). See Li et al. (2015) for further information.

Format
‘data.frame’

Value
‘data.frame’

select Select variable based on condition

Description
select returns mz, rt or clust depending on condition.

Usage
select(condition, mz, rt, clust)
Arguments

<table>
<thead>
<tr>
<th>argument</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition</td>
<td>character(1), either "mz", "retentionTime", or "clustering"</td>
</tr>
<tr>
<td>mz</td>
<td>object to return if condition == "mz"</td>
</tr>
<tr>
<td>rt</td>
<td>object to return if condition == "retentionTime"</td>
</tr>
<tr>
<td>clust</td>
<td>object to return if condition == "clustering"</td>
</tr>
</tbody>
</table>

Details

Helper function for shinyCircos, replayPlotOrder and replayPlotAdd.

Value

mz, rt or clust depending on condition

Author(s)

Thomas Naake <thomasnaake@googlemail.com>

Examples

mz <- 1
rt <- 2
clust <- 3
MetCirc:::select(condition = "mz", mz = mz, rt = rt, clust = clust)

shinyCircos
Interactive visualisation of similarity and navigation of MS/MS features

Description

Visualise the similarity of MS/MS features in a reactive context. See Details for further descriptions on how to use shinyCircos.

Usage

shinyCircos(similarityMatrix, sps, condition, ...)

Arguments

<table>
<thead>
<tr>
<th>argument</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>similarityMatrix</td>
<td>matrix, similarityMatrix contains pair-wise similarity coefficients which give information about the similarity between MS/MS features</td>
</tr>
<tr>
<td>sps</td>
<td>Spectra, sps will be used to display information about the selected feature and will store information of annotation</td>
</tr>
<tr>
<td>condition</td>
<td>character vector, specifies which conditions/samples are displayed</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to shinyCircos, e.g. cexFeatureNames to pass to plotCircos to set font size in plotCircos of feature names</td>
</tr>
</tbody>
</table>
Details

The function is based on the shiny and circlize package. The user can choose interactively thresholds, type of links (between or within groups), display information about MS/MS features, permanently select MS/MS features and export selected precursors. The Spectra object stores annotation information about the MS/MS features. Names of features within the similarityMatrix have to be found as entries in Spectra. sps$name are used as identifiers and colnames/rownames from similarityMatrix are cleaved by the group identifier (separated by "_"). Annotation information is taken from spectra from the columns "names", "information", "classes" and "adduct" in the slot metadata of spectra. After exiting the application, the annotation will be written to the respective columns in the slot metadata. If one or several of these columns is already present in metadata, the column(s) will be used as the source of annotation information.

Value

character, shinyCircos returns a character vector with the permanently selected precursors and an object with the MSpectra object containing the annotation.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data(quot;spectra", package = quot;MetCircquot;)
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
 FUN = MsCoreUtils::ndotproduct, ppm = 10, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]
Not run:
shinyCircos(similarityMatrix = similarityMat,
 sps = sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
End(Not run)

similarityMat

Example data for 'MetCirc': 'similarityMat'

Description

'similarityMat' is a 'matrix' containing the pair-wise similarity scores derived from the 'idMSM-Stissueproject' data set. See the vignette for a workflow to reproduce the object 'similarityMat'.

Format

'matrix'

Value

'matrix'
spectraCondition

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

data("spectra", package = "MetCirc")
similarityMat <- Spectra::compareSpectra(sps_tissue, fun = ndotproduct, ppm = 10)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name
save(similarityMat, file = "similarityMat.RData", compress = "xz")

spectraCondition Get MS/MS spectra that are present in condition

Description

spectraCondition returns the names of Spectra that are present in condition, corresponding to the slot metadata.

Usage

spectraCondition(sps, condition)

Arguments

sps Spectra object of Spectra package
condition character, vector with conditions found as columns in the metadata slot

Details

Helper function in createLink0df and shinyCircos.

Value

list, named list with character vector as entries that contains the names of the MS/MS entries in spectra that are present in the condition (tissues, stress conditions, time points, etc.)

Author(s)

Thomas Naake <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
MetCirc:::spectraCondition(sps = sps_tissue,
condition = c("SPL", "LIM", "ANT", "STY"))
Description
'sps_tissue' is a 'Spectra' object derived from the 'idMSMStissueproject' data set. See the vignette for a workflow to reproduce the object 'spectra'.

Format
'matrix'

Value
'matrix'

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Source
```r
data("idMSMStissueproject", package = "MetCirc") ## get all MS/MS spectra tissue <- tissue[tissue[, "id"] id_uniq <- unique(tissue[, "id"])
## obtain precursor m/z from id_uniq prec_mz <- lapply(strsplit(as.character(id_uniq), split = "_"), "[", 1) |> unlist() |> as.numeric()
## obtain m/z from fragments per precursor m/z mz_l <- lapply(id_uniq, function(id_i) tissue[tissue[, "id"] == id_i, "mz"])
## obtain corresponding intensity values int_l <- lapply(id_uniq, function(id_i) tissue[tissue[, "id"] == id_i, "intensity"])
## order mz and intensity values int_l <- lapply(seq_along(int_l), function(i) int_l[[i]]%>%order(mz_l[[i]]))
mz_l <- lapply(seq_along(mz_l), function(i) sort(mz_l[[i]]))
## obtain retention time by averaging all retention time values rt <- lapply(id_uniq, function(id_i) 
tissue[tissue[, "id"] == id_i, "rt"]%>%mean) |> unlist()
## create list of Spectra objects and concatenate sps_l <- lapply(seq_len(length(mz_l)), function(i) 
spd <- S4Vectors::DataFrame(name = as.character(i), rtime = rt[i], msLevel = 2L, precursorMz = prec_mz[i]) spd$mz <- list(mz_l[[i]]) spd$intensity <- list(int_l[[i]]) Spectra::Spectra(spd)) sps_tissue <- Reduce(c, sps_l)
## combine list of spectrum2 objects to MSpectra object, ## use SPL, LIM, ANT, STY for further analysis sps_tissue@metadata <- data.frame( compartmentTissue[, c("SPL", "LIM", "ANT", "STY")])
save(sps_tissue, file = "spectra.RData", compress = "xz")```
thresholdLinkDf

Threshold a data frame containing information on links

Description

Threshold a link data frame based on lower and upper similarity values. The function will return the links that lie within the defined bounds.

Usage

thresholdLinkDf(link0df, lower = 0.75, upper = 1)

Arguments

- link0df: data.frame, a link data frame that gives per each row information on linked features
- lower: numeric, threshold value for similarity values, below this value linked features will not be returned
- upper: numeric, threshold value for similarity values, above this value linked features will not be returned

Details

lower and upper are numerical values and truncate mass spectra based on their similarity values.

Value

thresholdLinkDf returns a data.frame that gives per each row information on linked features which are linked within certain thresholds.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("spectra", package = "MetCirc")
data("similarityMat", package = "MetCirc")
link0df <- createLink0df(similarityMatrix = similarityMat, sps_tissue, condition = c("SPL", "LIM", "ANT", "STY"))
thresholdLinkDf(link0df = link0df, lower = 0.5, upper = 1)
tissue

Example data for ‘MetCirc’: ‘tissue’

Description
The ‘data.frame’ ‘tissue’ is used in the subsection ‘Preparing the tissue data set for analysis’ in the vignette of ‘MetCirc’. MS/MS data are merged across floral organs in this ‘data.frame’.

Format
‘data.frame’

Value
‘data.frame’

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Source
internal

typeMatch_link0

Get typeMatch and link0 data frame

Description
typeMatch_link0 returns a list with accessors “link0df” and “type_match”

Usage
typeMatch_link0(similarityMatrix, sps, type, condition)

Arguments
similarityMatrix
matrix with pairwise similarity values
sps
Spectra object
type
character(1), either "mz", "retentionTime", "clustering"
condition
character

Details
Helper function for shinyCircos.
**Value**

list of length 2, entry link0df is a data.frame and entry type_match is a character vector

**Author(s)**

Thomas Naake, <thomasnaake@googlemail.com>

**Examples**

data("spectra", package = "MetCirc")
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
FUN = MsCoreUtils::ndotproduct, ppm = 10, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]

```r
order according to retention time
MetCirc:::typeMatch_link0(similarityMatrix = similarityMat,
sps = sps_tissue, type = "mz",
condition = c("SPL", "LIM", "ANT", "STY"))
```
Index

cart2Polar, 3
circosLegend, 3
compartmentTissue, 5
convertExampleDF, 5
convertMsp2Spectra, 6
createLink0df, 7
createLinkDf, 8
cutLinkDf, 9
getLinkDFIndices, 10
highlight, 11
minFragCart2Polar, 12
msp2spectra, 14
neutalloss, 14
orderSimilarityMatrix, 16
plotCircos, 17
plotSpectra, 19
printInformationSelect, 20
recordPlotFill_degreeFeatures, 21
recordPlotHighlight, 22
replayPlotAdd, 23
replayPlotOrder, 24
sd01_outputXCMS, 25
sd02_deconvoluted, 26
select, 26
shinyCircos, 27
similarityMat, 28
spectraCondition, 29
sps_tissue, 30

thresholdLinkDf, 31
tissue, 32
typeMatch_link0, 32