Package ‘Moonlight2R’

January 12, 2024

Type Package

Title Identify oncogenes and tumor suppressor genes from omics data

Version 1.0.0

Date

Depends R (>= 4.3), doParallel, foreach

Imports parmigene, randomForest, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, grDevices, graphics, GEOquery, stats, purrr, RISmed, grid, utils, ComplexHeatmap, GenomicRanges, dplyr, fuzzyjoin, rtracklayer, magrittr, qpdf, readr, seqminer, stringr, tibble, tidyHeatmap, tidyr, AnnotationHub, easyPubMed, org.Hs.eg.db

Description The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation
prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments.

License GPL-3

biocViews DNAmethylation, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, DifferentialExpression, Pathways, Network, Survival, GeneSetEnrichment, NetworkEnrichment

Suggests BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), devtools, roxygen2, png

SystemRequirements CScapeSomatic

VignetteBuilder knitr

URL https://github.com/ELELAB/Moonlight2R

BugReports https://github.com/ELELAB/Moonlight2R/issues

RoxygenNote 7.2.3

LazyData false

Encoding UTF-8

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/Moonlight2R

git_branch RELEASE_3_18

git_last_commit f5bfc9

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-01-11

Author Mona Nourbakhsh [aut], Astrid Saksager [aut], Nikola Tom [aut], Xi Steven Chen [aut], Antonio Colaprico [aut], Catharina Olsen [aut], Matteo Tiberti [cre, aut], Elena Papaleo [aut]

Maintainer Matteo Tiberti <tiberti@cancer.dk>
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>confidence</td>
<td>4</td>
</tr>
<tr>
<td>cscape_somatic_output</td>
<td>4</td>
</tr>
<tr>
<td>dataDMA</td>
<td>5</td>
</tr>
<tr>
<td>dataFEA</td>
<td>5</td>
</tr>
<tr>
<td>dataFilt</td>
<td>6</td>
</tr>
<tr>
<td>dataGLS</td>
<td>6</td>
</tr>
<tr>
<td>dataGRN</td>
<td>7</td>
</tr>
<tr>
<td>dataGRN_no_noise</td>
<td>7</td>
</tr>
<tr>
<td>dataMAF</td>
<td>8</td>
</tr>
<tr>
<td>dataPRA</td>
<td>8</td>
</tr>
<tr>
<td>dataURA</td>
<td>9</td>
</tr>
<tr>
<td>dataURA_plot</td>
<td>9</td>
</tr>
<tr>
<td>DEGsmatrix</td>
<td>10</td>
</tr>
<tr>
<td>DEG_Mutations_Annotations</td>
<td>10</td>
</tr>
<tr>
<td>DiseaseList</td>
<td>11</td>
</tr>
<tr>
<td>DMA</td>
<td>11</td>
</tr>
<tr>
<td>EAGenes</td>
<td>13</td>
</tr>
<tr>
<td>EncodePromoters</td>
<td>14</td>
</tr>
<tr>
<td>FEA</td>
<td>15</td>
</tr>
<tr>
<td>GEO_TCGAtab</td>
<td>15</td>
</tr>
<tr>
<td>getDataGEO</td>
<td>16</td>
</tr>
<tr>
<td>GLS</td>
<td>17</td>
</tr>
<tr>
<td>GRN</td>
<td>17</td>
</tr>
<tr>
<td>GSEA</td>
<td>19</td>
</tr>
<tr>
<td>knownDriverGenes</td>
<td>19</td>
</tr>
<tr>
<td>LiftMAF</td>
<td>20</td>
</tr>
<tr>
<td>listMoonlight</td>
<td>20</td>
</tr>
<tr>
<td>LOC_protein</td>
<td>21</td>
</tr>
<tr>
<td>LOC_transcription</td>
<td>22</td>
</tr>
<tr>
<td>LOC_translation</td>
<td>22</td>
</tr>
<tr>
<td>LPA</td>
<td>23</td>
</tr>
<tr>
<td>MAFtoCscape</td>
<td>24</td>
</tr>
<tr>
<td>moonlight</td>
<td>24</td>
</tr>
<tr>
<td>NCG</td>
<td>26</td>
</tr>
<tr>
<td>Oncogenic_mediators_mutation_summary</td>
<td>27</td>
</tr>
<tr>
<td>plotCircos</td>
<td>27</td>
</tr>
<tr>
<td>plotDMA</td>
<td>28</td>
</tr>
<tr>
<td>plotFEA</td>
<td>29</td>
</tr>
<tr>
<td>plotHeatmap</td>
<td>31</td>
</tr>
<tr>
<td>plotMoonlight</td>
<td>31</td>
</tr>
<tr>
<td>plotNetworkHive</td>
<td>32</td>
</tr>
<tr>
<td>plotURA</td>
<td>33</td>
</tr>
<tr>
<td>PRA</td>
<td>34</td>
</tr>
<tr>
<td>PRAtoTibble</td>
<td>35</td>
</tr>
<tr>
<td>RunCscape_somatic</td>
<td>35</td>
</tr>
<tr>
<td>tabGrowBlock</td>
<td>36</td>
</tr>
</tbody>
</table>
Description
This function annotated a confidence level to the score

Usage

```r
certainty(s, type)
```

Arguments
- `s` the score
- `type` coding or noncoding

Value
returns a confidence level or remark/error message

Examples

```r
remark <- certainty(0.8, type='Coding')
```

cscape_somatic_output
Cscape-somatic annotations of TCGA-LUAD

Description
Output from DMA. This contains the cscape-somatic annotations for all differentially expressed genes

Usage

```r
data(cscape_somatic_output)
```

Format

A 645x7 matrix.

Value

A 645x7 matrix.
Output example from the function Driver Mutation Analysis

Description

The predicted driver genes, which have at least one driver mutation.

Usage

data(dataDMA)

Format

A list of two.

Value

A list of two, containing 0 tumor-suppressor and 1 oncogene.

Functional enrichment analysis

Description

The output of the FEA function which does enrichment analysis.

Usage

data(dataFEA)

Format

A dataframe of dimension 101x7

Details

The input to the FEA is the differentially expressed genes.

Value

A dataframe of dimension 101x7
dataFilt
Gene expression data from TCGA-LUAD

Description

A matrix that provides processed gene expression data (obtained from RNA seq) from the TCGA-LUAD project.

Usage

`data(dataFilt)`

Format

A 3000x20 matrix

Details

The matrix contains the genes in rows and samples in columns. The data has been downloaded and processed using TCGAbiolinks.

Value

A 3000x20 matrix

dataGLS
Literature search of driver genes

Description

A tibble containing results of literature search where predicted driver genes stored in dataDMA were queried for their role as drivers in PubMed.

Usage

`data(dataGLS)`

Format

A 13x8 tibble.

Details

The tibble contains PubMed IDs, doi, title, abstract, year of publication, keywords, and total number of publications for the genes.
dataGRN

Value

A 13x8 tibble.

dataGRN
Gene regulatory network

Description

The output of the GRN function which finds connections between genes.

Usage

`data(dataGRN)`

Format

A list of 2 elements where the first element is a 23x613 matrix and the second element is a vector of length 23

Details

The input to the GRN is the differentially expressed genes and the gene expression data.

Value

A list of 2 elements where the first element is a 23x613 matrix and the second element is a vector of length 23

dataGRN_no_noise
Gene regulatory network

Description

The output of the GRN function which finds connections between genes where the noise is set to 0 for testing reproducibility purposes.

Usage

`data(dataGRN_no_noise)`

Format

A list of 2 elements where the first element is a 23x613 matrix and the second element is a vector of length 23
Details

The input to the GRN is the differentially expressed genes and the gene expression data.

Value

A list of 2 elements where the first element is a 23x613 matrix and the second element is a vector of length 23

dataMAF

Mutation data from TCGA LUAD

Description

An example MAF file from TCGA on lung cancer LUAD. It contains 500 randomly selected mutations.

Usage

`data(dataMAF)`

Format

A 500x141 matrix.

Value

A 500x141 matrix.

dataPRA

Output example from function Pattern Recognition Analysis

Description

The predicted TSGs and OCGs and their moonlight gene z-score based on the small sample TCGA-LUAD data. The PRA() were run with expert-based approach with apoptosis and proliferation of cells.

Usage

`data(dataPRA)`

Format

A list of two.

Value

A list of two.
dataURA

Upstream regulator analysis

Description

The output of the URA function which carries out the upstream regulator analysis

Usage

data(dataURA)

Format

A 23x2 matrix

Details

The input to URA is the output of GRN and a list of biological processes and the differentially expressed genes

Value

A 23x2 matrix

dataURA_plot

Upstream regulator analysis

Description

The output of the URA function which carries out the upstream regulator analysis

Usage

data(dataURA_plot)

Format

A 12x2 matrix

Details

This URA data is used to showcase some of the visualization functions

Value

A 12x2 matrix
DEGsmatrix

Differentially expressed genes

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A matrix containing differentially expressed genes between lung cancer and normal samples found using TCGA-LUAD data and TCGAbiolinks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data(DEGsmatrix)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 3390x5 matrix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>The matrix contains the differentially expressed genes in rows and log2 fold change and FDR values in columns.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 3390x5 matrix</td>
</tr>
</tbody>
</table>

DEG_Mutations_Annotations

Differentially expressed genes’s Mutations

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output from DMA. This contains the differentially expressed genes’s mutations and all annotations generated in DMA() on the TCGA-LUAD project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data(DEG_Mutations_Annotations)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 3561x173 matrix.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 3561x173 matrix.</td>
</tr>
</tbody>
</table>
DiseaseList

Cancer-related biological processes

Description
A dataset containing information about 101 cancer-related biological processes.

Usage
data(DiseaseList)

Format
A list of 101 elements

Details
The dataset contains a list of the 101 biological processes which includes genes playing a role in each biological processes including literature findings of the genes’ function in the biological processes.

Value
A list of 101 elements

DMA

DMA

Description
This function carries out the driver mutation analysis.

Usage
DMA(
dataMAF,
dataDEGs,
dataPRA,
runCscape = TRUE,
coding_file,
noncoding_file,
results_folder = "./DMAresults"
)

Arguments

dataMAF A MAF file rda object. The MAF file must at least contain the following columns:
• Hugo_Symbol eg. BRCA1
• Chromosome eg. chr1
• Start_Position eg. 54402
• End_Position e.g. 54443
• Strand eg. +
• Variant_Classification
• Variant_Type
• Reference_Allele
• Tumor_Seq_Allele1
• Tumor_Seq_Allele2

dataDEGs Output DEA function.
dataPRA Output PRA function.
runCscape Boolean. If FALSE will load CScape output file from results-folder Default = TRUE.
coding_file A character string. Path to and name of CScape-somatic coding file. Can be downloaded at http://cscape-somatic.biocompute.org.uk/#download. The .tbi file must be placed in the same folder.
noncoding_file A character string. Path to and name of CScape-somatic noncoding file. Can be downloaded at http://cscape-somatic.biocompute.org.uk/#download. The .tbi file must be placed in the same folder.
results_folder A character string. Path to the results generated by this function.

Details

For more information about the different annotations added to the mutations please see the documentation as follows: data(NCG), data(EncodePromoters), data(LOC_protein) data(LOC_transcription) and data(LOC_translation).

Value

List of two, containing TSGs and OCGs with at least one driver mutation. Additionally files are saved in results_folder. All output files are in compressed .rda format.

DEG_mutations_annotations.rda All differentially expressed genes’ mutations and their annotations. These annotations include e.g. CScape-somatic assessment, Level of Consequence, overlap with promoter sites and information from Network of Cancer Genes (NCG 7.0). All information from MAF and DEA is contained.

Oncogenic_mediators_annotation_summary.rda All oncogenic mediators and an summarisation of their mutation based on CScape-somatic assessment, Level of Consequences and total number of mutations. If a gene as previously been assessed as a driver in Network of Cancer Genes (7.0), it is annotated in a separate column.

Cscape_somatic_output.rda The file contain the escape-somatic assessment for every mutation found in the differentially expressed genes. It is formatted exactly as the output of escape-somatic, as if it was run in the terminal, except it is saved as .rda instead of csv.
Examples

```r
DMA(dataMAF = dataMAF,
   dataDEGs = DEGsmatrix,
   dataPRA = dataPRA,
   coding_file = "path/css_coding.vcf.gz",
   noncoding_file = "path/css_noncoding.vcf.gz",
   results_folder = "path/results")
```

#If the cscape-somatic file have already been created
cscape_somatic_output <- read.csv("./results/Cscape_somatic_output.csv")
save(cscape_somatic_output, file = "/results/Cscape_somatic_output.rda")

```r
DMA(dataMAF = dataMAF,
   dataDEGs = DEGsmatrix,
   dataPRA = dataPRA,
   runCscape = FALSE,
   results_folder = "/results")
```

EAGenes
Information about genes

Description

A matrix containing information about 20038 genes including their gene description, location and family.

Usage

```r
data(EAGenes)
```

Format

A 20038x5 matrix

Details

The matrix contains the genes in rows and description, location and family in columns.

Value

A 20038x5 matrix
EncodePromoters

Description

Experimentally verified promoter sites by J. Michael Cherry, Stanford. Downloaded from the ENCODE identifier ENCSR294YNI. It contains chromosome, start and end sites of promoters.

Usage

data(EncodePromoters)

Format

A tibble with no columnnames or rownames.

1. The first column is chromosome eg. chr1
2. The second column is start position eg. 10451
3. The third column is end position eg. 10563

Value

A 84738x6 table

Source

https://www.encodeproject.org/

References

ENCODE identifier: ENCSR294YNI

FEA

Description
This function carries out the functional enrichment analysis (FEA).

Usage
```r
FEA(BPname = NULL, DEGsmatrix)
```

Arguments
- **BPname**
 - BPname biological process such as "proliferation of cells", "ALL" (default) if FEA should be carried out for all 101 biological processes.
- **DEGsmatrix**
 - DEGsmatrix output from DEA such as dataDEGs.

Value
- matrix from FEA

Examples
```r
data(DEGsmatrix)
data(DiseaseList)
data(EAGenes)
DEGsmatrix <- DEGsmatrix[seq.int(2), ]
dataFEA <- FEA(DEGsmatrix = DEGsmatrix, BPname = "apoptosis")
```

GEO_TCGAtab

Information on GEO and TCGA data

Description
A matrix that provides the GEO dataset matched to one of 18 TCGA cancer types.

Usage
```r
data(GEO_TCGAtab)
```

Format
A 18x12 matrix.
Details

The matrix contains the cancer types in rows and information about sample type from both TCGA and GEO in columns.

Value

A 18x12 matrix

description

This function retrieves and prepares GEO data

Usage

getDataGEO(GEOobject = "GSE39004", platform = "GPL6244", TCGAtumor = NULL)

Arguments

GEOobject GEOobject
platform platform
TCGAtumor tumor name

Value

return GEO gset

Examples

data(GEO_TCGAtab)
dataGEO <- getDataGEO(GEOobject = "GSE15641", platform = "GPL96")
GLS

GLS This function carries out gene literature search.

Description

GLS This function carries out gene literature search.

Usage

GLS(genes, query_string = "AND cancer AND driver", max_records = 20)

Arguments

- **genes**
 A character string containing the genes to search in PubMed database
- **query_string**
 A character string containing words in query to follow the gene of interest. Default is "AND cancer AND driver" resulting in a final query of "Gene AND cancer AND driver". Standard PubMed syntax can be used in the query. For example Boolean operators AND, OR, NOT can be applied and tags such as [AU], [TITLE/ABSTRACT], [Affiliation] can be used.
- **max_records**
 An integer containing the maximum number of records to be fetched from PubMed.

Value

A tibble containing results of literature search where PubMed was queried for information of input genes. Each row in the tibble contains a PubMed ID matching the query, doi, title, abstract, year of publication, keywords, and total number of PubMed publications, resulting in a total of eight columns.

Examples

```r
genes_query <- "TP53"
query <-
"AND cancer AND driver AND '1980/01/01'[Date - Publication] : '1980/01/01'[Date - Publication]"
dataGLS <- GLS(genes = genes_query,
                query_string = query)
```

GRN

Generate network

Description

This function carries out the gene regulatory network inference using parmigene
Usage

GRN(
 TFs,
 DEGsmatrix,
 DiffGenes = FALSE,
 normCounts,
 kNearest = 3,
 nGenesPerm = 2000,
 nBoot = 400,
 noise_mi = 1e-12
)

Arguments

TFs a vector of genes.
DEGsmatrix DEGsmatrix output from DEA such as dataDEGs
DiffGenes if TRUE consider only diff.expr genes in GRN
normCounts is a matrix of gene expression with genes in rows and samples in columns.
kNearest the number of nearest neighbors to consider to estimate the mutual information.
Must be less than the number of columns of normCounts.
nGenesPerm nGenesPerm
nBoot nBoot
noise_mi noise in knnmi.cross function. Default is 1e-12.

Value

an adjacent matrix

Examples

data('DEGsmatrix')
data('dataFilt')
dataGRN <- GRN(TFs = sample(rownames(DEGsmatrix), 30),
 DEGsmatrix = DEGsmatrix,
 DiffGenes = TRUE,
 normCounts = dataFilt,
 nGenesPerm = 2,
 nBoot = 2)
Description

This function carries out the GSEA enrichment analysis.

Usage

GSEA(DEGsmatrix, top, plot = FALSE)

Arguments

DEGsmatrix
DEGsmatrix output from DEA such as dataDEGs
top
is the number of top BP to plot
plot
if TRUE return a GSEA's plot

Value

return GSEA result

Examples

data("DEGsmatrix")
DEGsmatrix_example <- DEGsmatrix[1:2,]
dataFEA <- GSEA(DEGsmatrix = DEGsmatrix_example)

knownDriverGenes
Information of known cancer driver genes from COSMIC

Description

A list of known cancer driver genes from COSMIC

Usage

data(knownDriverGenes)

Format

A list containing two elements where the first element is a character vector of 55 and the second element is a character vector of #’ 84

Details

The list contains two elements: a vector of known tumor #’ suppressors and a vector of known oncogenes
Value
A list containing two elements where the first element is a character vector of 55 and the second element is a character vector of # 84

LiftMAF LiftMAF

Description
This function lifts a MAF file to a different genomic build.

Usage
LiftMAF(Infile, Current_Build)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infile</td>
<td>A tibble of MAF</td>
</tr>
<tr>
<td>Current_Build</td>
<td>A character string, either GRCh38 or GRCh37</td>
</tr>
</tbody>
</table>

Value
MAF tibble with positions lifted to another build

Examples
```r
data(dataMAF)
dataMAF_example <- dataMAF[1,]
LiftMAF(dataMAF_example, Current_Build = 'GRCh38')
```

listMoonlight List of oncogenic mediators of 5 TCGA cancer types

Description
A list of oncogenic mediators of 5 TCGA cancer types: BLCA, BRCA, LUAD, READ and STAD

Usage
data(listMoonlight)

Format
A list containing 5 elements where each element contains differentially expressed genes and output from the URA and PRA functions of 5 TCGA cancer types
Details

Each element in the list contains differentially expressed genes and output from the URA and PRA functions.

Value

A list containing 5 elements where each element contains differentially expressed genes and output from the URA and PRA functions of 5 TCGA cancer types.

Description

A dataset binary dataset describing if a mutation of a certain class and type possibly have an effect on protein structure or function.

Usage

`data(LOC_protein)`

Format

A 18x7 table

Details

The values are binary: 0 no effect is possible, 1 an effect is possible.

See supplementary material for details.

Value

A 18x7 table

References

paper
LOC_transcription *Level of Consequence: Transcription*

Description
A dataset describing if a mutation of a certain class and type possibly have an effect on transcript level.

Usage
data(LOC_transcription)

Format
A 18x7 table

Details
The values are binary: 0 no effect is possible, 1 an effect is possible.
See supplementary material for details.

Value
A 18x7 table

References
paper

LOC_translation *Level of Consequence: Translation*

Description
A dataset describing if a mutation of a certain class and type possibly have an effect on peptide level.

Usage
data(LOC_translation)

Format
A 18x7 table
Details

The values are binary: 0 no effect is possible, 1 an effect is possible.
See supplementary material for details.

Value

A 18x7 table

References

paper

Description

This function carries out the literature phenotype analysis (LPA)

Usage

LPA(dataDEGs, BP, BPlist)

Arguments

dataDEGs is output from DEA
BP is biological process
BPlist is list of genes annotated in BP

Value

table with number of pubmed that affects, increase or decrease genes annotated in BP

Examples

data('DEGsmatrix')
data('DiseaseList')
BPselected <- c("apoptosis")
BPAnnotations <- DiseaseList[[match(BPselected, names(DiseaseList))]]$ID
MAFtoCscape

Description

This function extracts columns from a MAF tibble to fit CScape input format

Usage

MAFtoCscape(MAF)

Arguments

- **MAF**: tibble of MAF

Value

tibble of cscape-somatic input

Examples

```r
data(dataMAF)
MAFtoCscape(dataMAF[seq.int(2),])
```

moonlight pipeline

Description

moonlight is a tool for identification of cancer driver genes. This function wraps the different steps of the complete analysis workflow.

Usage

```r
moonlight(
dataDEGs, 
dataFilt, 
BPname = NULL, 
Genelist = NULL, 
kNearest = 3, 
nGenesPerm = 2000, 
DiffGenes = FALSE, 
nBoot = 400, 
nTF = NULL, 
thea.srole = 0, 
dataMAF,
```

Arguments

dataDEGs: table of differentially expressed genes
dataFilt: matrix of gene expression data with genes in rows and samples in columns
BPname: biological processes to use, if NULL: all processes will be used in analysis, RF for candidate; if not NULL the candidates for these processes will be determined (no learning)
Genelist: Genelist
kNearest: kNearest
nGenesPerm: nGenesPerm
DiffGenes: DiffGenes
nBoot: nBoot
nTF: nTF
thres.role: thres.role
dataMAF: A MAF file rda object for DMA
path_cscape_coding: A character string to path of CScape-somatic coding file
path_cscape_noncoding: A character string to path of CScape-somatic non-coding file

Value

table with cancer driver genes TSG and OCG.

Examples

drivers <- moonlight(dataDEGs = DEGsmatrix,
dataFilt = dataFilt,
BPname = c("apoptosis", "proliferation of cells"),
dataMAF = dataMAF,
path_cscape_coding = "css_coding.vcf.gz",
path_cscape_noncoding = "css_noncoding.vcf.gz")
Description

A dataset retrieved from Network of Cancer Genes 7.0

Usage

data(NCG)

Format

The format have been rearranged from the original. \texttt{<symbol>|<NCG_driver>|<NCG_cgc_annotation>|<NCG_vogelstein_annotation>|<NCG_saito_annotation>|<NCG_pubmed_id>}

Details

The NCG_driver is reported as a OCG or TSG when at least one of three three databases have documented it. These are cosmic gene census (cgc), vogelstein et al. 2013 or saito et al. 2020. The NCG_driver is reported as a candidate, when literature support the gene as a cancer driver.

Value

A 3347x7 table

Source

\url{http://ncg.kcl.ac.uk/}

References

Oncogenic mediating mutation summary

Description

Output from DMA. This contains the oncogenic mediator from the TCGA-LUAD project, and their mutation assessments summarized based on CSCape-somatic and Level of Consequence.

Usage

```r
data(Oncogenic_mediators_mutation_summary)
```

Format

A 12x15 matrix.

Value

A 12x15 matrix.

plotCircos

Description

This function visualizes the plotCircos

Usage

```r
plotCircos(
  listMoonlight,
  listMutation = NULL,
  additionalFilename = NULL,
  intensityColOCG = 0.5,
  intensityColTSG = 0.5,
  intensityColDual = 0.5,
  fontSize = 1
)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listMoonlight</td>
<td>output Moonlight function</td>
</tr>
<tr>
<td>listMutation</td>
<td>listMutation</td>
</tr>
<tr>
<td>additionalFilename</td>
<td>additionalFilename</td>
</tr>
<tr>
<td>intensityColOCG</td>
<td>intensityColOCG</td>
</tr>
<tr>
<td>intensityColTSG</td>
<td>intensityColTSG</td>
</tr>
<tr>
<td>intensityColDual</td>
<td>intensityColDual</td>
</tr>
<tr>
<td>fontSize</td>
<td>fontSize</td>
</tr>
</tbody>
</table>

Value

no return value, plot is saved

Examples

data('listMoonlight')
plotCircos(listMoonlight = listMoonlight, additionalFilename = "_ncancer5")

Description

This function creates one or more heatmaps on the output from DMA. It visualises the CScape-Somatic annotations per oncogenic mediator either in a single heatmap or split into several different ones. It is also possible to provide a personalised genelist to visualise.

Usage

plotDMA(
 DEG_Mutations_Annotations,
 Oncogenic_mediators_mutation_summary,
 type = "split",
 genelist = c(),
 additionalFilename = ""
)
plotFEA

Arguments

DEG_Mutations_Annotations
A tibble, output file from DMA.

Oncogenic_mediators_mutation_summary
A tibble, output file from DMA.

type
A character string. It can take the values "split" or "complete". If both type and genelist are NULL, the function will default to "split".

- "split" will split the entire dataset into sections of 40 genes and create individual plots. These plots will be merged into one pdf. The genes will be sorted alphabetically.
- "complete" will create one plot, though it will not be possible to see the individual gene names. The heatmap will be clustered hierarchically.

genelist
A character vector containing HUGO symbols. A single heatmap will be created with only these genes. The heatmap will be hierarchically clustered. This will overwrite type.

additionalFilename
A character string. Adds prefix or filepath to the filename of the pdf.

Value
No return value. DMA results are plotted.

Examples
```r
data('DEG_Mutations_Annotations')
data('Oncogenic_mediators_mutation_summary')
plotDMA(DEG_Mutations_Annotations,
        Oncogenic_mediators_mutation_summary,
        genelist = c("ACSS2", "AFAP1L1"),
        additionalFilename = "myplots_")
```

plotFEA

Description
This function visualize the functional enrichment analysis (FEA)'s barplot

Usage
```r
plotFEA(
    dataFEA,
    topBP = 10,
    additionalFilename = NULL,
    height,
    width,
    offsetValue = 5,
)```
angle = 90,
xleg = 35,
yleg = 5,
titleMain = "",
minY = -5,
maxY = 10,
mycols = c("#8DD3C7", "#FFFFB3", "#BEBADA")
)

Arguments

- **dataFEA**
- **topBP**
- **additionalFilename**
- **height**
- **width**
- **offsetValue**
- **angle**
- **xleg**
- **yleg**
- **titleMain**
- **minY**
- **maxY**
- **mycols**

Value

- no return value, FEA result is plotted

Examples

```r
data(DEGsmatrix)
data(DiseaseList)
data(EAGenes)
data(dataFEA)
plotFEA(dataFEA = dataFEA[1:10,], additionalFilename = "_example", height = 20, width = 10)
```
**plotHeatmap**

**Description**

This function creates a unclustered heatmap from the inputted data tibble and saves it.

**Usage**

```r
plotHeatmap(df)
```

**Arguments**

- `df` a tibble

**Value**

The name of the alphabetically first gene in the tibble.

---

**plotMoonlight**

**Description**

This function creates a heatmap of Moonlight gene z-scores for selected genes.

**Usage**

```r
plotMoonlight(
 DEG_Mutations_Annotations,
 Oncogenic_mediators_mutation_summary,
 dataURA,
 gene_type = "drivers",
 n = 50,
 genelist = c(),
 BPlist = c(),
 additionalFilename = ""
)
```
plotNetworkHive

**Description**

This function visualizes the GRN as a hive plot.

**Usage**

```r
plotNetworkHive(dataGRN, namesGenes, thres, additionalFilename = NULL)
```
Arguments

dataGRN output GRN function
namesGenes list TSG and OCG to define axes
thres threshold of edges to be included
additionalFilename

Value

no results Hive plot is executed

Examples

data(knownDriverGenes)
data(dataGRN)
plotNetworkHive(dataGRN = dataGRN, namesGenes = knownDriverGenes, thres = 0.55)

Description

This function visualizes the URA in a heatmap

Usage

plotURA(dataURA, additionalFilename = "URAplot")

Arguments

dataURA output URA function
additionalFilename

Value

heatmap

Examples

data(dataURA)
data(DiseaseList)
data(tabGrowBlock)
data(knownDriverGenes)
dataDual <- PRA(dataURA = dataURA, BPname = c("apoptosis","proliferation of cells"), thres.role = 0)
PRA

Pattern Recognition Analysis (PRA)

Description

This function carries out the pattern recognition analysis

Usage

PRA(dataURA, BPname, thres.role = 0)

Arguments

- dataURA: output URA function
- BPname: BPname
- thres.role: thres.role

Value

returns list of TSGs and OCGs when biological processes are provided, otherwise a randomForest based classifier that can be used on new data

Examples

data(dataURA)
data(DiseaseList)
data(tabGrowBlock)
data(knownDriverGenes)
dataPRA <- PRA(dataURA = dataURA[seq.int(2),], BPname = c("apoptosis","proliferation of cells"), thres.role = 0)
**PRAtoTibble**

**Description**
This function changes the PRA output to tibble format

**Usage**
```r
PRAtoTibble(dataPRA)
```

**Arguments**
- `dataPRA` RDA object (list of two) from PRA

**Value**
tibble with drivers

**Examples**
```r
data('dataPRA')
PRAtoTibble(dataPRA)
```

---

**RunCscape_somatic**

**Description**
This function retrieve cscape-scores to SNPs

**Usage**
```r
RunCscape_somatic(input, coding_file, noncoding_file)
```

**Arguments**
- `input` Input matching cscape input
- `coding_file` cscape_table with coding scores
- `noncoding_file` cscape_table with noncoding scores

**Value**
returns a tibble with a score and remark for each SNP

**Examples**
```r
cscape_out <- RunCscape_somatic(input, coding_file, noncoding_file)
```
**tabGrowBlock**

**Description**

A matrix with biological processes in rows and the cancer growing or blocking effect of the process in columns.

**Usage**

```r
data(tabGrowBlock)
```

**Format**

A 101x3 matrix

**Details**

For each biological processes the cancer growing/blocking effect is indicated.

**Value**

A 101x3 matrix

---

**tabix_func**

**Description**

This function retrieves the individual score for a SNP.

**Usage**

```r
tabix_func(Ranges, Reference_Allele, Mutant, file_coding, file_noncoding)
```

**Arguments**

- **Ranges**: The position
- **Reference_Allele**: The reference nucleotide
- **Mutant**: The mutant nucleotide
- **file_coding**: cscape_table with coding scores
- **file_noncoding**: cscape_table with noncoding scores
**URA**

**Value**
returns the score

**Examples**

```
data <- tabix_func(Ranges, Reference_Alele, Mutant, file_coding, file_noncoding)
```

---

**URA Upstream Regulator Analysis**

**Description**
This function carries out the upstream regulator analysis

**Usage**

```
URA(dataGRN, DEGsmatrix, BPname, nCores = 1)
```

**Arguments**

- `dataGRN`: output GNR function
- `DEGsmatrix`: output DPA function
- `BPname`: biological processes
- `nCores`: number of cores to use

**Value**
an adjacent matrix

**Examples**

```
data(DEGsmatrix)
dataDEGs <- DEGsmatrix
data(dataGRN)
data(DiseaseList)
data(EAGenes)
dataURA <- URA(dataGRN = dataGRN, DEGsmatrix = dataDEGs, BPname = c("apoptosis", "proliferation of cells"))
```
Index

* datasets
  cescape_somatic_output, 4
dataDMA, 5
dataFEA, 5
dataFil, 6
dataGLS, 6
dataGRN, 7
dataGRN_no_noise, 7
dataMAF, 8
dataPRA, 8
dataURA, 9
dataURA_plot, 9
DEG_Mutations_Annotations, 10
DEGsmatrix, 10
DiseaseList, 11
EAGenes, 13
EncodePromoters, 14
GEO_TCGAtab, 15
knownDriverGenes, 19
listMoonlight, 20
LOC_protein, 21
LOC_transcription, 22
LOC_translation, 22
NCG, 26
Oncogenic_mediators_mutation_summary, 27
plotCircos, 27
plotDMA, 28
plotFEA, 29
plotHeatmap, 31
plotMoonlight, 31

* internal
  tabix_func, 36

confidence, 4
cescape_somatic_output, 4

dataDMA, 5
dataFEA, 5
dataFil, 6
dataGLS, 6
dataGRN, 7
dataGRN_no_noise, 7
dataMAF, 8
dataPRA, 8
dataURA, 9
DEG_Mutations_Annotations, 10
DEGsmatrix, 10
DiseaseList, 11
EAGenes, 13
EncodePromoters, 14
GEO_TCGAtab, 15
knownDriverGenes, 19
listMoonlight, 20
LOC_protein, 21
LOC_transcription, 22
LOC_translation, 22
NCG, 26
Oncogenic_mediators_mutation_summary, 27
plotCircos, 27
plotDMA, 28
plotFEA, 29
plotHeatmap, 31
plotMoonlight, 31

38
INDEX

plotNetworkHive, 32
plotURA, 33
PRA, 34
PRAtoTibble, 35

RunCscape_somatic, 35

tabGrowBlock, 36
tabix_func, 36

URA, 37