Package ‘MoonlightR’

May 9, 2024

Type Package
Title Identify oncogenes and tumor suppressor genes from omics data
Version 1.30.0
Date 07-08-2020
Depends R (>= 3.5), doParallel, foreach
Imports parmigene, randomForest, SummarizedExperiment, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, limma, grDevices, graphics, TCGAbiolinks, GEOquery, stats, RISmed, grid, utils

Description Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments.

License GPL (>= 3)

Contents

dataFilt .. 3

biocViews DNAMethylation, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, DifferentialExpression, Pathways, Network, Survival, GeneSetEnrichment, NetworkEnrichment

Suggests BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2, png, edgeR

VignetteBuilder knitr

LazyData true

URL https://github.com/ELELAB/MoonlightR

BugReports https://github.com/ELELAB/MoonlightR/issues

RoxygenNote 7.2.3

Encoding UTF-8

git_url https://git.bioconductor.org/packages/MoonlightR

git_branch RELEASE_3_19

git_last_commit 6c11c45

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-08

Author Antonio Colaprico [aut], Catharina Olsen [aut], Matthew H. Bailey [aut], Gabriel J. Odom [aut], Thilde Terkelsen [aut], Mona Nourbakhsh [aut], Astrid Saksager [aut], Tiago C. Silva [aut], André V. Olsen [aut], Laura Cantini [aut], Andrei Zinovyev [aut], Emmanuel Barillot [aut], Houtan Noushmehr [aut], Gloria Bertoli [aut], Isabella Castiglioni [aut], Claudia Cava [aut], Gianluca Bontempi [aut], Xi Steven Chen [aut], Elena Papaleo [aut], Matteo Tiberti [cre, aut]

Maintainer Matteo Tiberti <tiberti@cancer.dk>
dataFilt

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataGRN</td>
<td>4</td>
</tr>
<tr>
<td>dataURA</td>
<td>4</td>
</tr>
<tr>
<td>DEGsMatrix</td>
<td>5</td>
</tr>
<tr>
<td>DiseaseList</td>
<td>5</td>
</tr>
<tr>
<td>DPA</td>
<td>6</td>
</tr>
<tr>
<td>EAGenes</td>
<td>7</td>
</tr>
<tr>
<td>FEA</td>
<td>7</td>
</tr>
<tr>
<td>GDCProjects</td>
<td>8</td>
</tr>
<tr>
<td>geneInfo</td>
<td>8</td>
</tr>
<tr>
<td>GEO_TCGAtab</td>
<td>9</td>
</tr>
<tr>
<td>getDataGEO</td>
<td>9</td>
</tr>
<tr>
<td>getDataTCGA</td>
<td>10</td>
</tr>
<tr>
<td>GRN</td>
<td>11</td>
</tr>
<tr>
<td>GSEA</td>
<td>12</td>
</tr>
<tr>
<td>knownDriverGenes</td>
<td>12</td>
</tr>
<tr>
<td>listMoonlight</td>
<td>13</td>
</tr>
<tr>
<td>LPA</td>
<td>13</td>
</tr>
<tr>
<td>moonlight</td>
<td>14</td>
</tr>
<tr>
<td>MoonlightR</td>
<td>15</td>
</tr>
<tr>
<td>plotCircos</td>
<td>16</td>
</tr>
<tr>
<td>plotFEA</td>
<td>17</td>
</tr>
<tr>
<td>plotNetworkHive</td>
<td>18</td>
</tr>
<tr>
<td>plotURA</td>
<td>19</td>
</tr>
<tr>
<td>PRA</td>
<td>19</td>
</tr>
<tr>
<td>tabGrowBlock</td>
<td>20</td>
</tr>
<tr>
<td>URA</td>
<td>21</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataFilt</td>
<td>3</td>
</tr>
</tbody>
</table>

Description

A data set containing the following data:

Usage

```r
data(dataFilt)
```

Format

A 13742x20 matrix

Details

- dataFilt matrix with 13742 rows (genes) and 20 columns samples with TCGA's barcodes (10TP, 10NT)
Value
a 13742x20 matrix

dataGRN GRN gene regulatory network output

Description
output from GRN function

Usage
data(dataGRN)

Format
A large list of 2 elements

Details
• dataGRN list of 2 elements miTFGenes, maxmi from GRN function

Value
a large list of 2 elements

dataURA Output example from function Upstram Regulator Analysis

Description
A data set containing the following data:

Usage
data(dataURA)

Format
A data frame with 100 rows and 2 variables

Details
• dataURA matrix with 100 rows (genes) and 2 columns "apoptosis" "proliferation of cells"

Value
a 100x2 matrix
DEGsmatrix

DEGsmatrix is a data set containing the following data:

Usage

data(DEGsmatrix)

Format

A 3502x5 matrix

Details

- DEGsmatrix matrix with 3502 rows (genes) and five columns: "logFC", "logCPM", "LR", "PValue", "FDR"

Value

the 3502x5 matrix

DiseaseList

DiseaseList is a data set containing the following data:

Usage

data(DiseaseList)

Format

A list of 101 matrices

Details

- DiseaseList list for 101 biological processes, each containing a matrix with five columns: ID, Genes.in.dataset, Prediction based on expression direction, Log ratio, Findings

Value

list of 101 matrices
DPA

Description

This function carries out the differential phenotypes analysis

Usage

```r
DPA(
  dataType,  
dataFilt,  
dataConsortium = "TCGA",  
fdr.cut = 0.01,  
logFC.cut = 1,  
diffmean.cut = 0.25,  
samplesType,  
colDescription,  
gset,  
gsetFile = "gsetFile.RData"
)
```

Arguments

- `dataType`: selected
- `dataFilt`: obtained from `getDataTCGA`
- `dataConsortium`: is TCGA or GEO, default TCGA
- `fdr.cut`: is a threshold to filter DEGs according their p-value corrected
- `logFC.cut`: is a threshold to filter DEGs according their logFC
- `diffmean.cut`: `diffmean.cut` for DMR
- `samplesType`: `samplesType`
- `colDescription`: `colDescription`
- `gset`: `gset`
- `gsetFile`: `gsetFile`

Value

result matrix from differential phenotype analysis

Examples

```r
dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
```
Description
A data set containing the following data:

Usage
data(EAGenes)

Format
A 20038x5 matrix

Details
• EAGenes matrix with 20038 rows (genes) and five columns "ID" "Gene" "Description" "Location" "Family"

Value
a 20038x5 matrix

Description
This function carries out the functional enrichment analysis (FEA)

Usage
FEA(BPname = NULL, DEGsmatrix)

Arguments
BPname BName biological process such as "proliferation of cells", "ALL" (default) if FEA should be carried out for all 101 biological processes
DEGsmatrix DEGsmatrix output from DEA such as dataDEGs

Value
matrix from FEA
Examples

dataDEGs <- DPA(dataFilt = dataFilt,
dataType = "Gene expression")
dataFEA <- FEA(DEGsmatrix = dataDEGs)

GDCprojects

Information on GDC projects

Description
A character vector of GDC projects:

Usage
data(GDCprojects)

Format
A character vector of 39 elements

Details
• character vector for GDC projects.

Value
character vector of 39 elements

geneInfo

Information about genes for normalization

Description
A data set containing the following data:

Usage
data(geneInfo)

Format
A data frame with 20531 rows and 3 variables

Details
• geneInfo matrix with 20531 rows (genes) and 3 columns "geneLength" "gcContent" "chr"
GEO_TCGAtab

Value

a 20531x3 matrix

GEO_TCGAtab

Information on GEO data (and overlap with TCGA)

A data set containing the following data:

Description

- GEO_TCGAtab a 18x12 matrix that provides the GEO data set we matched to one of the 18 given TCGA cancer types

Usage

`data(GEO_TCGAtab)`

Format

A 101x3 matrix

Value

a 101x3 matrix

getDataGEO

getDataGEO

Description

This function retrieves and prepares GEO data

Usage

`getDataGEO(GEOobject = "GSE39004", platform = "GPL6244", TCGAtumor = NULL)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOobject</td>
<td>GEO object</td>
</tr>
<tr>
<td>platform</td>
<td>platform</td>
</tr>
<tr>
<td>TCGAtumor</td>
<td>tumor name</td>
</tr>
</tbody>
</table>

Value

return GEO gset
getDataTCGA

Description

This function retrieves and prepares TCGA data.

Usage

getDataTCGA(
cancerType,
dataType,
directory,
cor.cut = 0.6,
qnt.cut = 0.25,
nSample,
stage = "ALL",
subtype = 0,
samples = NULL
)

Arguments

cancerType select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer

dataType is dataType such as gene expression, cnv, methylation etc.
directory Directory/Folder where the data was downloaded. Default: GDCdata
cor.cut cor.cut
qnt.cut qnt.cut
nSample nSample
stage stage
subtype subtype
samples samples

Value

returns filtered TCGA data

Examples

Not run:
dataGEO <- getDataGEO(GEOobject = "GSE20347",platform = "GPL571")

End(Not run)
Examples

```r
## Not run:
dataFilt <- getDataTCGA(cancerType = "LUAD",
dataType = "Gene expression", directory = "data", nSample = 4)

## End(Not run)
```

Generate network

This function carries out the gene regulatory network inference using parmigene

Usage

```r
GRN(
  TFs,
  DEGsmatrix,
  DiffGenes = FALSE,
  normCounts,
  kNearest = 3,
  nGenesPerm = 10,
  nBoot = 10
)
```

Arguments

- **TFs**: a vector of genes.
- **DEGsmatrix**: DEGsmatrix output from DEA such as dataDEGs
- **DiffGenes**: if TRUE consider only diff.expr genes in GRN
- **normCounts**: is a matrix of gene expression with genes in rows and samples in columns.
- **kNearest**: the number of nearest neighbors to consider to estimate the mutual information. Must be less than the number of columns of normCounts.
- **nGenesPerm**: nGenesPerm
- **nBoot**: nBoot

Value

an adjacent matrix

Examples

```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
DEGsmatrix = dataDEGs,
DiffGenes = TRUE,
normCounts = dataFilt)
```
GSEA

Description
This function carries out the GSEA enrichment analysis.

Usage
GSEA(DEGsmatrix, top, plot = FALSE)

Arguments
 DEGsmatrix DEGsmatrix output from DEA such as dataDEGs
 top is the number of top BP to plot
 plot if TRUE return a GSEA's plot

Value
return GSEA result

Examples
 dataDEGs <- DEGsmatrix
 # dataFEA <- GSEA(DEGsmatrix = dataDEGs)

knownDriverGenes

Description
Information on known cancer driver gene from COSMIC

Usage
data(knownDriverGenes)

Format
A 101x3 matrix

Details
- TSG known tumor suppressor genes
- OCG known oncogenes
listMoonlight

Value

A 101x3 matrix

Description

A list containing the following data:

Usage

```
data(listMoonlight)
```

Format

A Large list with 5 elements

Details

- listMoonlight output from moonlight’s pipeline containing dataDEGs, dataURA, listCandidates

Value

output from moonlight pipeline

LPA

LPA

Description

This function carries out the literature phenotype analysis (LPA)

Usage

```
LPA(dataDEGs, BP, BPlist)
```

Arguments

- `dataDEGs`: is output from DEA
- `BP`: is biological process
- `BPlist`: is list of genes annotated in BP
moonlight

Value

table with number of pubmed that affects, increase or decrease genes annotated in BP

Examples

data(DEGsmatrix)
BPselected <- c("apoptosis")
BPannotations <- DiseaseList[[match(BPselected, names(DiseaseList))]]$ID

moonlight pipeline

Description

moonlight is a tool for identification of cancer driver genes. This function wraps the different steps of the complete analysis workflow. Providing different solutions:

1. MoonlighR::FEA
2. MoonlighR::URA
3. MoonlighR::PIA

Usage

moonlight(
 cancerType = "panCancer",
 dataType = "Gene expression",
 directory = "GDCdata",
 BPname = NULL,
 cor.cut = 0.6,
 qnt.cut = 0.25,
 Genelist = NULL,
 fdr.cut = 0.01,
 logFC.cut = 1,
 corThreshold = 0.6,
 kNearest = 3,
 nGenesPerm = 10,
 DiffGenes = FALSE,
 nBoot = 100,
 nTF = NULL,
 nSample = NULL,
 thres.role = 0,
 stage = NULL,
 subtype = 0,
 samples = NULL
)
Arguments

cancerType select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer
dataType directory
BPname biological processes to use, if NULL: all processes will be used in analysis. RF for candidate; if not NULL the candidates for these processes will be determined (no learning)
cor.cut qnt.cut Genelist
fdr.cut logFC.cut corThreshold
kNearest nGenesPerm DiffGenes
nBoot nTF nSample thres.role
stage subtype samples

dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
to change with moonlight

Value
table with cancer driver genes TSG and OCG.

Examples

Description
MoonlightR is a package designed for the identification of cancer driver genes. Please see the documentation on our Bioconductor page for more details: https://www.bioconductor.org/packages/release/bioc/html/MoonlightR.html
If you experience issues with the package, please open an Issue on our GitHub repository: https://github.com/ELELAB/MoonlightR
If you use this package in your research, please cite this paper: https://doi.org/10.1038/s41467-019-13803-0
Description

This function visualize the plotCircos.

Usage

```r
plotCircos(
  listMoonlight,
  listMutation = NULL,
  additionalFilename = NULL,
  intensityColOCG = 0.5,
  intensityColTSG = 0.5,
  intensityColDual = 0.5,
  fontSize = 1
)
```

Arguments

- `listMoonlight`: output Moonlight function
- `listMutation`: listMutation
- `additionalFilename`: additionalFilename
- `intensityColOCG`: intensityColOCG
- `intensityColTSG`: intensityColTSG
- `intensityColDual`: intensityColDual
- `fontSize`: fontSize

Value

no return value, plot is saved

Examples

```r
plotCircos(listMoonlight = listMoonlight, additionalFilename = "_ncancer5")
```
Description

This function visualizes the functional enrichment analysis (FEA)’s barplot.

Usage

plotFEA(
 dataFEA,
 topBP = 10,
 additionalFilename = NULL,
 height,
 width,
 offsetValue = 5,
 angle = 90,
 xleg = 35,
 yleg = 5,
 titleMain,
 minY = -5,
 maxY = 10,
 mycols = c("#8DD3C7", "#FFFFB3", "#BEBADA")
)

Arguments

dataFEA dataFEA

topBP topBP

additionalFilename additionalFilename

height Figure height

width Figure width

offsetValue offsetValue

angle angle

xleg xleg

yleg yleg

titleMain title of the plot

minY minY

maxY maxY

mycols colors to use for the plot
plotNetworkHive

Value

no return value, FEA result is plotted

Examples

dataFEA <- FEA(DEGsmatrix = DEGsmatrix)
plotFEA(dataFEA = dataFEA, additionalFilename = "_example", height = 20, width = 10)

data(knownDriverGenes)
data(dataGRN)
plotNetworkHive(dataGRN = dataGRN, namesGenes = knownDriverGenes, thres = 0.55)

plotNetworkHive: Hive network plot

Description

This function visualizes the GRN as a hive plot

Usage

plotNetworkHive(dataGRN, namesGenes, thres, additionalFilename = NULL)

Arguments

dataGRN output GRN function
namesGenes list TSG and OCG to define axes
thres threshold of edges to be included
additionalFilename additionalFilename

Value

no results Hive plot is executed

Examples

data(knownDriverGenes)
data(dataGRN)
plotNetworkHive(dataGRN = dataGRN, namesGenes = knownDriverGenes, thres = 0.55)
plotURA

plotURA: Upstream regulatory analysis heatmap plot

Description

This function visualizes the URA in a heatmap.

Usage

```r
plotURA(dataURA, additionalFilename = "URAplot")
```

Arguments

- `dataURA`: output URA function
- `additionalFilename`: figure name

Value

heatmap

Examples

```r
data(dataURA)
dataDual <- PRA(dataURA = dataURA, 
  BPname = c("apoptosis","proliferation of cells"), 
  thres.role = 0)
TSGs_genes <- names(dataDual$TSG)
OCGs_genes <- names(dataDual$OCG)
plotURA(dataURA = dataURA[c(TSGs_genes, OCGs_genes),], additionalFilename = 
  
```

PRA

Pattern Recognition Analysis (PRA)

Description

This function carries out the pattern recognition analysis.

Usage

```r
PRA(dataURA, BPname, thres.role = 0)
```

Arguments

- `dataURA`: output URA function
- `BPname`: BPname
- `thres.role`: thres.role
Value

returns list of TSGs and OCGs when biological processes are provided, otherwise a randomForest based classifier that can be used on new data

Examples

```r
data(dataURA)
dataDual <- PRA(dataURA = dataURA,
BPname = c("apoptosis","proliferation of cells"),
thres.role = 0)
```

tabGrowBlock

Information growing/blocking characteristics for 101 selected biological processes

Description

A data set containing the following data:

Usage

```r
data(tabGrowBlock)
```

Format

A 101x3 matrix

Details

- tabGrowBlock matrix that defines if a process is growing or blocking cancer development, for each 101 biological processing

Value

a 101x3 matrix
URA
URA Upstream Regulator Analysis

Description
This function carries out the upstream regulator analysis.

Usage
URA(dataGRN, DEGsmatrix, BPname, nCores = 1)

Arguments
- dataGRN: output GNR function
- DEGsmatrix: output DPA function
- BPname: biological processes
- nCores: number of cores to use

Value
an adjacent matrix

Examples
```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
               DEGsmatrix = dataDEGs,
               DiffGenes = TRUE,
               normCounts = dataFilt)
dataURA <- URA(dataGRN = dataGRN,
               DEGsmatrix = dataDEGs,
               BPname = c("apoptosis",
                           "proliferation of cells"))
```
Index

* datasets
 dataFilt, 3
 dataGRN, 4
 dataURA, 4
 DEGsmatrix, 5
 DiseaseList, 5
 EAGenes, 7
 GDCprojects, 8
 geneInfo, 8
 GEO_TCGAtab, 9
 knownDriverGenes, 12
 listMoonlight, 13
 tabGrowBlock, 20

 dataFilt, 3
 dataGRN, 4
 dataURA, 4
 DEGsmatrix, 5
 DiseaseList, 5
 DPA, 6

 EAGenes, 7

 FEA, 7

 GDCprojects, 8
 geneInfo, 8
 GEO_TCGAtab, 9
 getDataGEO, 9
 getDataTCGA, 10
 GRN, 11
 GSEA, 12

 knownDriverGenes, 12

 listMoonlight, 13
 LPA, 13

 moonlight, 14
 MoonlightR, 15

plotCircos, 16
plotFEA, 17
plotNetworkHive, 18
plotURA, 19
PRA, 19

 tabGrowBlock, 20

 URA, 21