Package ‘MoonlightR’

March 23, 2024

Type Package
Title Identify oncogenes and tumor suppressor genes from omics data
Version 1.28.0
Date 07-08-2020
Depends R (>= 3.5), doParallel, foreach
Imports parmigene, randomForest, SummarizedExperiment, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, limma, grDevices, graphics, TCGAbiolinks, GEOquery, stats, RISmed, grid, utils

Description Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments.

License GPL (>= 3)
biocViews DNA Methylation, Differential Methylation, Gene Regulation, Gene Expression, Methylation Array, Differential Expression, Pathways, Network, Survival, Gene Set Enrichment, Network Enrichment

Suggests BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2, png, edgeR

VignetteBuilder knitr

LazyData true

URL https://github.com/ELELAB/MoonlightR

BugReports https://github.com/ELELAB/MoonlightR/issues

RoxygenNote 7.2.3

Encoding UTF-8

git_url https://git.bioconductor.org/packages/MoonlightR

git_branch RELEASE_3_18

git_last_commit 7dada82

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-22

Author Antonio Colaprico [aut], Catharina Olsen [aut], Matthew H. Bailey [aut], Gabriel J. Odom [aut], Thilde Terkelsen [aut], Mona Nourbakhsh [aut], Astrid Saksager [aut], Tiago C. Silva [aut], André V. Olsen [aut], Laura Cantini [aut], Andrei Zinovyev [aut], Emmanuel Barillot [aut], Houtan Noushmehr [aut], Gloria Bertoli [aut], Isabella Castiglioni [aut], Claudia Cava [aut], Gianluca Bontempi [aut], Xi Steven Chen [aut], Elena Papaleo [aut], Matteo Tiberti [cre, aut]

Maintainer Matteo Tiberti <tiberti@cancer.dk>

R topics documented:

dataFilt
dataFilt

Description

A data set containing the following data:

Usage

data(dataFilt)

Format

A 13742x20 matrix

Details

- dataFilt matrix with 13742 rows (genes) and 20 columns samples with TCGA’s barcodes (10TP, 10NT)
dataGRN

GRN gene regulatory network output

Description

output from GRN function

Usage

data(dataGRN)

Format

A large list of 2 elements

Details

- dataGRN list of 2 elements miTFGenes, maxmi from GRN function

Value

a large list of 2 elements

dataURA

Output example from function Upstream Regulator Analysis

Description

A data set containing the following data:

Usage

data(dataURA)

Format

A data frame with 100 rows and 2 variables

Details

- dataURA matrix with 100 rows (genes) and 2 columns 'apoptosis' 'proliferation of cells'

Value

a 100x2 matrix
DEGsmatrix

Description

A data set containing the following data:

Usage

data(DEGsmatrix)

Format

A 3502x5 matrix

Details

- DEGsmatrix matrix with 3502 rows (genes) and five columns "logFC" "logCPM" "LR" "PValue" "FDR"

Value

the 3502x5 matrix

DiseaseList

Description

A data set containing the following data:

Usage

data(DiseaseList)

Format

A list of 101 matrices

Details

- DiseaseList list for 101 biological processes, each containing a matrix with five columns: ID, Genes.in.dataset, Prediction based on expression direction, Log ratio, Findings

Value

list of 101 matrices
Description

This function carries out the differential phenotypes analysis

Usage

```r
DPA(
  dataType,  # selected
  dataFilt,  # obtained from getDataTCGA
  dataConsortium = "TCGA",  # TCGA or GEO, default TCGA
  fdr.cut = 0.01,  # is a threshold to filter DEGs according their p-value corrected
  logFC.cut = 1,  # is a threshold to filter DEGs according their logFC
  diffmean.cut = 0.25,  # diffmean.cut for DMR
  samplesType,  # selected
  colDescription,  # colDescription
  gset,  # gset
  gsetFile = "gsetFile.RData"  # gsetFile
)
```

Arguments

- **dataType**
- **dataFilt**
- **dataConsortium**
- **fdr.cut**
- **logFC.cut**
- **diffmean.cut**
- **samplesType**
- **colDescription**
- **gset**
- **gsetFile**

Value

result matrix from differential phenotype analysis

Examples

```r
dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
```
EAGenes

Information about genes

Description
A data set containing the following data:

Usage
data(EAGenes)

Format
A 20038x5 matrix

Details
- EAGenes matrix with 20038 rows (genes) and five columns "ID" "Gene" "Description" "Location" "Family"

Value
a 20038x5 matrix

FEA

Description
This function carries out the functional enrichment analysis (FEA)

Usage
FEA(BPname = NULL, DEGsmatrix)

Arguments
BPname: BPname biological process such as "proliferation of cells", "ALL" (default) if FEA should be carried out for all 101 biological processes
DEGsmatrix: DEGsmatrix output from DEA such as dataDEGs

Value
matrix from FEA
Examples

dataDEGs <- DPA(dataFilt = dataFilt,
dataType = "Gene expression")
dataFEA <- FEA(DEGsmatrix = dataDEGs)

GDCprojects Information on GDC projects

Description
A character vector of GDC projects:

Usage

data(GDCprojects)

Format
A character vector of 39 elements

Details
• character vector for GDC projects.

Value
character vector of 39 elements

geneInfo Information about genes for normalization

Description
A data set containing the following data:

Usage

data(geneInfo)

Format
A data frame with 20531 rows and 3 variables

Details
• geneInfo matrix with 20531 rows (genes) and 3 columns "geneLength" "gcContent" "chr"
GEO_TCGAtab

Value
a 20531x3 matrix

Information on GEO data (and overlap with TCGA)#' A data set containing the following data:

Description
• GEO_TCGAtab a 18x12 matrix that provides the GEO data set we matched to one of the 18 given TCGA cancer types

Usage
data(GEO_TCGAtab)

Format
A 101x3 matrix

Value
a 101x3 matrix

dataGEO

Description
This function retrieves and prepares GEO data

Usage
gDataGEO(GEOobject = "GSE39004", platform = "GPL6244", TCGAtumor = NULL)

Arguments
 GEOobject GEOobject
 platform platform
 TCGAtumor tumor name

Value
return GEO gset
Examples

```r
## Not run:
dataGEO <- getDataGEO(GEOobject = "GSE20347", platform = "GPL571")
## End(Not run)
```

Description

This function retrieves and prepares TCGA data.

Usage

```r
dataGetTCGA(
cancerType, dataType, directory, cor.cut = 0.6, qnt.cut = 0.25, nSample, stage = "ALL", subtype = 0, samples = NULL
)
```

Arguments

- `cancerType`: select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer.
- `dataType`: is dataType such as gene expression, cnv, methylation etc.
- `directory`: Directory/Folder where the data was downloaded. Default: GDCdata.
- `cor.cut`: cor.cut
- `qnt.cut`: qnt.cut
- `nSample`: nSample
- `stage`: stage
- `subtype`: subtype
- `samples`: samples

Value

returns filtered TCGA data
Examples

```r
## Not run:
dataFilt <- getDataTCGA(cancerType = "LUAD",
dataType = "Gene expression", directory = "data", nSample = 4)

## End(Not run)
```

Generate network

Description

This function carries out the gene regulatory network inference using parmigene

Usage

```r
GRN(
  TFs,
  DEGsmatrix,
  DiffGenes = FALSE,
  normCounts,
  kNearest = 3,
  nGenesPerm = 10,
  nBoot = 10
)
```

Arguments

- **TFs** a vector of genes.
- **DEGsmatrix** DEGsmatrix output from DEA such as dataDEGs
- **DiffGenes** if TRUE consider only diff.expr genes in GRN
- **normCounts** is a matrix of gene expression with genes in rows and samples in columns.
- **kNearest** the number of nearest neighbors to consider to estimate the mutual information. Must be less than the number of columns of normCounts.
- **nGenesPerm**
- **nBoot**

Value

an adjacent matrix

Examples

```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
  DEGsmatrix = dataDEGs,
  DiffGenes = TRUE,
  normCounts = dataFilt)
```
GSEA

Description
This function carries out the GSEA enrichment analysis.

Usage
GSEA(DEGsmatrix, top, plot = FALSE)

Arguments
- DEGsmatrix: DEGsmatrix output from DEA such as dataDEGs
- top: is the number of top BP to plot
- plot: if TRUE return a GSEA's plot

Value
return GSEA result

Examples
dataDEGs <- DEGsmatrix
dataFEA <- GSEA(DEGsmatrix = dataDEGs)

knownDriverGenes

Description
Information on known cancer driver gene from COSMIC

Usage
data(knownDriverGenes)

Format
A 101x3 matrix

Details
- TSG known tumor suppressor genes
- OCG known oncogenes
listMoonlight

Value

A 101x3 matrix

Description

A list containing the following data:

Usage

`data(listMoonlight)`

Format

A Large list with 5 elements

Details

- listMoonlight output from moonlight’s pipeline containing dataDEGs, dataURA, listCandidates

Value

output from moonlight pipeline

LPA

LPA

Description

This function carries out the literature phenotype analysis (LPA)

Usage

`LPA(dataDEGs, BP, BPlist)`

Arguments

- `dataDEGs` is output from DEA
- `BP` is biological process
- `BPlist` is list of genes annotated in BP
Value

table with number of pubmed that affects, increase or decrease genes annotated in BP

Examples

data(DEGsmatrix)
BPselected <- c("apoptosis")
BPAnnotations <- DiseaseList[[match(BPselected, names(DiseaseList))]]$ID

Description

moonlight is a tool for identification of cancer driver genes. This function wraps the different steps of the complete analysis workflow. Providing different solutions:

1. MoonlighR::FEA
2. MoonlighR::URA
3. MoonlighR::PIA

Usage

moonlight(
 cancerType = "panCancer",
 dataType = "Gene expression",
 directory = "GDCdata",
 BPname = NULL,
 cor.cut = 0.6,
 qnt.cut = 0.25,
 Genelist = NULL,
 fdr.cut = 0.01,
 logFC.cut = 1,
 corThreshold = 0.6,
 kNearest = 3,
 nGenesPerm = 10,
 DiffGenes = FALSE,
 nBoot = 100,
 nTF = NULL,
 nSample = NULL,
 thres.role = 0,
 stage = NULL,
 subtype = 0,
 samples = NULL
)
MoonlightR

Arguments

cancerType: select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer.
dataType: dataType
directory: directory
BPname: biological processes to use, if NULL: all processes will be used in analysis, RF for candidate; if not NULL the candidates for these processes will be determined (no learning).
cor.cut: cor.cut Threshold
qnt.cut: qnt.cut Threshold
Genelist: Genelist
fdr.cut: fdr.cut Threshold
logFC.cut: logFC.cut Threshold
corThreshold: corThreshold
kNearest: kNearest
nGenesPerm: nGenesPerm
DiffGenes: DiffGenes
nBoot: nBoot
nTF: nTF
nSample: nSample
thres.role: thres.role
stage: stage
subtype: subtype
samples: samples

Value

table with cancer driver genes TSG and OCG.

Examples

dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
to change with moonlight

MoonlightR

Description

MoonlightR is a package designed for the identification of cancer driver genes. Please see the documentation on our Bioconductor page for more details: https://www.bioconductor.org/packages/release/bioc/html/MoonlightR.html
If you experience issues with the package, please open an Issue on our GitHub repository: https://github.com/ELELAB/MoonlightR
If you use this package in your research, please cite this paper: https://doi.org/10.1038/s41467-019-13803-0
plotCircos

Description

This function visualize the plotCircos

Usage

plotCircos(
 listMoonlight,
 listMutation = NULL,
 additionalFilename = NULL,
 intensityColOCG = 0.5,
 intensityColTSG = 0.5,
 intensityColDual = 0.5,
 fontSize = 1
)

Arguments

listMoonlight output Moonlight function
listMutation listMutation
additionalFilename additionalFilename
intensityColOCG intensityColOCG
intensityColTSG intensityColTSG
intensityColDual intensityColDual
fontSize fontSize

Value

no return value, plot is saved

Examples

plotCircos(listMoonlight = listMoonlight, additionalFilename = "_ncancer5")
plotFEA

Description
This function visualize the functional enrichment analysis (FEA)’s barplot

Usage
plotFEA(
 dataFEA,
 topBF = 10,
 additionalFilename = NULL,
 height,
 width,
 offsetValue = 5,
 angle = 90,
 xleg = 35,
 yleg = 5,
 titleMain,
 minY = -5,
 maxY = 10,
 mycols = c("#8DD3C7", "#FFFFB3", "#BEBADA")
)

Arguments
- dataFEA: dataFEA
- topBF: topBF
- additionalFilename: additionalFilename
- height: Figure height
- width: Figure width
- offsetValue: offsetValue
- angle: angle
- xleg: xleg
- yleg: yleg
- titleMain: title of the plot
- minY: minY
- maxY: maxY
- mycols: colors to use for the plot
plotNetworkHive

Value

no return value, FEA result is plotted

Examples

```r
dataFEA <- FEA(DEGsmatrix = DEGsmatrix)
plotFEA(dataFEA = dataFEA, additionalFilename = "_example", height = 20, width = 10)
```

plotNetworkHive plotNetworkHive: Hive network plot

Description

This function visualizes the GRN as a hive plot

Usage

```r
plotNetworkHive(dataGRN, namesGenes, thres, additionalFilename = NULL)
```

Arguments

- `dataGRN`: output GRN function
- `namesGenes`: list TSG and OCG to define axes
- `thres`: threshold of edges to be included
- `additionalFilename`: additionalFilename

Value

no results Hive plot is executed

Examples

```r
data(knownDriverGenes)
data(dataGRN)
plotNetworkHive(dataGRN = dataGRN, namesGenes = knownDriverGenes, thres = 0.55)
```
plotURA

plotURA: Upstream regulatory analysis heatmap plot

Description

This function visualizes the URA in a heatmap

Usage

```
plotURA(dataURA, additionalFilename = "URAplot")
```

Arguments

- `dataURA`: output URA function
- `additionalFilename`: figure name

Value

heatmap

Examples

```
data(dataURA)
dataDual <- PRA(dataURA = dataURA,
BPname = c("apoptosis","proliferation of cells"),
ths.role = 0)
TSGs_genes <- names(dataDual$TSG)
OCGs_genes <- names(dataDual$OCG)
plotURA(dataURA = dataURA[c(TSGsgenes, OCGsgenes),],additionalFilename = ".example")
```

PRA

Pattern Recognition Analysis (PRA)

Description

This function carries out the pattern recognition analysis

Usage

```
PRA(dataURA, BPname, thres.role = 0)
```

Arguments

- `dataURA`: output URA function
- `BPname`: BPname
- `thres.role`: thres.role
Value
returns list of TSGs and OCGs when biological processes are provided, otherwise a randomForest based classifier that can be used on new data

Examples

```r
data(dataURA)
dataDual <- PRA(dataURA = dataURA, BPname = c("apoptosis","proliferation of cells"), thres.role = 0)
```

<table>
<thead>
<tr>
<th>tabGrowBlock</th>
<th>Information growing/blocking characteristics for 101 selected biological processes</th>
</tr>
</thead>
</table>

Description
A data set containing the following data:

Usage

```r
data(tabGrowBlock)
```

Format
A 101x3 matrix

Details
- tabGrowBlock matrix that defines if a process is growing or blocking cancer development, for each 101 biological processing

Value
a 101x3 matrix
URA Upstream Regulator Analysis

Description

This function carries out the upstream regulator analysis.

Usage

URA(dataGRN, DEGsmatrix, BPname, nCores = 1)

Arguments

- **dataGRN**: output GNR function
- **DEGsmatrix**: output DPA function
- **BPname**: biological processes
- **nCores**: number of cores to use

Value

an adjacent matrix

Examples

```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
DEGsmatrix = dataDEGs,
DiffGenes = TRUE,
normCounts = dataFilt)
dataURA <- URA(dataGRN = dataGRN,
DEGsmatrix = dataDEGs,
BPname = c("apoptosis",
"proliferation of cells"))```
Index

* datasets
  - dataFilt, 3
  - dataGRN, 4
  - dataURA, 4
  - DEGsmatrix, 5
  - DiseaseList, 5
  - EAGenes, 7
  - GDCprojects, 8
  - geneInfo, 8
  - GEO_TCGA_table, 9
  - knownDriverGenes, 12
  - listMoonlight, 13
  - tabGrowBlock, 20

plotCircos, 16
plotFEA, 17
plotNetworkHive, 18
plotURA, 19
PRA, 19

tabGrowBlock, 20
URA, 21