Package ‘MsQuality’

May 27, 2024

Type Package
Title MsQuality - Quality metric calculation from Spectra and MsExperiment objects
Version 1.4.0
Date 2024-02-21
VignetteBuilder knitr

Description The MsQuality provides functionality to calculate quality metrics for mass spectrometry-derived, spectral data at the per-sample level. MsQuality relies on the mzQC framework of quality metrics defined by the Human Proteom Organization-Proteomics Standards Initiative (HUPO-PSI). These metrics quantify the quality of spectral raw files using a controlled vocabulary. The package is especially addressed towards users that acquire mass spectrometry data on a large scale (e.g. data sets from clinical settings consisting of several thousands of samples).

The MsQuality package allows to calculate low-level quality metrics that require minimum information on mass spectrometry data: retention time, m/z values, and associated intensities. MsQuality relies on the Spectra package, or alternatively the MsExperiment package, and its infrastructure to store spectral data.

Depends R (>= 4.2.0)
Imports BiocParallel (>= 1.32.0), ggplot2 (>= 3.3.5), htmlwidgets (>= 1.5.3), methods (>= 4.2.0), msdata (>= 0.32.0), MsExperiment (>= 0.99.0), plotly (>= 4.9.4.1), ProtGenerics (>= 1.24.0), rlang (>= 1.1.1), rmzqc (>= 0.5.0), shiny (>= 1.6.0), shinydashboard (>= 0.7.1), Spectra (>= 1.13.2), stats (>= 4.2.0), stringr (>= 1.4.0), tibble (>= 3.1.4), tidyR (>= 1.1.3), utils (>= 4.2.0)
Suggests BiocGenerics (>= 0.24.0), BiocStyle (>= 2.6.1), dplyr (>= 1.0.5), knitr (>= 1.11), mzR (>= 2.32.0), rmarkdown (>= 2.7), S4Vectors (>= 0.29.17), testthat (>= 2.2.1)

biocViews Metabolomics, Proteomics, MassSpectrometry, QualityControl

URL https://www.github.com/tnaake/MsQuality/
BugReport https://www.github.com/tnaake/MsQuality/issues/
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/MsQuality
git_branch RELEASE_3_19
git_last_commit 3bf7832
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-26
Author Thomas Naake [aut, cre] (<https://orcid.org/0000-0001-7917-5580>),
Johannes Rainer [aut] (<https://orcid.org/0000-0002-6977-7147>)
Maintainer Thomas Naake <thomasnaake@googlemail.com>

Contents

MsQuality-package ... 3
.rtOrderSpectra ... 4
areaUnderTic ... 5
areaUnderTicRtQuantiles 6
calculateMetrics ... 8
calculateMetricsFromMsExperiment 9
calculateMetricsFromOneSampleSpectra 11
calculateMetricsFromSpectra 12
chromatographyDuration 14
extentIdentifiedPrecursorIntensity 15
Lee_2019 .. 17
Lee_2019_meta_vals .. 18
meanCharge ... 19
medianCharge ... 21
medianPrecursorMz 23
medianTicOfRtRange 25
medianTicRtIqr .. 27
msSignal10xChange 29
mzAcquisitionRange 31
numberEmptyScans 32
numberSpectra .. 34
plotMetric ... 36
plotMetricTibble .. 37
precursorIntensityMean 39
precursorIntensityQuartiles 41
precursorIntensityRange 43
precursorIntensitySd 45
qualityMetrics .. 47
ratioCharge1over2 .. 48
MsQuality-package

Description

MsQuality enables to calculate quality metrics of mass spectrometry data. It is build upon Spectra and MsExperiment objects.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Thomas Naake [aut, cre] (<https://orcid.org/0000-0001-7917-5580>), Johannes Rainer [aut] (<https://orcid.org/0000-0002-6977-7147>) Maintainer: Thomas Naake <thomasnaake@googlemail.com>

Examples

Not run: calculateMetrics(object = spectra)
Not run: calculateMetrics(object = mse)
.rtOrderSpectra

Order Spectra according to increasing retention time

Description

The function .rtOrderSpectra orders the features in a Spectra object according to the (increasing) retention time values.

Usage

.rtOrderSpectra(spectra)

Arguments

spectra Spectra object

Details

Internal function in quality metric functions.

Value

Spectra object with the features ordered according to the (increasing) retention time

Author(s)

Johannes Rainer

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0001847", "HMDB0000001", "HMDB0000001"),
 name = c("Caffeine", "1-Methylhistidine", "1-Methylhistidine")
)
Assign m/z and intensity values
spd$mz <- list(
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876),
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16))
spd$intensity <- list(
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994),
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643))
spd$rtime <- c(15.84, 9.44, 9.44)
areaUnderTic

\texttt{sps <- Spectra(spd)}
\texttt{MsQuality:::rtOrderSpectra(sps)}

Description

MS:4000155
"The area under the total ion chromatogram." [PSI:MS]

The metric is calculated as follows:
(1) the \texttt{Spectra} object is filtered according to the MS level,
(2) the sum of the ion counts are obtained and returned.

Usage

\texttt{areaUnderTic(spectra, msLevel = 1L, ...)}

Arguments

- \texttt{spectra} Spectra object
- \texttt{msLevel} integer
- \texttt{...} not used here

Details

MS:4000155
\texttt{is_a: MS:4000003} ! single value
\texttt{is_a: MS:4000009} ! ID free
\texttt{is_a: MS:4000017} ! chromatogram metric

The sum of the TIC is returned as an equivalent to the area.

Value

\texttt{numeric(1)}

Author(s)

Thomas Naake
Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))
## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
sps <- Spectra(spd)
areaUnderTic(spectra = sps, msLevel = 2L)
```

Description

MS:4000156

"The area under the total ion chromatogram of the retention time quantiles. Number of quantiles are given by the n-tuple." [PSI:MS]

The metric is calculated as follows:
1. the Spectra object is filtered according to the MS level,
2. the Spectra object is ordered according to the retention time,
3. the 0%, 25%, 50%, 75%, and 100% quantiles of the retention time values are obtained,
4. the ion count of the intervals between the 0%/25%, 25%/50%, 50%/75%, and 75%/100% are obtained,
5. the ion counts of the intervals are summed (TIC) and the values returned.

Usage

```r
areaUnderTicRtQuantiles(spectra, msLevel = 1L, ...)
```

Arguments

- `spectra` Spectra object
- `msLevel` integer
- `...` not used here
areaUnderTicRtQuantiles

Details

MS:4000156
is_a: MS:4000004 ! n-tuple
is_a: MS:4000009 ! ID free
is_a: MS:4000017 ! chromatogram metric

The sum of the TIC is returned as an equivalent to the area.

Value

numeric(4)

Note

This function interprets the *quantiles* from the [PSI:MS] definition as *quartiles*, i.e. the 0, 25, 50, 75 and 100% quantiles are used.

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB000001", "HMDB001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

Assign m/z and intensity values
spd$msz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712,
 111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))

spd$rtime <- c(9.44, 9.44, 15.84)

sps <- Spectra(spd)
areaUnderTicRtQuantiles(spectra = sps, msLevel = 2L)
Calculate QC metrics from a Spectra or MsExperiment object

Description

Calculate QC metrics from a Spectra or MsExperiment object. calculateMetrics is a wrapper for the functions calculateMetricsFromSpectra and calculateMetricsFromMsExperiment.

Usage

```r
calculateMetrics(
  object,  # Spectra or MsExperiment object
  metrics = qualityMetrics(object),  # character specifying the quality metrics to be calculated on object
  filterEmptySpectra = FALSE,  # logical(1) specifying if empty entries and entries with intensity zero of the Spectra object will be removed
  ...  # arguments passed to the quality metrics functions defined in metrics
)
```

Arguments

- `object`: Spectra or MsExperiment object
- `metrics`: character specifying the quality metrics to be calculated on object
- `filterEmptySpectra`: logical(1) specifying if empty entries and entries with intensity zero of the Spectra object will be removed
- `...`: arguments passed to the quality metrics functions defined in `metrics`

Details

The metrics are defined by the argument `metrics`. Further arguments passed to the quality metric functions can be specified by the `params` argument. `params` can contain named entries which are matched against the formal arguments of the quality metric functions.

Setting the argument `filterEmptySpectra` to `TRUE` will remove zero-length entries, zero-intensity entries, and entries with intensities that are `Inf` from the Spectra object.

Value

`data.frame` containing in the columns the metrics for the different spectra and in rows the samples

Author(s)

Thomas Naake
Examples

```r
library(msdata)
library(Spectra)
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)
spectra <- Spectra(fls, backend = MsBackendMzR())

## define the quality metrics to be calculated
metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

## calculate the metrics
## additional parameters passed to the quality metrics functions
## (MsLevel is an argument of areaUnderTic and msSignal10xChange,
## relativeTo is an argument of msSignal10xChange) passed to ...
calculateMetrics(object = spectra, metrics = metrics,
                 msLevel = 1, change = "jump", relativeTo = "Q1")
calculateMetrics(object = spectra, metrics = metrics,
                 msLevel = 1, change = "fall", relativeTo = "previous")
```

Description

The function `calculateMetricsFromMsExperiment` calculates quality metrics from a `MsExperiment` object. Each spectra in the `msexp` object should refer to one mzML file/to one sample.

Usage

```r
calculateMetricsFromMsExperiment(
  msexp,
  metrics = qualityMetrics(msexp),
  filterEmptySpectra = FALSE,
  ...,
  BPPARAM = bpparam()
)
```

Arguments

- `msexp` MsExperiment object
- `metrics` character specifying the quality metrics to be calculated on `msexp`
- `filterEmptySpectra` logical(1) specifying if empty entries and entries with intensity zero of the Spectra object will be removed
- `BPPARAM` Parallel processing setup. Defaults to `BPPARAM = bpparam()`. See [bpparam()] for details on parallel processing with BiocParallel.
Details

The metrics are defined by the argument `metrics`. Further arguments passed to the quality metric functions can be specified by the `params` argument. `params` can contain named entries which are matched against the formal arguments of the quality metric functions.

Setting the argument `filterEmptySpectra` to `TRUE` will remove zero-length entries, zero-intensity entries, and entries with intensities that are `Inf` from the `Spectra` object.

Value

data.frame containing in the columns the metrics for the different spectra (in rows)

Author(s)

Thomas Naake

Examples

```r
library(msdata)
library(MsExperiment)
library(S4Vectors)

msexp <- MsExperiment()
sd <- data.frame(sample_id = c("QC1", "QC2"),
                 sample_name = c("QC Pool", "QC Pool"),
                 injection_idx = c(1, 3))
sampleData(msexp) <- sd

# define file names containing spectra data for the samples and
# add them, along with other arbitrary files to the experiment
fls <- dir(system.file("scs", package = "msdata"), full.names = TRUE)
experimentFiles(msexp) <- MsExperimentFiles(
  mzML_files = fls,
  annotations = "internal_standards.txt")

# link samples to data files: first sample to first file in "mzML_files",
# second sample to second file in "mzML_files"
msexp <- linkSampleData(msexp, with = "experimentFiles.mzML_files",
                        sampleIndex = c(1, 2), withIndex = c(1, 2))
msexp <- linkSampleData(msexp, with = "experimentFiles.annotations",
                        sampleIndex = c(1, 2), withIndex = c(1, 1))

library(Spectra)
# import the data and add it to the mse object
spectra(msexp) <- Spectra(fls, backend = MsBackendMsR())

# define the quality metrics to be calculated
metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

# additional parameters passed to the quality metrics functions
# (msLevel is an argument of areaUnderTic and msSignal10xChange,
# relativeTo is an argument of msSignal10xChange) passed to ...
calculateMetricsFromMsExperiment(msexp = msexp, metrics = metrics,
                                 msLevel = 1, change = "jump", relativeTo = "Q1")
```
calculateMetricsFromOneSampleSpectra

Description

The function `calculateMetricsFromOneSampleSpectra` calculates quality metrics from a `Spectra` object containing spectral data from one sample.

Usage

```r
calculateMetricsFromOneSampleSpectra(
  spectra,
  metrics = qualityMetrics(spectra),
  filterEmptySpectra = FALSE,
  f = spectra$dataOrigin,
  ...
)
```

Arguments

- `spectra` `Spectra` object
- `metrics` character specifying the quality metrics to be calculated on `spectra`
- `filterEmptySpectra` logical(1) specifying if empty entries and entries with intensity zero or Inf of the `Spectra` object will be removed
- `f` character, grouping parameter for `spectra`
- `...` arguments passed to the quality metrics functions defined in `metrics`

Details

The metrics are defined by the argument `metrics`. Further arguments passed to the quality metric functions can be specified by the `params` argument. `params` can contain named entries which are matched against the formal arguments of the quality metric functions.

The `Spectra` object will only contain spectral data from one data origin (e.g. `spectra$dataOrigin` is of length 1). The grouping is specified by the argument `f`.

Setting the argument `filterEmptySpectra` to TRUE will remove zero-length entries, zero-intensity entries, and entries with intensities that are Inf from the `Spectra` object.

Value

named numeric vector
Author(s)

Thomas Naake

Examples

```r
library(msdata)
library(Spectra)
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)[1]
spectra <- Spectra(fls, backend = MsBackendMzR())

## define the quality metrics to be calculated
metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

## calculate the metrics
## additional parameters passed to the quality metrics functions
## (MsLevel is an argument of areaUnderTic and msSignal10xChange,
## relativeTo is an argument of msSignal10xChange) passed to ...
MsQuality:::calculateMetricsFromOneSampleSpectra(spectra = spectra,
metrics = metrics, msLevel = 1, change = "jump", relativeTo = "Q1")
MsQuality:::calculateMetricsFromOneSampleSpectra(spectra = spectra,
metrics = metrics, msLevel = 1, change = "fall", relativeTo = "previous")
```

calculateMetricsFromSpectra

Calculate QC metrics from a Spectra object

Description

The function `calculateMetricsFromSpectra` calculates quality metrics from a Spectra object. The function will calculate the metrics per sample according to the grouping parameter `f`, e.g. `dataOrigin` information.

Two format options are available:
- `format = "data.frame"` returns the metrics as a `data.frame`.
- `format = "mzQC"` returns the metrics as a list of MzQcmzQC objects.

Usage

```r
calculateMetricsFromSpectra(
  spectra,
  metrics,
  filterEmptySpectra = FALSE,
  f = dataOrigin(spectra),
  format = c("data.frame", "mzQC"),
  ...,  
  BPPARAM = bpparam()
)
```
Arguments
spectra Spectra object
metrics character specifying the quality metrics to be calculated on spectra
filterEmptySpectra logical(1) specifying if empty entries and entries with intensity zero of the Spectra object will be removed
f character defining which spectra in spectra belong to one sample. Defaults to \(f = \text{dataOrigin}(\text{spectra}) \). Spectra from the same original data file are processed together (and in parallel for different files).
format character(1) specifying if metrics are returned as a data.frame (format = "data.frame") or as a list of MzQCmzQC objects (format = "mzQC")
... arguments passed to the quality metrics functions defined in metrics
BPPARAM Parallel processing setup. Defaults to BPPARAM = bpparam(). See [bpparam()] for details on parallel processing with BiocParallel.

Details
The metrics are defined by the argument metrics. Further arguments passed to the quality metric functions can be specified by The additional arguments ... are matched against the formal arguments of the quality metric functions.

Samples will be processed in parallel using the default parallel processing setup ([bpparam()]) or with the parallel processing setup defined with parameter BPPARAM.

Setting the argument filterEmptySpectra to TRUE will remove zero-length entries, zero-intensity entries, and entries with intensities that are Inf from the Spectra object.

Value
In case of format = "data.frame", a data.frame containing in the columns the metrics for the different spectra of identical dataOrigin(spectra) (in rows). In case of format = "mzQC", a list of MzQCmzQC objects containing the metrics for the different spectra of identical dataOrigin(spectra)

Author(s)
Thomas Naake, Johannes Rainer

Examples
library(msdata)
library(Spectra)

define file names containing spectra data for the samples
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)

import the data and add it to the spectra object
spectra <- Spectra(fls, backend = MsBackendMzR())

define the quality metrics to be calculated
chromatographyDuration

chromatography duration (MS:4000053)

Description

MS:4000053 "The retention time duration of the chromatography in seconds." [PSI:MS]

The metric is calculated as follows:
(1) the retention time associated to the Spectra object is obtained,
(2) the maximum and the minimum of the retention time is obtained,
(3) the difference between the maximum and the minimum is calculated and returned.

Usage

chromatographyDuration(spectra, ...)

Arguments

spectra Spectra object
... not used here

Details

MS:4000053 synonym: "RT-Duration" RELATED [PMID:24494671]
is_a: MS:4000003 ! single value
relationship: has_metric_category MS:4000009 ! ID free metric

metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

calculate the metrics
additional parameters passed to the quality metrics functions
(msLevel is an argument of areaUnderTic and msSignal10xChange,
relativeTo is an argument of msSignal10xChange) passed to ...

format = "data.frame"
calculateMetricsFromSpectra(spectra = spectra, metrics = metrics,
 format = "data.frame", msLevel = 1, change = "jump", relativeTo = "Q1")
calculateMetricsFromSpectra(spectra = spectra, metrics = metrics,
 format = "data.frame", msLevel = 1, change = "fall",
 relativeTo = "previous")

format = "mzQC"
#calculateMetricsFromSpectra(spectra = spectra, metrics = metrics,
format = "mzQC", msLevel = 1, change = "jump", relativeTo = "Q1")
#calculateMetricsFromSpectra(spectra = spectra, metrics = metrics,
format = "mzQC", msLevel = 1, change = "fall", relativeTo = "previous")
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000016 ! retention time metric
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_value_concept NCIT:C25330 ! Duration
relationship: has_units UO:0000010 ! second

Retention time values that are NA are removed.

Value

numeric(1)

Author(s)

Thomas Naake

Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$rtime <- c(9.44, 9.44, 15.84)

sps <- Spectra(spd)
chromatographyDuration(spectra = sps)
```

extentIdentifiedPrecursorIntensity

extent of identified MS2 precursor intensity (MS:4000157)
Description

MS:4000157
"Ratio of 95th over 5th percentile of MS2 precursor intensity for all quantification data points after user-defined acceptance criteria are applied. Can be used to approximate the dynamic range of signal. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
1. the Spectra object is filtered according to the MS level,
2. the intensities of the precursor ions are obtained,
3. the 5% and 95% quantile of these intensities are obtained (NA values are removed),
4. the ratio between the 95% and the 5% intensity quantile is calculated and returned.

Usage

extentIdentifiedPrecursorIntensity(
 spectra,
 msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)

Arguments

 spectra Spectra object
 msLevel integer
 identificationLevel
 character(1), one of "all", "identified", or "unidentified"
 ...
 not used here

Details

MS:4000157
 is_a: MS:4000001 ! QC metric
 is_a: MS:4000003 ! single value
 is_a: MS:4000008 ! ID based
 relationship: has_metric_category MS:400022 ! MS2 metric
 synonym: "MS1-3A" RELATED [PMID:19837981]

Precursor intensity values that are NA are removed.

An attribute containing the PSI:MS term will only be returned if identificationLevel is "identified".

Value

numeric(1)
Note

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:4000157*, the Spectra object should be prepared accordingly, i.e. being subsetted to spectra with identification data.

Author(s)

Thomas Naake

Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$precursorIntensity <- c(100, 100, 100)
sp <- Spectra(spd)
extentIdentifiedPrecursorIntensity(spectra = sps, msLevel = 2)
```

Description

The data set of Lee et al. (2019) contains metabolite information measured by reverse phase liquid chromatography (RPLC) coupled to mass spectrometry and hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry (file ‘STables - rev1.xlsx’ in the Supplementary Information).

It will be used as an example data set in the vignette to show the functionality of the packages. The file contains Spectra and MsExperiment objects that store the mass spectrometry data.

Format

Spectra and MsExperiment
Value

Spectra and MsExperiment objects

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

See the file Lee2019-data-source.R in scripts for the source code how sps_hilic and sps_rplc were created.

References

Example data for MsQuality: data set of Lee et al. (2019)

Description

The data set of Lee et al. (2019) contains metabolite information measured by reverse phase liquid chromatography (RPLC) coupled to mass spectrometry and hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry (file ‘STables - rev1.xlsx’ in the Supplementary Information). The xlsx sheets ‘Methods’ and ‘Raw data’ were stored as txt files.

Lee_2019_meta_vals contains two data frame objects: one containing information on metabolite meta-data and one containing intensity values on metabolites. The object will be used as an example data set in the vignette to show the functionality of the packages.

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
meanCharge

Source

```r
path_to_meta <- "Lee_et_al_2019_Stables_rev1_Methods.txt" meta <- read.delim(path_to_meta, dec = ",", header = TRUE)
## print number of metabolites per measurement (meta data)
table(meta$Method)
path_to_vals <- "Lee_et_al_2019_Stables_rev1_Raw_data.txt" vals <- read.delim(path_to_vals, dec = ",", header = TRUE)
## print number of metabolites per measurement (intensity data)
table(grepl(vals$Metabolite, pattern = "_rp$"))
table(grepl(vals$Metabolite, pattern = "_hn$"))
## save the two objects as an RData object
save(meta, vals, file = "Lee_2019_meta_vals.RData", compress = "xz")
```

References

| meanCharge | mean MS2 precursor charge in all spectra (MS:4000173) or mean MS2 precursor charge in identified spectra (MS:4000174) |

Description

MS:4000173
"Mean MS2 precursor charge in all spectra" [PSI:MS]

MS:4000174
"Mean MS2 precursor charge in identified spectra. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
1. the Spectra object is filtered according to the MS level,
2. the precursor charge is obtained,
3. the mean of the precursor charge values is calculated and returned.

Usage

```r
meanCharge(
  spectra,
  msLevel = 1L,
  identificationLevel = c("all", "identified", "unidentified"),
  ...
)
```
Arguments

- spectra: Spectra object
- msLevel: integer
- identificationLevel: character(1), one of "all", "identified", or "unidentified"

Details

MS:4000173
 is_a: MS:4000001 ! QC metric
 is_a: MS:4000003 ! single value
 is_a: MS:4000009 ! ID free metric
 relationship: has_metric_category MS:4000012 ! single run based metric
 relationship: has_metric_category MS:4000020 ! ion source metric
 relationship: has_metric_category MS:4000022 ! MS2 metric
 synonym: "MS2 known precursor charges fractions" RELATED []
 synonym: "MS2-PrecZ-1" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-2" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-3" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-4" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-5" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-more" RELATED [PMID:24494671]

MS:4000174
 is_a: MS:4000001 ! QC metric
 is_a: MS:4000003 ! single value
 is_a: MS:4000008 ! ID based metric
 relationship: has_metric_category MS:4000012 ! single run based metric
 relationship: has_metric_category MS:4000020 ! ion source metric
 relationship: has_metric_category MS:4000022 ! MS2 metric
 synonym: "MS2 known precursor charges fractions" RELATED []
 synonym: "MS2-PrecZ-1" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-2" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-3" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-4" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-5" RELATED [PMID:24494671]
 synonym: "MS2-PrecZ-more" RELATED [PMID:24494671]

An attribute containing the PSI:MS term will only be returned if identificationLevel is either "all" or "identified".

Value

numeric(1)

Note

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:400174*, the Spectra object should be prepared accordingly.
Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine")
)

Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))

spd$precursorCharge <- c(1L, 1L, 1L)

sps <- Spectra(spd)

meanCharge(spectra = sps, msLevel = 2L)

medianCharge

median MS2 precursor charge in all spectra (MS:4000175) or median MS2 precursor charge in identified spectra (MS:4000176)

Description

MS:4000175
"Median MS2 precursor charge in all spectra" [PSI:MS]

MS:4000176
"Median MS2 precursor charge in identified spectra. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
1. the Spectra object is filtered according to the MS level,
2. the precursor charge is obtained,
3. the median of the precursor charge values is calculated and returned.
Usage

medianCharge(
 spectra,
 msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)

Arguments

 spectra Spectra object
 msLevel integer
 identificationLevel
 character(1), one of "all", "identified", or "unidentified"
 not used here

Details

MS:4000175
is_a: MS:4000001 ! QC metric
is_a: MS:4000003 ! single value
is_a: MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000020 ! ion source metric
relationship: has_metric_category MS:4000022 ! MS2 metric
synonym: "MS2 known precursor charges fractions" RELATED []
synonym: "MS2-PrecZ-1" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-2" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-3" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-4" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-5" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-more" RELATED [PMID:24494671]

MS:4000176
is_a: MS:4000001 ! QC metric
is_a: MS:4000003 ! single value
is_a: MS:4000008 ! ID based
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000020 ! ion source metric
relationship: has_metric_category MS:4000022 ! MS2 metric
synonym: "MS2 known precursor charges fractions" RELATED []
synonym: "MS2-PrecZ-1" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-2" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-3" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-4" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-5" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-more" RELATED [PMID:24494671]
medianPrecursorMz

An attribute containing the PSI:MS term will only be returned if identificationLevel is either "all" or "identified".

Value

numeric(1)

Note

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:4000176*, the Spectra object should be prepared accordingly.

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine")
)
Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
sps <- Spectra(spd)
spd$precursorCharge <- c(1L, 1L, 1L)
medianCharge(spectra = sps, msLevel = 2L)

| medianPrecursorMz | MS2 precursor median m/z of identified quantification data points (MS:4000152) |
Description

MS:4000152
"Median m/z value for MS2 precursors of all quantification data points after user-defined acceptance criteria are applied. These data points may be for example XIC profiles, isotopic pattern areas, or reporter ions (see MS:1001805). The used type should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
1. the Spectra object is filtered according to the MS level,
2. the precursor m/z values are obtained,
3. the median value is returned (NAs are removed).

Usage

medianPrecursorMz(
 spectra,
 msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)

Arguments

spectra Spectra object
msLevel integer
identificationLevel character(1), one of "all", "identified", or "unidentified"
... not used here

Details

MS:4000152
is_a: MS:4000003 ! single value
is_a: MS:4000008 ! ID based
is_a: MS:4000020 ! ion source metric
relationship: has_metric_category MS:4000022 ! MS2 metric
relationship: has_units MS:1000040 ! m/z

An attribute containing the PSI:MS term will only be returned if identificationLevel is "identified" and msLevel is 1.

Value

numeric(1)
medianTicOfRtRange

Note

medianPrecursorMz will calculate the *precursor* median m/z of all Spectra within spectra. If the calculation needs be done according to *MS:4000152*, the Spectra object should be prepared accordingly, i.e. filtered with e.g. [filterPrecursorMz()] or subsetted to spectra with identification data.

Author(s)

Thomas Naake

Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB00001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$precursorMz <- c(170.16, 170.16, 195.0876)

sps <- Spectra(spd)
medianPrecursorMz(spectra = sps, msLevel = 2L)
```

medianTicOfRtRange median of TIC values in the shortest RT range in which half of the quantification data points are identified (MS:4000159)

Description

MS:4000159

"Median of TIC values in the shortest RT range in which half of the quantification data points are identified. These data points may be for example XIC profiles, isotopic pattern areas, or reporter ions (see MS:1001805). The used type should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]
The metric is calculated as follows:
1. the `Spectra` object is filtered according to the MS level,
2. the `Spectra` object is ordered according to the retention time,
3. the number of features in the `Spectra` object is obtained and the number for half of the features is calculated,
4. iterate through the features (always by taking the neighbouring half of features) and calculate the retention time range of the set of features,
5. retrieve the set of features with the minimum retention time range,
6. calculate from the set of (5) the median TIC (NA values are removed) and return it.

Usage

```r
medianTicOfRtRange(
  spectra,
  msLevel = 1L,
  identificationLevel = c("all", "identified", "unidentified"),
  ...
)
```

Arguments

- `spectra`: `Spectra` object
- `msLevel`: integer
- `identificationLevel`: character(1), one of "all", "identified", or "unidentified"
- `...`: not used here

Details

MS:4000159
- is_a: MS:4000001 ! QC metric
- is_a: MS:4000003 ! single value
- is_a: MS:4000008 ! ID based
- synonym: "MS1-2B" RELATED [PMID:19837981]

The function `medianTicOfRtRange` uses the function `ionCount` as an equivalent to the TIC.

An attribute containing the PSI:MS term will only be returned if `identificationLevel` is "identified".

Value

numeric(1)

Note

The `Spectra` object might contain features that were not identified. If the calculation needs to be done according to *MS:4000159*, the `Spectra` object should be prepared accordingly, i.e. being subsetted to spectra with identification data.
medianTicRtIqr

Author(s)

Thomas Naake

Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

# Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))

spd$rtime <- c(9.44, 9.44, 15.84)

sps <- Spectra(spd)
medianTicOfRtRange(spectra = sps, msLevel = 2L)
```

medianTicRtIqr

median of TIC values in the RT range in which the middle half of quantification data points are identified (MS:4000158)

Description

MS:4000158

"Median of TIC values in the RT range in which half of quantification data points are identified (RT values of Q1 to Q3 of identifications). These data points may be for example XIC profiles, isotopic pattern areas, or reporter ions (see MS:1001805). The used type should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:

1. the Spectra object is filtered according to the MS level,
2. the Spectra object is ordered according to the retention time,
3. the features between the 1st and 3rd quartile are obtained (half of the features that are present in the Spectra object),
4. the ion count of the features within the 1st and 3rd quartile is obtained,
5. the median value of the ion count is calculated (NA values are removed) and the median value is
Usage

```r
medianTicRtIqr(
  spectra,
  msLevel = 1L,
  identificationLevel = c("all", "identified", "unidentified"),
  ...
)
```

Arguments

- `spectra` Spectra object
- `msLevel` integer
- `identificationLevel` character(1), one of "all", "identified", or "unidentified"
- `...` not used here

Details

The function `medianTicRtIqr` uses the function `ionCount()` as an equivalent to the TIC. An attribute containing the PSI:MS term will only be returned if `identificationLevel` is "identified".

Value

`numeric(1)`

Note

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:4000158*, the Spectra object should be prepared accordingly, i.e. being subsetted to spectra with identification data.

Author(s)

Thomas Naake
Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$rtime <- c(9.44, 9.44, 15.84)
sps <- Spectra(spd)
medianTicRtIqr(spectra = sps, msLevel = 2L)
```

Description

MS:4000097

"The number of times where MS1 TIC increased more than 10-fold between adjacent MS1 scans. An unusual high count of signal jumps or falls can indicate ESI stability issues." [PSI:MS]

MS:4000098

"The number of times where MS1 TIC decreased more than 10-fold between adjacent MS1 scans. An unusual high count of signal jumps or falls can indicate ESI stability issues." [PSI:MS]

The metric is calculated as follows:
1. The Spectra object is filtered according to the MS level,
2. The intensity of the precursor ions within the Spectra object are obtained,
3. The intensity values of the features are obtained via the ion count,
4. The signal jumps/declines of the intensity values with the two subsequent intensity values is calculated,
5. In the case of *MS:4000097*, the signal jumps by a factor of ten or more are counted and returned;
 in the case of *MS:4000098*, the signal declines by a factor of ten or more are counted and returned.
Usage

```r
msSignal10xChange(spectra, change = "jump", msLevel = 1L, ...)
```

Arguments

- `spectra` Spectra object
- `change` character(1), one of "jump" or "fall"
- `msLevel` integer
- `...` not used here

Details

MS:4000097
is_a: MS:4000003 ! single value
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000021 ! MS1 metric
relationship: has_units UO:0000189 ! count unit
relationship: has_value_type xsd:integer ! The allowed value-type for this CV term
synonym: "IS-1A" RELATED []

MS:4000098
is_a: MS:4000003 ! single value
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000021 ! MS1 metric
relationship: has_units UO:0000189 ! count unit
relationship: has_value_type xsd:integer ! The allowed value-type for this CV term
synonym: "IS-1B" RELATED []

The function `msSignal10xChange` uses the function `ionCount` as an equivalent to the TIC. An attribute containing the PSI:MS term will only be returned if `msLevel` is 1.

Value

`numeric(1)`

Author(s)

Thomas Naake

Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
)
mzAcquisitionRange

```r
name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine")

Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712,
 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$rtime <- c(9.44, 9.44, 15.84)
sps <- Spectra(spd)
msSignal10xChange(spectra = sps, change = "jump", msLevel = 2L)
msSignal10xChange(spectra = sps, change = "fall", msLevel = 2L)
```

---

**Description**

MS:4000069

"Upper and lower limit of m/z precursor values at which MSn spectra are recorded." [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the precursor m/z values of the peaks within the Spectra object are obtained,
(3) the minimum and maximum precursor m/z values are obtained and returned.

**Usage**

```r
mzAcquisitionRange(spectra, msLevel = 2L, ...)
```

**Arguments**

- `spectra` - Spectra object
- `msLevel` - integer
- `...` - not used here

**Details**

MS:4000069

is_a: MS:4000004 ! n-tuple
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000019 ! MS metric
relationship: has_units MS:1000040 ! m/z
relationship: has_value_concept STATO:0000035 ! range
**Value**

`numeric(2)`

**Author(s)**

Thomas Naake

**Examples**

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB000001", "HMDB000001", "HMDB001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"),
 precursorMz = c(170.16, 170.16, 195.08))

Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
sps <- Spectra(spd)
mzAcquisitionRange(spectra = sps, msLevel = 2L)
```

| numberEmptyScans | number of empty MS1 scans (MS:4000099), number of empty MS2 scans (MS:4000100), or number of empty MS3 scans (MS:4000101) |

**Description**

**MS:4000099**

"Number of MS1 scans where the scans’ peaks intensity sums to 0 (i.e. no peaks or only 0-intensity peaks)." [PSI:MS]

**MS:4000100**

"Number of MS2 scans where the scans’ peaks intensity sums to 0 (i.e. no peaks or only 0-intensity peaks)." [PSI:MS]

**MS:4000101**

"Number of MS3 scans where the scans’ peaks intensity sums to 0 (i.e. no peaks or only 0-intensity peaks)." [PSI:MS]
peaks)." [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the intensities per entry are obtained,
(3) the number of intensity entries that are NULL, NA, or that have a sum of 0 are obtained and returned.

Usage

```
numberEmptyScans(spectra, msLevel = 1L, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spectra</td>
<td>Spectra object</td>
</tr>
<tr>
<td>msLevel</td>
<td>integer</td>
</tr>
<tr>
<td>...</td>
<td>not used here</td>
</tr>
</tbody>
</table>

Details

**MS:4000099**
- is_a: MS:4000003 ! single value
- relationship: has_metric_category MS:4000009 ! ID free metric
- relationship: has_metric_category MS:4000012 ! single run based metric
- relationship: has_metric_category MS:4000021 ! MS1 metric
- relationship: has_units UO:0000189 ! count unit
- relationship: has_value_type xsd:integer ! The allowed value-type for this CV term

**MS:4000100**
- is_a: MS:4000003 ! single value
- relationship: has_metric_category MS:4000009 ! ID free metric
- relationship: has_metric_category MS:4000012 ! single run based metric
- relationship: has_metric_category MS:4000022 ! MS2 metric
- relationship: has_units UO:0000189 ! count unit
- relationship: has_value_type xsd:integer ! The allowed value-type for this CV term

**MS:4000101**
- is_a: MS:4000003 ! single value
- relationship: has_metric_category MS:4000009 ! ID free metric
- relationship: has_metric_category MS:4000012 ! single run based metric
- relationship: has_units UO:0000189 ! count unit
- relationship: has_value_type xsd:integer ! The allowed value-type for this CV term

#' For *MS:4000099*, msLevel is set to 1. For *MS:4000100*, msLevel1 is set to 2. For *MS:4000101*, msLevel1 is set to 3.

An attribute containing the PSI:MS term will only be returned if msLevel1 is either 1, 2, or 3.
numberSpectra

Value

numeric(1)

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values

spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))

sps <- Spectra(spd)

numberEmptyScans(spectra = sps, msLevel = 1L)
numberEmptyScans(spectra = sps, msLevel = 2L)

---

numberSpectra

number of MS1 spectra (MS:4000059) or number of MS2 spectra (MS:4000060)

Description

MS:4000059
"The number of MS1 events in the run." [PSI:MS]

MS:4000060
"The number of MS2 events in the run." [PSI:MS]

For *MS:4000059*, msLevel is set to 1. For *MS:4000060*, msLevel is set to 2.

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the number of the spectra are obtained (length of Spectra) and returned.
numberSpectra

Usage

numberSpectra(spectra, msLevel = 1L, ...)

Arguments

spectra Spectra object
msLevel integer
... not used here

Details

MS:4000059
synonym: "MS1-Count" EXACT [PMID:24494671]
is_a: MS:4000003 ! single value
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000021 ! MS1 metric
relationship: has_value_type xsd:int ! The allowed value-type for this CV term
relationship: has_units UO:0000189 ! count unit

MS:4000060
synonym: "MS2-Count" EXACT [PMID:24494671]
is_a: MS:4000003 ! single value
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000022 ! MS2 metric
relationship: has_value_type xsd:int ! The allowed value-type for this CV term
relationship: has_units UO:0000189 ! count unit

An attribute containing the PSI:MS term will only be returned if msLevel is either 1 or 2.

Value

numeric(1)

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
    msLevel = c(2L, 2L, 2L),
polarity = c(1L, 1L, 1L),
id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
)
## Assign m/z and intensity values

```r
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
```

## Visualize a quality metric

The function `plotMetric` visualizes the metric values per sample. The function accepts the output of `calculateMetrics` or `calculateMetricsFromSpectra`, or `calculateMetricsFromMsExperiment` and a vector specifying the metric to display.

**Usage**

```r
plotMetric(qc, metric = "areaUnderTic", plotly = TRUE)
```

**Arguments**

- `qc` : matrix/data.frame
- `metric` : character
- `plotly` : logical(1)

**Details**

`plotMetric` will select all columns that start with `metric`. The different levels in the name column in the returned tibble correspond to the columns that were selected and do not contain the metric prefix. In case there is no additional specification (e.g. for the metric `chromatographyDuration` only the column `chromatographyDuration` will be selected), the name column will include the metric (`chromatographyDuration`).

**Value**

- gg plotly

**Author(s)**

Thomas Naake, <thomasnaake@googlemail.com>
### Examples

```r
library(msdata)
library(MsExperiment)
library(S4Vectors)
msexp <- MsExperiment()
sd <- DataFrame(sample_id = c("QC1", "QC2"),
 sample_name = c("QC Pool", "QC Pool"), injection_idx = c(1, 3))
sampleData(msexp) <- sd

define file names containing spectra data for the samples and
add them, along with other arbitrary files to the experiment
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)

library(Spectra)
import the data and add it to the msexp object
spectra(msexp) <- Spectra(fls, backend = MsBackendMzR())

define the quality metrics to be calculated
metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

calculate the metrics
additional parameters passed to the quality metrics functions
(msLevel is an argument of areaUnderTic and msSignal10xChange,
relativeTo is an argument of msSignal10xChange)
qc <- calculateMetricsFromMsExperiment(msexp = msexp, metrics = metrics,
 msLevel = 1, relativeTo = "Q1", change = "jump")
rownames(qc) <- c("Sample 1", "Sample 2")

do the actual plotting
plotMetric(qc, metric = "areaUnderTic", plotly = TRUE)
```

---

### plotMetricTibble

#### Helper function for plotMetric

The function `plotMetricTibble` is a helper function for the function `plotMetric`. It returns a tibble in long format that is interpretable by ggplot2.

#### Usage

```r
plotMetricTibble(qc, metric)
```

#### Arguments

- **qc**  
  data.frame

- **metric**  
  character
plotMetricTibble will select all columns that start with metric. The different levels in the name column in the returned tibble correspond to the columns that were selected and do not contain the metric prefix. In case there is no additional specification (e.g. for the metric chromatographyDuration only the column chromatographyDuration will be selected), the name column will include the metric (chromatographyDuration).

Value
tibble

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
library(msdata)
library(MsExperiment)
library(S4Vectors)
msexp <- MsExperiment()

sd <- DataFrame(sample_id = c("QC1", "QC2"),
 sample_name = c("QC Pool", "QC Pool"), injection_idx = c(1, 3))
sampleData(msexp) <- sd

define file names containing spectra data for the samples and
add them, along with other arbitrary files to the experiment
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)
experimentFiles(msexp) <- MsExperimentFiles(
 mzML_files = fls,
 annotations = "internal_standards.txt")

link samples to data files: first sample to first file in "mzML_files",
second sample to second file in "mzML_files"
msexp <- linkSampleData(msexp, with = "experimentFiles.mzML_files",
 sampleIndex = c(1, 2), withIndex = c(1, 2))
msexp <- linkSampleData(msexp, with = "experimentFiles.annotations",
 sampleIndex = c(1, 2), withIndex = c(1, 1))

library(Spectra)

import the data and add it to the msexp object
spectra(msexp) <- Spectra(fls, backend = MsBackendMzR())

define the quality metrics to be calculated
metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

calculate the metrics
additional parameters passed to the quality metrics functions
(msLevel is an argument of areaUnderTic and msSignal10xChange,
relativeTo is an argument of msSignal10xChange)
qc <- calculateMetricsFromMsExperiment(msexp = msexp, metrics = metrics,
 msLevel = 1, relativeTo = "Q1", change = "jump")
```
precursorIntensityMean

precursorIntensityMean

precursorIntensityMean

Description

MS:4000117
"From the distribution of MS2 precursor intensities, the mean. The intensity distribution of the precursors informs about the dynamic range of the acquisition." [PSI:MS]

MS:4000163
"From the distribution of identified MS2 precursor intensities, the mean. The intensity distribution of the identified precursors informs about the dynamic range of the acquisition in relation to identifiability." [PSI:MS]

MS:4000164
"From the distribution of unidentified MS2 precursor intensities, the mean. The intensity distribution of the unidentified precursors informs about the dynamic range of the acquisition in relation to identifiability." [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the intensity of the precursor ions within the Spectra object are obtained,
(3) the mean of the precursor intensity values is obtained (NA values are removed) and returned.

Usage

precursorIntensityMean(
  spectra,
  msLevel = 1L,
  identificationLevel = c("all", "identified", "unidentified"),
  ...
)

Arguments

spectra Spectra object
msLevel integer
identificationLevel character(1), one of "all", "identified", or "unidentified"
... not used here
Details

MS:4000117
is_a: MS:4000003 ! single value
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000022 ! MS2 metric
relationship: has_value_concept STATO:0000401 ! sample mean
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_units MS:1000043 ! intensity unit

MS:4000163
is_a: MS:4000003 ! single value
is_a: MS:4000008 ! ID based
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000022 ! MS2 metric
relationship: has_value_concept STATO:0000401 ! sample mean
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_units MS:1000043 ! intensity unit

MS:4000164
is_a: MS:4000003 ! single value
is_a: MS:4000008 ! ID based
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000022 ! MS2 metric
relationship: has_value_concept STATO:0000401 ! sample mean
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_units MS:1000043 ! intensity unit

Value

numeric(1)

Note

The Spectra object might contain features that were (not) identified. If the calculation needs to be done according to *MS:4000163*/MS:4000164*, the Spectra object should be prepared accordingly.

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
)
## Assign m/z and intensity values
spd$mz <- list(c(109.2, 124.2, 124.5, 170.16, 170.52),
              c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
              c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712,
               111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(c(3.407, 47.494, 3.094, 100.0, 13.240),
                      c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
                      c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))

spd$precursorIntensity <- c(100.0, 100.0, 100.0)
sps <- Spectra(spd)
precursorIntensityMean(spectra = sps, msLevel = 2L)

### Description

MS:4000116
"From the distribution of MS2 precursor intensities, the quantiles. E.g. a value triplet represents the quartiles Q1, Q2, Q3. The intensity distribution of the precursors informs about the dynamic range of the acquisition." [PSI:MS]

MS:40000161
From the distribution of identified MS2 precursor intensities, the quantiles. E.g. a value triplet represents the quartiles Q1, Q2, Q3. The intensity distribution of the precursors informs about the dynamic range of the acquisition in relation to identifiability. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

id: MS:4000162
"From the distribution of unidentified MS2 precursor intensities, the quantiles. E.g. a value triplet represents the quartiles Q1, Q2, Q3. The intensity distribution of the precursors informs about the dynamic range of the acquisition in relation to identifiability. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the intensity of the precursor ions within the Spectra object are obtained,
(3) the 25\%, 50\%, and 75\% quantile of the precursor intensity values are obtained (NA values are removed) and returned.

Usage

PrecursorIntensityQuartiles(
  spectra,
  mssLevel = 1L,
  identificationLevel = c("all", "identified", "unidentified"),
  ...
)

Arguments

spectra Spectra object
mssLevel integer
identificationLevel character(1), one of "all", "identified", or "unidentified"
...
... not used here

Details

id: MS:4000116
is_a: MS:4000004 n-tuple
relationship: has_metric_category MS:4000009 ID free metric
relationship: has_metric_category MS:4000022 MS2 metric
relationship: has_value_concept STATO:0000291 quantile
relationship: has_value_type xsd:float The allowed value-type for this CV term
relationship: has_units MS:1000043 intensity unit

MS:4000161
is_a: MS:4000004 n-tuple
is_a: MS:4000008 ID based
relationship: has_metric_category MS:4000009 ID free metric
relationship: has_metric_category MS:4000022 MS2 metric
relationship: has_value_concept STATO:0000291 quantile
relationship: has_value_type xsd:float The allowed value-type for this CV term
relationship: has_units MS:1000043 intensity unit

id: MS:4000162
is_a: MS:4000004 n-tuple
is_a: MS:4000008 ID based
relationship: has_metric_category MS:4000009 ID free metric
relationship: has_metric_category MS:4000022 MS2 metric
relationship: has_value_concept STATO:0000291 quantile
relationship: has_value_type xsd:float The allowed value-type for this CV term
relationship: has_units MS:1000043 intensity unit
precursorIntensityRange

**Value**

numeric(3)

**Note**

The Spectra object might contain features that were (not) identified. If the calculation needs to be done according to *MS:4000161*/*MS:4000162*, the Spectra object should be prepared accordingly.

**Author(s)**

Thomas Naake

**Examples**

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))
Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$precursorIntensity <- c(100.0, 100.0, 100.0)
sps <- Spectra(spd)
precursorIntensityQuartiles(spectra = sps, msLevel = 2L)
```

---

**Description**

MS:4000160

"Minimum and maximum MS2 precursor intensity recorded. The intensity range of the precursors informs about the dynamic range of the acquisition." [PSI:MS]
The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the intensity of the precursor ions within the Spectra object are obtained,
(3) the minimum and maximum precursor intensity values are obtained and returned.

Usage

precursorIntensityRange(spectra, msLevel = 1, ...)

Arguments

spectra Spectra object
msLevel integer
... not used here

Details

MS:4000160
is_a: MS:4000001 ! QC metric
is_a: MS:4000004 ! n-tuple
is_a: MS:4000009 ! ID free
relationship: has_metric_category MS:4000022 ! MS2 metric

Value

numeric(2)

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
    msLevel = c(2L, 2L, 2L),
    polarity = c(1L, 1L, 1L),
    id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
    name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
    c(109.2, 124.2, 124.5, 170.16, 170.52),
    c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
    c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712,
     111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
    c(3.407, 47.494, 3.094, 100.0, 13.240),
    c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
    c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
precursorIntensitySd

```r
spd$precursorIntensity <- c(100.0, 100.0, 100.0)
sps <- Spectra(spd)
precursorIntensityRange(spectra = sps, msLevel = 2L)
```

**Description**

**MS:4000118**
"From the distribution of MS2 precursor intensities, the sigma value. The intensity distribution of the precursors informs about the dynamic range of the acquisition." [PSI:MS]

**MS:4000165**
"From the distribution of identified MS2 precursor intensities, the sigma value. The intensity distribution of the precursors informs about the dynamic range of the acquisition in relation to identifiability. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

**MS:4000166**
"From the distribution of unidentified MS2 precursor intensities, the sigma value. The intensity distribution of the precursors informs about the dynamic range of the acquisition in relation to identifiability. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the intensity of the precursor ions within the Spectra object are obtained,
(3) the standard deviation of precursor intensity values is obtained (NA values are removed) and returned.

**Usage**

```r
precursorIntensitySd(
 spectra,
 msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)
```
Arguments

- **spectra**: Spectra object
- **msLevel**: integer
- **identificationLevel**: character(1), one of "all", "identified", or "unidentified"
  ...

Details

MS:4000118
  is_a: MS:4000003 ! single value
  relationship: has_metric_category MS:4000009 ! ID free metric
  relationship: has_metric_category MS:4000022 ! MS2 metric
  relationship: has_value_concept STATO:0000237 ! standard deviation
  relationship: has_value_type xsd:float ! The allowed value-type for this CV term
  relationship: has_units MS:1000043 ! intensity unit

MS:4000165
  is_a: MS:4000003 ! single value
  relationship: has_metric_category MS:4000008 ! ID based
  relationship: has_metric_category MS:4000022 ! MS2 metric
  relationship: has_value_concept STATO:0000237 ! standard deviation
  relationship: has_value_type xsd:float ! The allowed value-type for this CV term
  relationship: has_units MS:1000043 ! intensity unit

MS:4000166
  is_a: MS:4000003 ! single value
  relationship: has_metric_category MS:4000008 ! ID based
  relationship: has_metric_category MS:4000022 ! MS2 metric
  relationship: has_value_concept STATO:0000237 ! standard deviation
  relationship: has_value_type xsd:float ! The allowed value-type for this CV term
  relationship: has_units MS:1000043 ! intensity unit

Value

numeric(1)

Note

The Spectra object might contain features that were (not) identified. If the calculation needs to be done according to *MS:4000165*/MS:4000166, the Spectra object should be prepared accordingly.

Author(s)

Thomas Naake
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))
## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$precursorIntensity <- c(100.0, 100.0, 100.0)

sps <- Spectra(spd)
precursorIntensitySd(spectra = sps, msLevel = 2L)

qualityMetrics

Get a vector of quality metrics than can be applied to object

Description

The function qualityMetrics returns a character vector with available quality metrics depending on object.

Usage

qualityMetrics(object)

Arguments

object object of type Spectra or MsExperiment

Details

object is a Spectra or MsExperiment.

Value

character

Author(s)

Thomas Naake
Examples

library(Spectra)
spd <- DataFrame(
    msLevel = c(2L, 2L, 2L),
    polarity = c(1L, 1L, 1L),
    id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
    name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
    c(109.2, 124.2, 124.5, 170.16, 170.52),
    c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
    c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712,
     111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
    c(3.407, 47.494, 3.094, 100.0, 13.240),
    c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
    c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$dataOrigin <- rep("sample_1", 3)
sps <- Spectra(spd)

qualityMetrics(object = sps)

---

ratioCharge1over2

**ratio of 1+ over 2+ of all MS2 known precursor charges**

(MS:4000167) or **ratio of 1+ over 2+ of identified MS2 known precursor charges**

(MS:4000168)

---

Description

**MS:4000167**

"The ratio of 1+ over 2+ MS2 precursor charge count of all spectra. High ratios of 1+/2+ MS2 precursor charge count may indicate inefficient ionization." [PSI:MS]

**MS:4000168**

"The ratio of 1+ over 2+ MS2 precursor charge count of identified spectra. High ratios of 1+/2+ MS2 precursor charge count may indicate inefficient ionization. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:

1. the `Spectra` object is filtered according to the MS level,
2. the precursor charge is obtained,
3. the number of precursors with charge 1+ is divided by the number of precursors with charge 2+ and the ratio is returned.
Usage

```r
total_vlAI(
spectra,
msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)
```

Arguments

- **spectra**: Spectra object
- **msLevel**: integer
- **identificationLevel**: character(1), one of "all", "identified", or "unidentified"
- **...**: not used here

Details

- **MS:4000167**
  - `is_a`: MS:4000001 ! QC metric
  - `is_a`: MS:4000003 ! single value
  - `is_a`: MS:4000009 ! ID free metric
  - `relationship`: has_metric_category MS:400012 ! single run based metric
  - `relationship`: has_metric_category MS:400020 ! ion source metric
  - `relationship`: has_metric_category MS:400022 ! MS2 metric
  - `synonym`: "IS-3A" RELATED [PMID:19837981]
  - `synonym`: "MS2 known precursor charges fractions" RELATED []
  - `synonym`: "MS2-PrecZ-1" RELATED [PMID:24494671]
  - `synonym`: "MS2-PrecZ-2" RELATED [PMID:24494671]

- **MS:4000168**
  - `is_a`: MS:4000001 ! QC metric
  - `is_a`: MS:4000003 ! single value
  - `is_a`: MS:4000008 ! ID based
  - `relationship`: has_metric_category MS:400012 ! single run based metric
  - `relationship`: has_metric_category MS:400020 ! ion source metric
  - `relationship`: has_metric_category MS:400022 ! MS2 metric
  - `synonym`: "IS-3A" RELATED [PMID:19837981]
  - `synonym`: "MS2 known precursor charges fractions" RELATED []
  - `synonym`: "MS2-PrecZ-1" RELATED [PMID:24494671]
  - `synonym`: "MS2-PrecZ-2" RELATED [PMID:24494671]

NA is returned if there are no features with precursor charge of 1+ or 2+.

An attribute containing the PSI:MS term will only be returned if `identificationLevel` is either "all" or "identified".

Value

numeric(1)

Note

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:4000168*, the Spectra object should be prepared accordingly.

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$precursorCharge <- c(1L, 1L, 1L)
sps <- Spectra(spd)
ratioCharge1over2(spectra = sps, msLevel = 2L)

description

MS:4000169
"The ratio of 3+ over 2+ MS2 precursor charge count of all spectra. Higher ratios of 3+/2+ MS2 precursor charge count may preferentially favor longer e.g. peptides." [PSI:MS]

MS:4000170
"The ratio of 3+ over 2+ MS2 precursor charge count of identified spectra. Higher ratios of 3+/2+ MS2 precursor charge count may preferentially favor longer e.g. peptides." [PSI:MS]
MS2 precursor charge count may preferentially favor longer e.g. peptides. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability. [PSI:MS]

The metric is calculated as follows:
1. the Spectra object is filtered according to the MS level,
2. the precursor charge is obtained,
3. the number of precursors with charge 3+ is divided by the number of precursors with charge 2+ and the ratio is returned.

Usage

```r
ratioCharge3over2(
 spectra,
 msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)
```

Arguments

- **spectra**: Spectra object
- **msLevel**: integer
- **identificationLevel**: character(1), one of "all", "identified", or "unidentified"
- **...**: not used here

Details

MS:4000169
- is_a: MS:4000001 ! QC metric
- is_a: MS:4000003 ! single value
- is_a: MS:4000009 ! ID free metric
- relationship: has_metric_category MS:4000012 ! single run based metric
- relationship: has_metric_category MS:4000020 ! ion source metric
- relationship: has_metric_category MS:4000022 ! MS2 metric
- synonym: "IS-3B" RELATED [PMID:19837981]
- synonym: "MS2 known precursor charges fractions" RELATED []
- synonym: "MS2-PrecZ-2" RELATED [PMID:24494671]
- synonym: "MS2-PrecZ-3" RELATED [PMID:24494671]

MS:4000170
- is_a: MS:4000001 ! QC metric
- is_a: MS:4000003 ! single value
- is_a: MS:4000008 ! ID based
- relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000020 ! ion source metric
relationship: has_metric_category MS:4000022 ! MS2 metric
synonym: "IS-3B" RELATED [PMID:19837981]
synonym: "MS2 known precursor charges fractions" RELATED []
synonym: "MS2-PrecZ-2" RELATED [PMID:24494671]
synonym: "MS2-PrecZ-3" RELATED [PMID:24494671]

NA is returned if there are no features with precursor charge of 2+ or 3+.
An attribute containing the PSI:MS term will only be returned if identificationLevel is either "all" or "identified".

Value

numeric(1)

Note

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:400170*, the Spectra object should be prepared accordingly.

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))
## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$precursorCharge <- c(1L, 1L, 1L)
sps <- Spectra(spd)
ratioCharge3over2(spectra = sps, msLevel = 2L)
ratioCharge4over2

ratioCharge4over2  ratio of 4+ over 2+ of all MS2 known precursor charges (MS:4000171) or ratio of 4+ over 2+ of identified MS2 known precursor charges (MS:4000172)

Description

MS:4000171
"The ratio of 4+ over 2+ MS2 precursor charge count of all spectra. Higher ratios of 4+/2+ MS2 precursor charge count may preferentially favor longer e.g. peptides." [PSI:MS]

MS:4000172
"The ratio of 4+ over 2+ MS2 precursor charge count of identified spectra. Higher ratios of 4+/2+ MS2 precursor charge count may preferentially favor longer e.g. peptides. The used type of identification should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the precursor charge is obtained,
(3) the number of precursors with charge 4+ is divided by the number of precursors with charge 2+ and the ratio is returned.

Usage

ratioCharge4over2(
  spectra,
  msLevel = 1L,
  identificationLevel = c("all", "identified", "unidentified"),
  ...
)

Arguments

spectra Spectra object
msLevel integer
identificationLevel character(1), one of "all", "identified", or "unidentified"

Details

MS:4000171
is_a: MS:4000001 ! QC metric
is_a: MS:4000003 ! single value
**An attribute containing the PSI:MS term will only be returned if identificationLevel is either "all" or "identified".**

**Value**

numeric(1)

**Note**

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:4000172*, the Spectra object should be prepared accordingly.

NA is returned if there are no features with precursor charge of 2+ or 3+.

**Author(s)**

Thomas Naake

**Examples**

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))
```
## Assign m/z and intensity values

```r
spd$mass <- list(
c(109.2, 124.2, 124.5, 170.16, 170.52),
c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712,
111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
c(3.407, 47.494, 3.094, 100.0, 13.240),
c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))

spd$precursorCharge <- c(1L, 1L, 1L)

sps <- Spectra(spd)

ratioCharge4over2(spectra = sps, msLevel = 2L)
```

### Description

**rtAcquisitionRange**  
*retention time acquisition range (MS:4000070)*

"Upper and lower limit of retention time at which spectra are recorded." [PSI:MS]

The metric is calculated as follows:
1. the `Spectra` object is filtered according to the MS level,
2. the retention time values of the features within the `Spectra` object are obtained,
3. the minimum and maximum retention time values are obtained and returned.

### Usage

```r
rtAcquisitionRange(spectra, msLevel = 1L, ...)
```

### Arguments

- **spectra**  
  `Spectra` object

- **msLevel**  
  integer

- **...**  
  not used here

### Details

- **MS:4000070**
- **is_a**: MS:4000004 ! n-tuple
- **relationship**: has_metric_category MS:4000009 ! ID free metric
- **relationship**: has_metric_category MS:4000012 ! single run based metric
- **relationship**: has_metric_category MS:4000016 ! retention time metric
- **relationship**: has_units UO:0000010 ! second
- **relationship**: has_value_concept STATO:0000035 ! range
Value
numeric(2)

Author(s)
Thomas Naake

Examples
library(S4Vectors)
library(Spectra)

 spd <- DataFrame(
   msLevel = c(2L, 2L, 2L),
   polarity = c(1L, 1L, 1L),
   id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
   name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
 spd$mz <- list(
   c(109.2, 124.2, 124.5, 170.16, 170.52),
   c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
   c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 
   111.0551, 123.0429, 138.0662, 195.0876))
 spd$intensity <- list(
   c(3.407, 47.494, 3.094, 100.0, 13.240),
   c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
   c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
 spd$rtime <- c(9.44, 9.44, 15.84)
 sps <- Spectra(spd)
 rtAcquisitionRange(spectra = sps, msLevel = 2L)

rtIqr  
interquartile RT period for identified quantification data points
(MS:4000153)

Description
MS:4000153
"The interquartile retention time period, in seconds, for all quantification data points after user-defined acceptance criteria are applied over the complete run. Longer times indicate better chromatographic separation. These data points may be for example XIC profiles, isotopic pattern areas, or reporter ions (see MS:1001805). The used type should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is filtered according to the MS level,
(2) the retention time values are obtained,
(3) the interquartile range is obtained from the values and returned (NA values are removed).

Usage

```r
rtIqr(
 spectra,
 msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)
```

Arguments

- `spectra` Spectra object
- `msLevel` integer
- `identificationLevel` character(1), one of "all", "identified", or "unidentified"
- ... not used here

Details

MS:4000153
is_a: MS:4000003 ! single value
is_a: MS:4000008 ! ID based
is_a: MS:4000017 ! chromatogram metric
relationship: has_units UO:0000010 ! second
synonym: "C-2A" RELATED [PMID:19837981]

Retention time values that are NA are removed.
An attribute containing the PSI:MS term will only be returned if `identificationLevel` is "identified".

Value

numeric(1)

Note

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:4000153*, the Spectra object should be prepared accordingly, i.e. subsetted to spectra with identification data.

The stored retention time information in spectra might have a different unit than seconds. `rtIqr` will return the IQR based on the values stored in `spectra` and will not convert these values to seconds.

Author(s)

Thomas Naake
**Examples**

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$rtime <- c(9.44, 9.44, 15.84)

sps <- Spectra(spd)
rtIqr(spectra = sps, msLevel = 2L)
```

---

**rtIqrRate**

rate of the interquartile RT period for identified quantification data points (MS:4000154)

---

**Description**

MS:4000154

"The rate of identified quantification data points for the interquartile retention time period, in identified quantification data points per second. Higher rates indicate efficient sampling and identification. These data points may be for example XIC profiles, isotopic pattern areas, or reporter ions (see MS:1001805). The used type should be noted in the metadata or analysis methods section of the recording file for the respective run. In case of multiple acceptance criteria (FDR) available in proteomics, PSM-level FDR should be used for better comparability." [PSI:MS]

The metric is calculated as follows:
1. The Spectra object is filtered according to the MS level,
2. The retention time values are obtained,
3. The 25% and 75% quantiles are obtained from the retention time values (NA values are removed),
4. The number of eluted features between this 25% and 75% quantile is calculated,
5. The number of features is divided by the interquartile range of the retention time and returned.
**rtIqrRate**

**Usage**

```r
rtIqrRate(
 spectra,
 msLevel = 1L,
 identificationLevel = c("all", "identified", "unidentified"),
 ...
)
```

**Arguments**

- `spectra` Spectra object
- `msLevel` integer
- `identificationLevel` character(1), one of "all", "identified", or "unidentified"
- `...` not used here

**Details**

- MS:4000154
  - is_a: MS:4000003 ! single value
  - is_a: MS:4000008 ! ID based
  - is_a: MS:4000017 ! chromatogram metric
  - relationship: has_units UO:0000106 ! hertz synonym: "C-2B" RELATED [PMID:19837981]

  An attribute containing the PSI:MS term will only be returned if `identificationLevel` is "identified".

**Value**

- numeric(2)

**Note**

The Spectra object might contain features that were not identified. If the calculation needs to be done according to *MS:4000154*, the Spectra object should be prepared accordingly, i.e. being subsetted to `spectra` with identification data.

The stored retention time information in `spectra` might have a different unit than seconds. `.rtIqr` will return the IQR based on the values stored in `spectra` and will not convert these values to seconds.

**Author(s)**

- Thomas Naake
Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L),
 polarity = c(1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))
Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))
spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))
spd$rtime <- c(9.44, 9.44, 15.84)
sps <- Spectra(spd)
rtIqrRate(spectra = sps, msLevel = 2L)
```

---

**Description**

MS:4000055

"The interval used for acquisition of the first, second, third, and fourth quarter of all MS1 events divided by retention time duration." [PSI:MS]

MS:4000056

"The interval used for acquisition of the first, second, third, and fourth quarter of all MS2 events divided by retention time duration." [PSI:MS]

The metric is calculated as follows:
1. the retention time duration of the whole Spectra object is determined (taking into account all the MS levels),
2. the Spectra object is filtered according to the MS level and subsequently ordered according to the retention time
3. the MS events are split into four (approximately) equal parts,
4. the relative retention time is calculated (using the retention time duration from (1) and taking into account the minimum retention time),
5. the relative retention time values associated to the MS event parts are returned.
Usage

```r
rtOverMsQuarters(spectra, msLevel = 1L,
```

Arguments

- **spectra** Spectra object
- **msLevel** integer
- ... not used here

Details

```r
MS:4000055
synonym: "RT-MS-Q1" RELATED [PMID:24494671]
synonym: "RT-MS-Q2" RELATED [PMID:24494671]
synonym: "RT-MS-Q3" RELATED [PMID:24494671]
synonym: "RT-MS-Q4" RELATED [PMID:24494671]
is_a: MS:4000004 ! n-tuple
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000016 ! retention time metric
relationship: has_metric_category MS:4000021 ! MS1 metric
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_units UO:0000191 ! fraction
```

```r
MS:4000056
synonym: "RT-MSMS-Q1" RELATED [PMID:24494671]
synonym: "RT-MSMS-Q2" RELATED [PMID:24494671]
synonym: "RT-MSMS-Q3" RELATED [PMID:24494671]
synonym: "RT-MSMS-Q4" RELATED [PMID:24494671]
is_a: MS:4000004 ! n-tuple
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000016 ! retention time metric
relationship: has_metric_category MS:4000022 ! MS2 metric
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_units UO:0000191 ! fraction
```

The function returns `c(NaN, NaN, NaN, NaN)` if the filtered spectra object has less than 4 scan events.

An attribute containing the PSI:MS term will only be returned if `msLevel` is 1 or 2.

Value

numeric(4)

Note

`chromatographyDuration` considers the total runtime (including MS1 and MS2 scans).
Author(s)

Thomas Naake, Johannes Rainer

Examples

```r
library(S4Vectors)
library(Spectra)

spd <- DataFrame(
 msLevel = c(2L, 2L, 2L, 2L),
 polarity = c(1L, 1L, 1L, 1L),
 id = c("HMDB0000001", "HMDB0000001", "HMDB0001847", "unknown"),
 name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine", "unknown"))

Assign m/z and intensity values
spd$mz <- list(
 c(109.2, 124.2, 124.5, 170.16, 170.52),
 c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
 c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876),
 c(83.0603, 195.0876))
spd$intensity <- list(
 c(3.407, 47.494, 3.094, 100.0, 13.240),
 c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
 c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994),
 c(3.146, 61.611))
spd$rtime <- c(9.44, 9.44, 15.84, 15.81)
sps <- Spectra(spd)
rtOverMsQuarters(spectra = sps, msLevel = 2L)
```

---

**shinyMsQuality**

*Shiny application to visualize quality metrics*

### Description

The function `shinyMsQuality` function starts a shiny application to visualize the quality metrics interactively. It allows to display all metrics contained in `qc`.

The function accepts the output of `calculateMetrics`, `calculateMetricsFromSpectra`, or `calculateMetricsFromMsExperiment`.

### Usage

```r
shinyMsQuality(qc)
```

### Arguments

- `qc` *matrix*, contains the calculated quality metrics, the columns contain the metrics and the rows the samples
Details

The plots within the shiny application can be saved by clicking on the download button.

Value

shiny

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

library(msdata)
library(MsExperiment)
library(S4Vectors)
msexp <- MsExperiment()
sd <- DataFrame(sample_id = c("QC1", "QC2"),
    sample_name = c("QC Pool", "QC Pool"), injection_idx = c(1, 3))
sampleData(msexp) <- sd

## define file names containing spectra data for the samples and
## add them, along with other arbitrary files to the experiment
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)
experimentFiles(msexp) <- MsExperimentFiles(
    mzML_files = fls,
    annotations = "internal_standards.txt")
## link samples to data files: first sample to first file in "mzML_files",
## second sample to second file in "mzML_files"
msexp <- linkSampleData(msexp, with = "experimentFiles.mzML_files",
    sampleIndex = c(1, 2), withIndex = c(1, 2))
msexp <- linkSampleData(msexp, with = "experimentFiles.annotations",
    sampleIndex = c(1, 2), withIndex = c(1, 1))

library(Spectra)
## import the data and add it to the mse object
spectra(msexp) <- Spectra(fls, backend = MsBackendMzR())

## define the quality metrics to be calculated
metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

## calculate the metrics
## additional parameters passed to the quality metrics functions
## (msLevel is an argument of areaUnderTic and msSignal10xChange,
## relativeTo is an argument of msSignal10xChange)
qc <- calculateMetricsFromMsExperiment(msexp = msexp, metrics = metrics,
    msLevel = 1, relativeTo = "Q1", change = "jump")
rownames(qc) <- c("Sample 1", "Sample 2")

if (interactive())
    shinyMsQuality(qc = qc)
ticQuartersRtFraction  TIC quarters RT fraction (MS:4000054)

Description

MS:4000054 “The interval when the respective quarter of the TIC accumulates divided by retention time duration.” [PSI:MS]

The metric is calculated as follows:
(1) the Spectra object is ordered according to the retention time,
(2) the cumulative sum of the ion count is calculated (TIC),
(3) the quantiles are calculated according to the probs argument, e.g. when probs is set to c(0, 0.25, 0.5, 0.75, 1) the 0%, 25%, 50%, 75%, and 100% quantile is calculated,
(4) the retention time/relative retention time (retention time divided by the total run time taking into account the minimum retention time) is calculated,
(5) the (relative) duration of the LC run after which the cumulative TIC exceeds (for the first time) the respective quantile of the cumulative TIC is calculated and returned.

Usage

ticQuartersRtFraction(
  spectra,
  probs = seq(0, 1, 0.25),
  msLevel = 1L,
  relative = TRUE,
  ...
)

Arguments

spectra  Spectra object
probs    numeric defining the quantiles. See probs = seq(0, 1, 0.25).
msLevel  integer
relative  logical, if set to TRUE the relative retention time will be returned instead of the absolute retention time
...      not used here

Details

MS:4000054 synonym: "RT-TIC-Q1" RELATED [PMID:24494671]
synonym: "RT-TIC-Q2" RELATED [PMID:24494671]
synonym: "RT-TIC-Q3" RELATED [PMID:24494671]
synonym: "RT-TIC-Q4" RELATED [PMID:24494671]
is_a: MS:4000004 ! n-tuple
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000016 ! retention time metric
relationship: has_metric_category MS:4000017 ! chromatogram metric
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_units UO:0000191 ! fraction

Value

numeric of length equal to length probs with the relative duration (duration divided by the total run time) after which the TIC exceeds the respective quantile of the TIC.

Author(s)

Thomas Naake, Johannes Rainer

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000002", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(83.1, 96.12, 97.14, 109.14, 124.08, 125.1, 170.16),
  c(56.0494, 69.0447, 83.0603, 109.0395, 110.0712, 111.0551, 123.0429, 138.0662, 195.0876))

spd$intensity <- list(
  c(3.407, 47.494, 3.094, 100.0, 13.240),
  c(6.685, 4.381, 3.022, 16.708, 100.0, 4.565, 40.643),
  c(0.459, 2.585, 2.446, 0.508, 8.968, 0.524, 0.974, 100.0, 40.994))

spd$rtime <- c(9.44, 9.44, 15.84)

sps <- Spectra(spd)
ticQuartersRtFraction(spectra = sps, msLevel = 2L)
ticQuartileToQuartileLogRatio

Description

MS:4000057
"The log ratios of successive TIC-change quartiles. The TIC changes are the list of MS1 total ion current (TIC) value changes from one to the next scan, produced when each MS1 TIC is subtracted from the preceding MS1 TIC. The metric’s value triplet represents the log ratio of the TIC-change Q2 to Q1, Q3 to Q2, TIC-change-max to Q3." [PSI:MS]
For calculation of MS:400057 set mode = "TIC_change".

MS:4000058
"The log ratios of successive TIC quartiles. The metric’s value triplet represents the log ratios of TIC-Q2 to TIC-Q1, TIC-Q3 to TIC-Q2, TIC-max to TIC-Q3." [PSI:MS]
For calculation of MS:400058 set mode = "TIC".

The metric is calculated as follows:
(1) the TIC (ionCount) of the Spectra object is calculated per scan event (with spectra ordered by retention time),
(2) for *MS:4000057*, the differences between TIC values are calculated between subsequent scan events, for *MS:4000058*, the TIC values between subsequent scan events are taken as they are,
(3) for *MS:4000057* and *MS:4000058* the ratios between the 25%, 50%, 75%, and 100% quantile to the 25% quantile of the values of (2) are calculated. Alternatively, if relativeTo = "Q1", the ratios are calculated between the 50%/25%, 75%/25%, and 100%/25% quantiles,
(4) The log values of the ratios are returned.

Usage
ticQuartileToQuartileLogRatio(
spectra,
  relativeTo = c("previous", "Q1"),
  mode = c("TIC_change", "TIC"),
  msLevel = 1L,
  ...
)

Arguments

spectra Spectra object
relativeTo character(1), one of "Q1" or "previous"
mode character(1), one of "TIC_change" or "TIC"
msLevel integer
...
not used here

Details

MS:4000057
synonym: "MS1-TIC-Change-Q2" RELATED [PMID:24494671]
synonym: "MS1-TIC-Change-Q3" RELATED [PMID:24494671]
synonym: "MS1-TIC-Change-Q4" RELATED [PMID:24494671]
is_a: MS:4000004 ! n-tuple
relationship: has_metric_category MS:4000009 ! ID free metric
relationship: has_metric_category MS:4000012 ! single run based metric
relationship: has_metric_category MS:4000017 ! chromatogram metric
relationship: has_metric_category MS:4000021 ! MS1 metric
relationship: has_value_type xsd:float ! The allowed value-type for this CV term
relationship: has_value_concept STATO:0000105 ! log signal intensity ratio

An attribute containing the PSI:MS term will only be returned ifRelativeTo is "previous" and msLevel is 1.

Value

numeric(1)

Note

This function interprets the *quantiles* from the [PSI:MS] definition as *quartiles*, i.e. the 0, 25, 50, 75 and 100% quantiles are used.

Author(s)

Thomas Naake

Examples

library(S4Vectors)
library(Spectra)

spd <- DataFrame(
  msLevel = c(2L, 2L, 2L),
  polarity = c(1L, 1L, 1L),
  id = c("HMDB0000001", "HMDB0000001", "HMDB0001847"),
  name = c("1-Methylhistidine", "1-Methylhistidine", "Caffeine"))

## Assign m/z and intensity values
spd$mz <- list(
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(109.2, 124.2, 124.5, 170.16, 170.52),
  c(109.2, 124.2, 124.5, 170.16, 170.52))
transformIntoMzQC

Transform the metrics into a list of MzCmqC objects

Description

The function transformIntoMzQC transfers the metrics stored in spectra_metrics into a list of MzCmqC objects. Each list entry will refer to the corresponding entry in spectra_metrics. As such, each entry contains information from a single dataOrigin of a Spectra object.

The function transformIntoMzQC is a helper function within calculateMetricsFromSpectra.

Usage

transformIntoMzQC(spectra_metrics)

Arguments

spectra_metrics  list of named vector

Details

The MzCmqC object will only contain those quality metrics that have a corresponding attribute with a [PSI:MS] identifier. The matching is done via the names of each vector in spectra_metrics.

The Field "version" is set to the current version of the rmzqc package.

The entry of "MzCmqAnalysisSoftware" is filled with the [PSI:MS] id of MsQuality ("MS:"), and the version is taken from packageDescription("MsQuality")["Version").
Value

list containing as entries MzQCmzQC objects for each Spectra with same dataOrigin

Author(s)

Thomas Naake, Johannes Rainer

Examples

library(msdata)
library(Spectra)

## define file names containing spectra data for the samples
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)

## import the data and add it to the spectra object
spectra <- Spectra(fls, backend = MsBackendMzR())

## define the quality metrics to be calculated
metrics <- c("areaUnderTic", "chromatographyDuration", "msSignal10xChange")

## obtain the spectra_metrics object
f <- dataOrigin(spectra)
f_unique <- unique(f)

## spectra_metrics <- bplapply(f_unique, function(f_unique_i) {
## calculateMetricsFromOneSampleSpectra(
## spectra = spectra[f == f_unique_i], metrics = metrics)
## }, BPPARAM = bpparam())

## transform into mzQC objects
## transformIntoMzQC(spectra_metrics)