Package ‘Mulcom’
April 4, 2024

Type Package
Title Calculates Mulcom test
Version 1.52.0
Date 2011-10-08
Author Claudio Isella
Maintainer Claudio Isella <claudio.isella@ircc.it>
Depends R (>= 2.10), Biobase
Imports graphics, grDevices, stats, methods, fields
Description Identification of differentially expressed genes and false discovery rate (FDR) calculation by Multiple Comparison test.
License GPL-2
LazyLoad yes
biocViews StatisticalMethod, MultipleComparison, Microarray,
 DifferentialExpression, GeneExpression
NeedsCompilation yes
git_url https://git.bioconductor.org/packages/Mulcom
git_branch RELEASE_3_18
git_last_commit 3a9c5e5
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03

R topics documented:

Affy ... 2
AffyIllum ... 2
harmonicMean ... 3
Illumina ... 3
Illumina ... 3
limmaAffySymbols ... 4
AffyIlmn

limmaIlmnSymbols .. 4
mulCalc .. 5
mulCAND ... 6
MULCOM-class ... 6
mulcomGeneListIlmn ... 7
MULCOM_P-class .. 7
mulDELTA ... 8
mulDiff .. 9
mulFSG ... 10
mulIndex ... 10
mulInt .. 11
mulMSE .. 12
mulOpt .. 13
mulOptPars .. 13
mulOptPlot .. 14
mulParOpt .. 15
mulPerm ... 16
mulPermC ... 17
mulScores .. 18
mulSSE .. 19
samAffySymbols .. 19
samIlmnSymbols .. 20
samOptPars .. 20

Index 21

<table>
<thead>
<tr>
<th>Affy</th>
<th>Affy Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affy</td>
<td>Affy Dataset</td>
</tr>
</tbody>
</table>

Description

Affy Dataset

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

<table>
<thead>
<tr>
<th>AffyIlmn</th>
<th>cross mapping table</th>
</tr>
</thead>
</table>

Description

cross mapping table

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
harmonicMean

Description
Computes harmonic means across groups replicate Should not be called directly

Usage
harmonicMean(index)

Arguments
index a numeric vector with the groups labels of the samples. 0 are the control samples. Number must be progressive

Details
harmonicMean calculates harmonic means across groups replicate for the estimation of Mulcom Test

Value
a numeric vector

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

References
<claudio.isella@ircc.it>

Illumina

Description
Illumina Dataset

Author(s)
Claudio Isella, <claudio.isella@ircc.it>
<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmn Dataset</td>
<td></td>
<td>Claudio Isella, claudio.isella@ircc.it</td>
</tr>
<tr>
<td>significant gene list with limma in Affymetrix</td>
<td></td>
<td>Claudio Isella, claudio.isella@ircc.it</td>
</tr>
<tr>
<td>significant gene list with limma in Illumina</td>
<td></td>
<td>Claudio Isella, claudio.isella@ircc.it</td>
</tr>
</tbody>
</table>
mulCalc

MulCom Calculation

Description

Calculates MulCom test score for given m and t parameters

Usage

mulCalc(Mulcom_P, m, t)

Arguments

- **Mulcom_P**: an object of class MULCOM
- **m**: a numeric value corresponding to log 2 ratio correction for MulCom Test
- **t**: a numeric value corresponding to T values for MulCom Test

Details

mulCalc Calculate the Mulcom Score with m and t defined by the user

- **Mulcom_P**: an object of class MULCOM_P
- **m**: a number corresponding to log 2 ratio correction for MulCom Test
- **t**: a number corresponding to T values for MulCom Test

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
mulcom_calc <- mulCalc(mulcom_scores, 0.2, 2)
mulCAND

Identify the Mulcom candidate feature selection

Description

Identify the Mulcom candidate feature selection by the m and T defined by the user

Usage

```r
mulCAND(eset, Mulcom_P, m, t, ese = "T")
```

Arguments

- `eset`: an *AffyBatch*
- `Mulcom_P`: an object of class MULCOM
- `m`: m: a numeric vector corresponding to log 2 ratio correction
- `t`: t: a numeric vector corresponding to the MulCom T values
- `ese`: True or False

Details

mulCAND Identify the Mulcom candidate feature selection by the m and T defined by the user

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulcom_cand <- mulCAND(Affy, mulcom_perm, 0.2, 2)
```

MULCOM-class

Class MulCom

Description

This is a class representation MulCom test scores

Objects from the Class

Objects can be created using the function *mulScores* on ExpressionSet.
Slots

FC: Object of class numeric representing difference between all experimental groups and the reference groups
HM: Object of class numeric representing the harmonic means in all subgroups
MSE_Corrected: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test

Author(s)
Claudio Isella

Examples

data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)

mulcomGeneListIlmn significant gene list with limma in Illumina

Description
significant gene list with limma in Illumina

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

MULCOM_P-class Class MulCom Permutation

Description
This is a class representation MulCom test scores permutation

Objects from the Class
Objects can be created using the function `mulScores` on ExpressionSet.

Slots

FC: Object of class numeric representing delta between all experimental groups and the reference groups
MSE_Corrected: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test
FCp: Object of class numeric representing delta between all experimental groups and the reference groups in permutated data
MSE_Correctedp: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test in permutated data
mulDELTA

<table>
<thead>
<tr>
<th>mulDELTA</th>
<th>MulCom Delta</th>
</tr>
</thead>
</table>

Author(s)
Claudio Isella

Examples

```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
```

Description
Computes Delta for all the experimental points in the datasets in respect to control. Should not be called directly.

Usage

`mulDELTA(vector, index)`

Arguments
- `vector`: numeric vector with data measurements
- `index`: a numeric vector with the labels of the samples. 0 are the control samples. Number must be progressive.

Details
`mulDELTA` An internal function that should not be called directly. It calculates differential expression in the groups defined in the index class vector, in respect to the 0 groups.

Value
- `vector`: a numeric vector with data measurements
- `index`: a numeric vector with the labels of the samples. 0 are the control samples. Number must be progressive.

Author(s)
Claudio Isella, claudio.isella@ircc.it

Examples

```r
data(benchVign)
mulcom_delta <- mulDELTA(exprs(Affy[1,]), Affy$Groups)
```
mulDiff

MulCom Test Differential analysis

Description

Identify the differentially expressed features for a specific comparison with given m and t value

Usage

```r
mulDiff(eset, Mulcom_P, m, t, ind)
```

Arguments

- `eset`: An ExpressionSet object from package Biobase
- `Mulcom_P`: An object of class Mulcom_P
- `m`: the m values for the analysis
- `t`: the t values for the analysis
- `ind`: and index referring to the comparison, should be numeric

Value

- `eset`: An ExpressionSet object from package Biobase
- `Mulcom_P`: An object of class Mulcom_P
- `m`: the m values for the analysis
- `t`: the t values for the analysis
- `ind`: and index referring to the comparison, should be numeric

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_diff <- mulDiff(Affy, mulcom_perm, 0.2, 2)
```
mulFSG

MulCom False Significant Genes

Description

Calculate the False Significant Genes for m and t defined by the user.

Usage

```r
mulFSG(Mulcom_P, m, t)
```

Arguments

- `Mulcom_P`: an object of class MULCOM
- `m`: a numeric value corresponding to log 2 ratio correction for MulCom Test
- `t`: a numeric value corresponding to t values for MulCom Test

Details

`mulFDR` evaluate the False Significant genes on the Mulcom_P object according to specific m and t parameters. For each permutation it is calculated the number of positive genes. An estimation of the false called genes is evaluated with the median for each experimental subgroups.

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_fsg <- mulFSG(mulcom_perm, 0.2, 2)
```

mulIndex

Mulcom Index for Monte Carlo Simulation

Description

Random assembly of the groups indices for Monte Carlo simulation.

Usage

```r
mulIndex(index, np, seed)
```

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_fsg <- mulFSG(mulcom_perm, 0.2, 2)
```
Arguments

index the vector with the groups of analysis, must be numeric and 0 correspond to the reference.
np number of permutation in the simulation
seed seed for permutations

Details

'mulIndex' generates random index for the function mulPerm. it is not directly called by the user.

Value

A matrix with all indices permutations

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_scores <- mulIndex(Affy$Groups, 5, 7)

mulInt

generates a consensus matrix from list of genes

Description

generates a consensus matrix from list of genes

Usage

mulInt(...)

Arguments

... the function requires vector files as inputs

Details

mulCAND generates a consensus matrix from list of genes

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_opt <- mulOpt(mulcom_perm, vm = seq(0, 0.5, 0.1), vt = seq(1, 3, 0.1))

h1_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05)
h2_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05)

int <- mulInt(h1_opt, h2_opt)

mulMSE

MulCom Mean Square Error

Description

Computes Mean Square Error for all the experimental points in the datasets in respect to control. Should not be called directly.

Usage

```r
mulMSE(vector, index, tmp = vector())
```

Arguments

- `vector`: a numeric vector with data measurements
- `index`: a numeric vector with the labels of the samples. 0 are the control samples. Number must be progressive
- `tmp`: a vector

Details

`mulMSE` An internal function that should not be called directly. It calculates within group means square error for the values defined in the x vector according to the index class vector.

Value

- `vector`: a numeric vector with data measurements
- `index`: a numeric vector with the labels of the samples. 0 are the control samples. Number must be progressive
- `tmp`: a vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
mulOpt

mulOpt

mulOpt

mulOpt

Description

The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

Usage

mulOpt(Mulcom_P, vm, vt)

Arguments

Mulcom_P an object of class Mulcom_P
vm a vector of m values to test
vt a vector of t values to test

Details

mulOpt The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))

mulOptPars

mulOptPars

mulOptPars

Description

Function to optimize Mulcom parameter for maximum number of genes with a user defined FDR

Usage

mulOptPars(opt, ind, ths)
mulOptPlot

Description
MulCom optimization Plot to identify best configuration parameters.

Usage
mulOptPlot(M.Opt, ind, th, smooth = "NO")

Arguments
M.Opt an MulCom optimization object
ind index corresponding to the comparison to plot
th a threshold for the FDR plot
smooth indicates whether the FDR plot will show a significant threshold or will be continuous.

Details
mulOptPlot MulCom optimization Plot

Value
a numeric vector
mulParOpt

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1))
mulOptPlot(mulcom_opt, 1, 0.05)
```

mulParOpt MulCom Parameters Optimization

Description
MulCom parameter optimization function to identify best combination of t and m providing maximum number of genes at a given FDR

Usage
```
mulParOpt(perm, M.Opt, ind, th, image = "T")
```

Arguments
- `perm` : a object with permutated MulCom Scores
- `M.Opt` : an MulCom optimization object
- `ind` : index corresponding to the comparison to plot
- `th` : a threshold for the FDR plot
- `image` : default = "T", indicates is print the MulCom optimization plot

Details
mulParOpt The function mulParOpt is designed to identify the optimal m and t values combination leading to the maximum number of differentially regulated genes satisfying an user define FDR threshold. In case of equal number of genes, the combination of m and t with the lower FDR will be prioritized. In case of both identical number of genes and FDR, the function will chose the highest t. The function optionally will define a graphical output to visually inspect the performance of the test at given m and t parameters for a certain comparison.

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1))
mulParOpt(mulcom_perm, mulcom_opt, 1, 0.05)
```
mulPerm

MulCom Permutation

Description

Reiterate MulCom Test on permutated data to perform Montecarlo simulation

Usage

mulPerm(eset, index, np, seed, segm = "F")

Arguments

- **eset**: An an AffyBatch object, each row of must correspond to a variable and each column to a sample.
- **index**: a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.
- **np**: a numeric values indicating the number of permutation to perform. It is set as default to 10
- **seed**: set the seed of the permutation, default is 1
- **segm**: a default set to F. This parameter requires to be setted to avoid segmentation fault of C subroutin in the case of very large datasets.

Details

mulPerm

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulPermC

MulPermC

MulCom Permutation

Description

R pipe to C function not called directly by user that reiterate MulCom Test on permutated data to perform Monte Carlo simulation

Usage

```r
mulPermC(eset, index, means, mse, n, m, nump, ngroups, reference)
```

Arguments

- **eset**: An *AffyBatch* object, each row of must correspond to a variable and each column to a sample.
- **index**: A numeric vector of length `ncol(data)` with the labels of the samples. 0 are the reference samples.
- **means**: Entry for the means output.
- **mse**: Entry for the mean square errors output
- **n**: Number of rows in obext of class eset
- **m**: Number of columns
- **nump**: Number of permutation to perform
- **ngroups**: A number corresponding to the number of groups in the analysis.
- **reference**: Reference for the comparisons. Typically it is 0

Details

mulPerm

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
```
mulScores

MulCom Score Calculation

Description

Computes the scores for the MulCom test. The function calculates the numerator and the denominator of the test without the parameters m and t.

Usage

```r
mulScores(eset, index)
```

Arguments

- `eset` An an `AffyBatch` object, each row of must correspond to a variable and each column to a sample.
- `index` a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.

Details

`mulScore` computes the scores for the MulCom test for multiple point profile. The Mulcom test is designed to compare each experimental mean with the control mean and it is derived from the "Dunnett's test". Dunnett's test controls the Experiment-wise Error Rate and is more powerful than tests designed to compare each mean with each other mean. The test is conducted by computing a modified t-test between each experimental group and the control group.

Value

An Object of class MULCOM from Mulcom package

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
```
mulSSE

MulCom Sum of Square Error

Description
Computes sum of square errors for all the experimental points in the datasets Should not be called directly

Usage
mulSSE(vec, index)

Arguments
vec a numeric vector with data measurements
index a numeric vector with the labels of the samples. 0 are the control samples. number should be progressive

Details
mulSSE An internal function that should not be called directly. It calculates sum of square error in the groups defined in the index class vector.

Value
vec a numeric vector with data measurements
index a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

samAffySymbols significant gene list with SAM in Affymetrix

Description
significant gene list with SAM in Affymetrix

Author(s)
Claudio Isella, <claudio.isella@ircc.it>
samIlmnSymbols
significant gene list with SAM in Illumina

Description

significant gene list with SAM in Illumina

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

samOptPars
Sam Parameter Optimization

Description

Function to optimize Sam parameter for maximum number of genes with a user defined FDR

Usage

`samOptPars(opt, ths)`

Arguments

- `opt`: an Sam optimization object
- `ths`: a threshold for the FDR optimization

Value

- a numeric vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Index

* MulCom
 Affy, 2
 AffyIlmn, 2
 harmonicMean, 3
 Illumina, 3
 Ilmn, 4
 limmaAffySymbols, 4
 limmaIlmnSymbols, 4
 mulCalc, 5
 mulCAND, 6
 mulcomGeneListIlmn, 7
 mulDELTa, 8
 mulDiff, 9
 mulFSG, 10
 mulIndex, 10
 mulInt, 11
 mulMSE, 12
 mulOpt, 13
 mulOptPars, 13
 mulOptPlot, 14
 mulParOpt, 15
 mulPerm, 16
 mulPermC, 17
 mulScores, 18
 mulSSE, 19
 samAffySymbols, 19
 samIlmnSymbols, 20
 samOptPars, 20

* classes
 MULCOM-class, 6
 MULCOM_P-class, 7

Affy, 2
AffyBatch, 6, 16–18
AffyIlmn, 2

class:MULCOM (MULCOM-class), 6
class:MULCOM_P (MULCOM_P-class), 7

harmonicMean, 3

Illumina, 3
Ilmn, 4

limmaAffySymbols, 4
limmaIlmnSymbols, 4

mulCalc, 5
mulCAND, 6
MULCOM (MULCOM-class), 6
MULCOM-class, 6
MULCOM_P (MULCOM_P-class), 7
MULCOM_P-class, 7
mulcomGeneListIlmn, 7
mulDELTa, 8
mulDiff, 9
mulFSG, 10
mulIndex, 10
mulInt, 11
mulMSE, 12
mulOpt, 13
mulOptPars, 13
mulOptPlot, 14
mulParOpt, 15
mulPerm, 16
mulPermC, 17
mulScores, 6, 7, 18
mulSSE, 19
samAffySymbols, 19
samIlmnSymbols, 20
samOptPars, 20