Package ‘MungeSumstats’

March 2, 2024

Type Package

Title Standardise summary statistics from GWAS

Version 1.10.1

Description The *MungeSumstats* package is designed to facilitate the standardisation of GWAS summary statistics. It reformats inputted summary statistics to include SNP, CHR, BP and can look up these values if any are missing. It also performs dozens of QC and filtering steps to ensure high data quality and minimise inter-study differences.

URL https://github.com/neurogenomics/MungeSumstats

BugReports https://github.com/neurogenomics/MungeSumstats/issues

License Artistic-2.0

Depends R(>= 4.1)

Imports magrittr, data.table, utils, R.utils, dplyr, stats, GenomicRanges, IRanges, GenomeInfoDb, BSgenome, Biostrings, stringr, VariantAnnotation, googleAuthR, http, jsonlite, methods, parallel, rtracklayer(>= 1.59.1), Rcurl

biocViews SNP, WholeGenome, Genetics, ComparativeGenomics, GenomeWideAssociation, GenomicVariation, Preprocessing

RoxygenNote 7.2.3

Encoding UTF-8

Roxygen list(markdown = TRUE)

Suggests SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, BSgenome.Hsapiens.1000genomes.hs37d5, BSgenome.Hsapiens.NCBI.GRCh38, BiocGenerics, S4Vectors, markdown, markdown, knitr, testthat(>= 3.0.0), UpSetR, BiocStyle, covr, Rsamtools, MatrixGenerics, badger, BiocParallel, GenomicFiles

Config/testthat/edition 3
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/MungeSumstats
git_branch RELEASE_3_18
git_last_commit 83ed5fb
git_last_commit_date 2023-10-26
Repository Bioconductor 3.18
Date/Publication 2024-03-01
Author Alan Murphy [aut, cre](https://orcid.org/0000-0002-2487-8753), Brian Schilder [aut, ctb](https://orcid.org/0000-0001-5949-2191), Nathan Skene [aut](https://orcid.org/0000-0002-6807-3180)
Maintainer Alan Murphy alanmurph94@hotmail.com

R topics documented:

api_query ... 5
axel ... 6
check_access_token .. 7
check_allele_flip ... 7
check_allele_merge .. 9
check_bi_allelic ... 10
check_bp_range ... 11
check_chr .. 12
check_col_order ... 13
check_drop_indels ... 13
check_dup_bp .. 14
check_dup_col .. 15
check_dup_row .. 16
check_dup_snp ... 17
check_effect_columns_nonzero 18
check_empty_cols ... 19
check_four_step_col ... 19
check_frq ... 20
check_frq_maf ... 21
check_info_score .. 21
check_ldsc_format ... 22
check_miss_data .. 23
check_multi_gwas .. 24
check_multi_rs_snp .. 25
check_no_allele ... 26
check_no_chr_bp .. 27
check_no_rs_snp ... 29
check_no_snp .. 30
check_numeric .. 31
check_n_int .. 32
check_n_num .. 32
R topics documented:

- `check_on_ref_genome` .. 33
- `check_pos_se` .. 34
- `check_range_p_val` .. 36
- `check_row.snp` ... 37
- `check_save.path` ... 38
- `check_signed.col` ... 39
- `check_small_p_val` ... 40
- `check_strand.ambiguous` .. 41
- `check_tabular` ... 42
- `check_two_step.col` .. 42
- `check_vcf` .. 43
- `check_vital.col` ... 43
- `check_zscore` ... 44
- `column.dictionary` ... 45
- `compute_nsize` ... 46
- `compute_sample.size` .. 47
- `compute_sample.size_n` ... 48
- `compute_sample.size.neff` .. 49
- `convert_sumstats` ... 50
- `DF_to_dt` .. 51
- `downloader` ... 51
- `download_vcf` ... 52
- `drop_duplicate.cols` .. 54
- `drop_duplicate.rows` .. 54
- `find_sumstats` ... 55
- `formatted.example` ... 56
- `format_sumstats` ... 57
- `get_access_token` .. 63
- `get_chain_file` ... 64
- `get_eff.frq.allele.combs` .. 64
- `get_genome_build` ... 65
- `get_genome.builds` .. 66
- `get_query.content` ... 68
- `get_unique_name.log.file` .. 68
- `get_vcf.sample.ids` .. 69
- `granges_to_dt` ... 69
- `gwasinfo` .. 70
- `hg19ToHg38` .. 70
- `hg38ToHg19` .. 71
- `ieu-a-298` ... 71
- `import_sumstats` ... 72
- `index.tabular` ... 77
- `index_vcf` ... 78
- `infer_effect.column` .. 79
- `is_tabix` ... 80
- `legacy_ids` ... 81
- `liftover` ... 81
- `list_sumstats` ... 83
R topics documented:

- `load_ref_genome_data` .. 83
- `load_snp_loc_data` .. 84
- `logs_example` ... 85
- `make_allele_upper` ... 85
- `messenger` .. 86
- `message_parallel` ... 86
- `parse_dropped_chrom` .. 87
- `parse_dropped_duplicates` 87
- `parse_dropped_INFO` ... 88
- `parse_dropped_nonA1A2` ... 88
- `parse_dropped_nonBiallelic` 89
- `parse_dropped_nonRef` ... 89
- `parse_flipped` .. 90
- `parse_genome_build` .. 90
- `parse_idStandard` .. 91
- `parse_logs` .. 91
- `parse_pval_large` .. 92
- `parse_pval_neg` ... 92
- `parse_pval_small` .. 93
- `parse_report` .. 93
- `parse_snps_freq_05` ... 94
- `parse_snps_not_formatted` 94
- `parse_time` .. 95
- `preview_sumstats` .. 95
- `raw_ALSvcf` ... 96
- `raw_eduAttainOkbay` .. 96
- `read_header` .. 97
- `read_sumstats` ... 98
- `read_vcf` .. 99
- `read_vcf_genome` .. 101
- `read_vcf_info` .. 102
- `read_vcf_markername` ... 102
- `read_vcf_parallel` ... 103
- `read_vcf_pval` ... 104
- `register_cores` ... 105
- `remove_empty_cols` ... 105
- `report_summary` .. 106
- `select_api` .. 106
- `select_vcf_fields` ... 107
- `sort_coords` ... 108
- `sort_coords_datatable` ... 108
- `sort_coord_genomicranges` 109
- `standardise_header` .. 109
- `sumstatsColHeaders` ... 110
- `supported_suffixes` ... 111
- `to_granges` .. 112
- `to_vranges` .. 112
- `unlist_dt` .. 113
api_query

Description

There are a number of different GET and POST endpoints in the GWAS database API. This is a generic way to access them.

Usage

```r
api_query(
  path,
  query = NULL,
  access_token = check_access_token(),
  method = "GET",
  silent = TRUE,
  encode = "json",
  timeout = 300
)
```

Arguments

- **path**
 Either a full query path (e.g. for get) or an endpoint (e.g. for post) queries
- **query**
 If post query, provide a list of arguments as the payload. NULL by default
- **access_token**
 Google OAuth2 access token. Used to authenticate level of access to data. By default, checks if already authenticated through `get_access_token` and if not then does not perform authentication.
- **method**
 GET (default) or POST, DELETE etc
- **silent**
 TRUE/FALSE to be passed to httr call. TRUE by default
- **encode**
 Default = json, see httr::POST for options
- **timeout**
 Default = 300, avoid increasing this, preferentially simplify the query first.

Value

httr response object
axel

Description

R wrapper for axel, which enables multi-threaded download of a single large file.

Usage

```r
axel(
  input_url,
  output_path,
  background = FALSE,
  nThread = 1,
  force_overwrite = FALSE,
  quiet = TRUE,
  alternate = TRUE,
  check_certificates = FALSE
)
```

Arguments

- `input_url`
 input_url.
- `output_path`
 output_path.
- `background`
 Run in background
- `nThread`
 Number of threads to parallelize over.
- `force_overwrite`
 Overwrite existing file.
- `quiet`
 Run quietly.
- `alternate`
 alternate,
- `check_certificates`
 check_certificates

Value

Path where the file has been downloaded

See Also

https://github.com/axel-download-accelerator/axel/

Other downloaders: `downloader()`
check_access_token

Check if authentication has been made

Description

If a call to get_access_token() has been made then it will have generated mrbase.oauth. Pass the token if it is present, if not, return NULL and do not authenticate.

Usage

check_access_token()

Value

NULL or access_token depending on current authentication state

check_allele_flip

Ensure A1 & A2 are correctly named, if GWAS SNP constructed as Alternative/Reference or Risk/Nonrisk alleles these SNPs will need to be converted to Reference/Alternative or Nonrisk/Risk. Here non-risk is defined as what’s on the reference genome (this may not always be the case).

Description

Ensure A1 & A2 are correctly named, if GWAS SNP constructed as Alternative/Reference or Risk/Nonrisk alleles these SNPs will need to be converted to Reference/Alternative or Nonrisk/Risk. Here non-risk is defined as what’s on the reference genome (this may not always be the case).

Usage

check_allele_flip(
 sumstats_dt,
 path,
 ref_genome,
 rsids,
 allele_flip_check,
 allele_flip_drop,
 allele_flip_z,
 allele_freq,
 bi_allelic_filter,
 flip_freq_as_biallelic,
 imputation_ind,
 log_folder_ind,
 check_save_out,
Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

allele_flip_check Binary Should the allele columns be checked against reference genome to infer if flipping is necessary. Default is TRUE.

allele_flip_drop Binary Should the SNPs for which neither their A1 or A2 base pair values match a reference genome be dropped. Default is TRUE.

allele_flip_z Binary should the Z-score be flipped along with effect and FRQ columns like Beta? It is assumed to be calculated off the effect size not the P-value and so will be flipped i.e. default TRUE.

allele_flip_frq Binary should the frequency (FRQ) column be flipped along with effect and z-score columns like Beta? Default TRUE.

bi_allelic_filter Binary Should non-biallelic SNPs be removed. Default is TRUE.

flip_frq_as_biallelic Binary Should non-bi-allelic SNPs frequency values be flipped as 1-p despite there being other alternative alleles? Default is FALSE but if set to TRUE, this allows non-bi-allelic SNPs to be kept despite needing flipping.

imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.
check_allele_merge

- **nThread**: Number of threads to use for parallel processes.
- **log_files**: list of log file locations
- **standardise_headers**: Run standardise_sumstats_column_headers_crossplatform first.
- **mapping_file**: MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing or the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.
- **dbSNP**: version of dbSNP to be used for imputation (144 or 155).

Value

A list containing two data tables:

- **sumstats_dt**: the modified summary statistics data.table object.
- **rsids**: snpsById, filtered to SNPs of interest if loaded already. Or else NULL.
- **log_files**: log file list

Description

Ensure that A1:A2 or A1/A2 or A1>A2 or A2>A1 aren’t merged into 1 column

Usage

```r
check_allele_merge(sumstats_dt, path)
```

Arguments

- **sumstats_dt**: data table obj of the summary statistics file for the GWAS
- **path**: Filepath for the summary statistics file to be formatted

Value

list containing sumstats_dt, the modified summary statistics data table object.
check_bi_allelic

Remove non-biallelic SNPs

Description

Remove non-biallelic SNPs

Usage

check_bi_allelic(
 sumstats_dt,
 path,
 ref_genome,
 bi_allelic_filter,
 rsids,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files,
 dbSNP
)

Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

bi_allelic_filter Binary Should non-biallelic SNPs be removed. Default is TRUE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.

nThread Number of threads to use for parallel processes.

log_files list of log file locations

dbSNP version of dbSNP to be used for imputation (144 or 155).
check_bp_range

Value

A list containing two data tables:

- sumstats_dt: the modified summary statistics data table object
- rsids: snpsById, filtered to SNPs of interest if loaded already. Or else NULL.
- log_files: log file list

Description

Ensure that the Base-pair column values are all within the range for the chromosome

Usage

check_bp_range(
 sumstats_dt,
 path,
 ref_genome,
 log_folder_ind,
 imputation_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files
)

Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note
these columns will be in the formatted summary statistics returned. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.
nThread Number of threads to use for parallel processes.
log_files list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list

check_chr Standardize the CHR column

Description

Maps chromosome names to the default Ensembl/NCBI naming style and removes SNPs with non-standard CHR entries. Optionally, also removes SNPs on user-specified chromosomes.

Usage

check_chr(
 sumstats_dt,
 log_files,
 check_save_out,
 rmv_chr,
 nThread,
 tabix_index,
 log_folder_ind
)

Arguments

sumstats_dt data.table with summary statistics
log_files list of locations for all log files
check_save_out list of parameters for saved files
rmv_chr Chromosomes to exclude from the formatted summary statistics file. Use NULL if no filtering is necessary. Default is c("X", "Y", "MT") which removes all non-autosomal SNPs.
nThread Number of threads to use for parallel processes.
tabix_index Index the formatted summary statistics with tabix for fast querying.
log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
check_col_order

Value

list containing the updated summary statistics data.table and the updated log file locations list

check_col_order

Ensure that the first three columns are SNP, CHR, BP in that order and then A1, A2 if present

Description

Ensure that the first three columns are SNP, CHR, BP in that order and then A1, A2 if present

Usage

check_col_order(sumstats_dt, path)

Arguments

- `sumstats_dt`: data table obj of the summary statistics file for the GWAS
- `path`: Filepath for the summary statistics file to be formatted

Value

list containing `sumstats_dt`, the modified summary statistics data table object

check_drop_indels

Drop Indels from summary statistics

Description

Drop Indels from summary statistics

Usage

check_drop_indels(
 sumstats_dt,
 drop_indels,
 path,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files
)
Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS
drop_indels Binary, should any indels found in the sumstats be dropped? These can not be
 checked against a reference dataset and will have the same RS ID and position
 as SNPs which can affect downstream analysis. Default is False.
path Filepath for the summary statistics file to be formatted. A dataframe or datat-
 able of the summary statistics file can also be passed directly to MungeSumstats
 using the path parameter.
log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file
 per filter). The data is outputted in the same format specified for the resulting
 sumstats file. The only exception to this rule is if output is vcf, then log file
 saved as .tsv.gz. Default is FALSE.
tabix_index Index the formatted summary statistics with tabix for fast querying.
nThread Number of threads to use for parallel processes.

Value

list containing sumstats_dt, the modified summary statistics data table object

Source

sumstats_dt <- MungeSumstats::formatted_example() sumstats <- check_drop_indels(sumstats_dt
= sumstats_dt, drop_indels = TRUE)

check_dup_bp Ensure all rows have unique positions, drop those that don’t

Description

Ensure all rows have unique positions, drop those that don’t

Usage

check_dup_bp(
 sumstats_dt,
 bi_allelic_filter,
 check_dups,
 indels,
 path,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files
)
check_dup_col

Arguments

bi_allelic_filter Binary Should non-biallelic SNPs be removed. Default is TRUE.
check_dups whether to check for duplicates - if formatting QTL datasets this should be set to FALSE otherwise keep as TRUE. Default is TRUE.
indels Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.
path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.
log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
tabix_index Index the formatted summary statistics with tabix for fast querying.
nThread Number of threads to use for parallel processes.
log_files list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and log files list

check_dup_col Ensure that no columns are duplicated

Description

Ensure that no columns are duplicated

Usage

check_dup_col(sumstats_dt, path)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS
path Filepath for the summary statistics file to be formatted

Value

list containing sumstats_dt, the modified summary statistics data table object
check_dup_row

Ensure all rows are unique based on SNP,CHR,BP,A1,A2, drop those that aren’t

Description

Ensure all rows are unique based on SNP,CHR,BP,A1,A2, drop those that aren’t

Usage

```r
check_dup_row(
  sumstats_dt,
  check_dups,
  path,
  log_folder_ind,
  check_save_out,
  tabix_index,
  nThread,
  log_files
)
```

Arguments

- `check_dups`: whether to check for duplicates - if formatting QTL datasets this should be set to FALSE otherwise keep as TRUE. Default is TRUE.
- `path`: Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.
- `log_folder_ind`: Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
- `tabix_index`: Index the formatted summary statistics with `tabix` for fast querying.
- `nThread`: Number of threads to use for parallel processes.
- `log_files`: list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and log files list
check_dup_snp

Ensure all rows have unique SNP IDs, drop those that don’t

Description

Ensure all rows have unique SNP IDs, drop those that don’t

Usage

```r
check_dup_snp(
  sumstats_dt,
  indels,
  path,
  log_folder_ind,
  check_save_out,
  tabix_index,
  nThread,
  log_files,
  bi_allelic_filter,
  check_dups
)
```

Arguments

- **indels**: Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.
- **path**: Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.
- **log_folder_ind**: Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
- **tabix_index**: Index the formatted summary statistics with `tabix` for fast querying.
- **nThread**: Number of threads to use for parallel processes.
- **log_files**: list of log file locations
- **bi_allelic_filter**: Binary Should non-biallelic SNPs be removed. Default is TRUE.
- **check_dups**: whether to check for duplicates - if formatting QTL datasets this should be set to FALSE otherwise keep as TRUE. Default is TRUE.

Value

list containing sumstats_dt, the modified summary statistics data table object and log files list
check_effect_columns_nonzero

Ensure that the standard error (se) is positive for all SNPs

Description

Ensure that the standard error (se) is positive for all SNPs

Usage

check_effect_columns_nonzero(
 sumstats_dt,
 path,
 effect_columns_nonzero,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files
)

Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

effect_columns_nonzero Binary should the effect columns in the data BETA, OR (odds ratio), LOG_ODDS, SIGNED_SUMSTAT be checked to ensure no SNP=0. Those that do are removed (if present in sumstats file). Default FALSE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.
nThread Number of threads to use for parallel processes.

log_files list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list
check_empty_cols

Check for empty columns

Description
Empty columns contain only ".", NA, or 0

Usage
```
check_empty_cols(sumstats_dt, sampled_rows = NULL, verbose = TRUE)
```

Arguments
- **sampled_rows**: First N rows to sample. Set NULL to use full `sumstats_file` when determining whether cols are empty.
- **verbose**: Print messages.

Value
- `empty_cols`

check_four_step_col

Ensure that CHR:BP:A2:A1 aren’t merged into 1 column

Description
Ensure that CHR:BP:A2:A1 aren’t merged into 1 column

Usage
```
check_four_step_col(sumstats_dt, path)
```

Arguments
- **sumstats_dt**: data table obj of the summary statistics file for the GWAS
- **path**: Filepath for the summary statistics file to be formatted

Value
- list containing `sumstats_dt`, the modified summary statistics data table object
check_fraq

Ensure all SNPs have frq score above threshold

Description

Ensure all SNPs have frq score above threshold

Usage

```r
check_fraq(
  sumstats_dt,
  path,
  FRQ_filter,
  log_folder_ind,
  check_save_out,
  tabix_index,
  nThread,
  log_files
)
```

Arguments

- `path` Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.
- `FRQ_filter` numeric The minimum value permissible of the frequency(FRQ) of the SNP (i.e. Allele Frequency (AF)) (if present in sumstats file). By default no filtering is done, i.e. value of 0.
- `log_folder_ind` Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
- `tabix_index` Index the formatted summary statistics with tabix for fast querying.
- `nThread` Number of threads to use for parallel processes.
- `log_files` list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list
check_freq_maf

Check that FRQ column refers to minor/effect allele frequency not major

Description

Check that FRQ column refers to minor/effect allele frequency not major

Usage

```r
check_freq_maf(sumstats_dt, frq_is_maf)
```

Arguments

- `frq_is_maf`: Conventionally the FRQ column is intended to show the minor/effect allele frequency (MAF) but sometimes the major allele frequency can be inferred as the FRQ column. This logical variable indicates that the FRQ column should be renamed to MAJOR_ALLELE_FRQ if the frequency values appear to relate to the major allele i.e. >0.5. By default this mapping won’t occur i.e. is TRUE.

Value

`sumstats_dt`, the modified summary statistics data table object

check_info_score

Ensure all SNPs have info score above threshold

Description

Ensure all SNPs have info score above threshold

Usage

```r
check_info_score(
  sumstats_dt, 
  INFO_filter, 
  log_folder_ind, 
  check_save_out, 
  tabix_index, 
  nThread, 
  log_files
)
```
check_ldsc_format

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO_filter</td>
<td>numeric The minimum value permissible of the imputation information score (if present in sumstats file). Default 0.9.</td>
</tr>
<tr>
<td>log_folder_ind</td>
<td>Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.</td>
</tr>
<tr>
<td>tabix_index</td>
<td>Index the formatted summary statistics with tabix for fast querying.</td>
</tr>
<tr>
<td>nThread</td>
<td>Number of threads to use for parallel processes.</td>
</tr>
<tr>
<td>log_files</td>
<td>list of log file locations.</td>
</tr>
</tbody>
</table>

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list

check_ldsc_format Ensures that parameters are compatible with LDSC format

Description

Format summary statistics for direct input to Linkage Disequilibrium SCore (LDSC) regression without the need to use their munge_sumstats.py script first.

Usage

check_ldsc_format(
 sumstats_dt,
 save_format,
 convert_n_int,
 allele_flip_check,
 compute_z,
 compute_n
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sumstats_dt</td>
<td>data table obj of the summary statistics file for the GWAS.</td>
</tr>
<tr>
<td>save_format</td>
<td>Output format of sumstats. Options are NULL - standardised output format from MungeSumstats, LDSC - output format compatible with LDSC and openGWAS - output compatible with openGWAS VCFs. Default is NULL.</td>
</tr>
<tr>
<td>convert_n_int</td>
<td>Binary, if N (the number of samples) is not an integer, should this be rounded? Default is TRUE.</td>
</tr>
<tr>
<td>allele_flip_check</td>
<td>Binary Should the allele columns be checked against reference genome to infer if flipping is necessary. Default is TRUE.</td>
</tr>
</tbody>
</table>
check_miss_data

compute_z
Whether to compute Z-score column. Default is FALSE. This can be computed from Beta and SE with (Beta/SE) or P (Z:=sign(BETA)*sqrt(stats::qchisq(P,1,lower=FALSE))). **Note** that imputing the Z-score from P for every SNP will not be perfectly correct and may result in a loss of power. This should only be done as a last resort. Use 'BETA' to impute by BETA/SE and 'P' to impute by SNP p-value.

compute_n
Whether to impute N. Default of 0 won’t impute, any other integer will be imputed as the N (sample size) for every SNP in the dataset. **Note** that imputing the sample size for every SNP is not correct and should only be done as a last resort. N can also be inputted with "ldsc", "sum", "giant" or "metal" by passing one of these for this field or a vector of multiple. Sum and an integer value creates an N column in the output whereas giant, metal or ldsc create an Neff or effective sample size. If multiples are passed, the formula used to derive it will be indicated.

Details
LDSC documentation.

Value
Formatted summary statistics

Source
LDSC GitHub

check_miss_data Remove SNPs with missing data

Description
Remove SNPs with missing data

Usage
```r
check_miss_data(
  sumstats_dt,
  path,
  log_folder_ind,
  check_save_out,
  tabix_index,
  nThread,
  log_files
)
```
check_multi_gwas

Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

log_folder_ind Binary. Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.

nThread Number of threads to use for parallel processes.

log_files list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and a log file list.

check_multi_gwas Ensure that only one model in GWAS sumstats or only one trait tested

Description

Ensure that only one model in GWAS sumstats or only one trait tested

Usage

check_multi_gwas(
 sumstats_dt, data table obj of the summary statistics file for the GWAS
 path, Filepath for the summary statistics file to be formatted
 analysis_trait, If multiple traits were studied, name of the trait for analysis from the GWAS. Default is NULL.
 ignore_multi_trait, 2
 mapping_file MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing of the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.
)
check_multi_rs_snp

Value

list containing sumstats_dt, the modified summary statistics data table object

check_multi_rs_snp Ensure that SNP ids don’t have multiple rs ids on one line

Description

Ensure that SNP ids don’t have multiple rs ids on one line

Usage

```r
check_multi_rs_snp(
  sumstats_dt,
  path,
  remove_multi_rs_snp,
  imputation_ind,
  log_folder_ind,
  check_save_out,
  tabix_index,
  nThread,
  log_files
)
```

Arguments

- **path** Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

- **remove_multi_rs_snp** Binary Sometimes summary statistics can have multiple RSIDs on one row (i.e. related to one SNP), for example "rs5772025_rs397784053". This can cause an error so by default, the first RS ID will be kept and the rest removed e.g."rs5772025". If you want to just remove these SNPs entirely, set it to TRUE. Default is FALSE.

- **imputation_ind** Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.

- **log_folder_ind** Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
check_no_allele

- **tabix_index**: Index the formatted summary statistics with `tabix` for fast querying.
- **nThread**: Number of threads to use for parallel processes.
- **log_files**: list of log file locations

Value

list containing `sumstats_dt`, the modified summary statistics data table object and the log file list.

check_no_allele: Ensure that A1 & A2 are present, if not can find it with SNP and other allele

Description

More care needs to be taken if one of A1/A2 is present, before imputing the other allele flipping needs to be checked

Usage

```r
check_no_allele(
  sumstats_dt,
  path,
  ref_genome,
  rsids,
  imputation_ind,
  allele_flip_check,
  log_folder_ind,
  check_save_out,
  tabix_index,
  nThread,
  log_files,
  bi_allelic_filter,
  dbSNP
)
```

Arguments

- **path**: Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to `MungeSumstats` using the path parameter.

- **ref_genome**: name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.
imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.

allele_flip_check Binary Should the allele columns be checked against reference genome to infer if flipping is necessary. Default is TRUE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with `tabix` for fast querying.

nThread Number of threads to use for parallel processes.

log_files list of log file locations

bi_allelic_filter Binary Should non-biallelic SNPs be removed. Default is TRUE.

dbSNP version of dbSNP to be used for imputation (144 or 155).

Value

A list containing two data tables:

- `sumstats_dt`: the modified summary statistics data table object
- `rsids`: `snpByld`, filtered to SNPs of interest if loaded already. Or else NULL.
- `allele_flip_check`: does the dataset require allele flip check
- `log_files`: log file list
- `bi_allelic_filter`: should multi-allelic SNPs be filtered out

check_no_chr_bp
Ensure that CHR and BP are missing if SNP is present, can find them

Description

Ensure that CHR and BP are missing if SNP is present, can find them
Usage

```r
check_no_chr_bp(
  sumstats_dt,
  path,
  ref_genome,
  rsids,
  imputation_ind,
  log_folder_ind,
  check_save_out,
  tabix_index,
  nThread,
  log_files,
  dbSNP
)
```

Arguments

- **path**: Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.
- **ref_genome**: name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.
- **imputation_ind**: Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.
- **log_folder_ind**: Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
- **tabix_index**: Index the formatted summary statistics with tabix for fast querying.
- **nThread**: Number of threads to use for parallel processes.
- **log_files**: list of log file locations
- **dbSNP**: version of dbSNP to be used for imputation (144 or 155).

Value

A list containing two data tables:

- **sumstats_dt**: the modified summary statistics data table object
- **rsids**: snpsByld, filtered to SNPs of interest if loaded already. Or else NULL
- **log_files**: log file list
check_no_rs_snp

Ensure that SNP appears to be valid RSIDs (starts with rs)

Description

Ensure that SNP appears to be valid RSIDs (starts with rs)

Usage

check_no_rs_snp(
 sumstats_dt,
 path,
 ref_genome,
 snp_ids_are_rs_ids,
 indels,
 imputation_ind,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files,
 dbSNP
)

Arguments

path
Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome
name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

snp_ids_are_rs_ids
Binary Should the supplied SNP ID’s be assumed to be RSIDs. If not, imputation using the SNP ID for other columns like base-pair position or chromosome will not be possible. If set to FALSE, the SNP RS ID will be imputed from the reference genome if possible. Default is TRUE.

indels
Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.

imputation_ind
Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.
log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.

nThread Number of threads to use for parallel processes.

log_files list of log file locations

dbSNP version of dbSNP to be used for imputation (144 or 155).

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list.

check_no_snp Ensure that SNP is present if not can find it with CHR and BP

Description

Ensure that SNP is present if not can find it with CHR and BP

Usage

check_no_snp(
 sumstats_dt,
 path,
 ref_genome,
 indels,
 imputation_ind,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files,
 dbSNP,
 verbose = TRUE
)

Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.
indels Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.

imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.

nThread Number of threads to use for parallel processes.

log_files list of log file locations

dbSNP version of dbSNP to be used for imputation (144 or 155).

verbose should messages be printed. Default it TRUE.

Value
list containing sumstats_dt, the modified summary statistics data table object and the log files list

check_numeric
Check numeric columns

Description
Checks for any columns that should be numeric, and ensures that they are indeed numeric.

Usage

```r
check_numeric(sumstats_dt, cols = c("P", "SE", "FRQ", "MAF", "BETA"))
```

Arguments

- **sumstats_dt** Summary stats with column names already standardised by `format_sumstats`.
- **cols** Names of columns that should be numeric. If any of these columns are not actually present in `sumstats_dt`, they will be skipped.

Value

`sumstats_dt`
check_n_int

Ensure that the N column is all integers

Description

Ensure that the N column is all integers

Usage

```r
check_n_int(sumstats_dt, path, convert_n_int, imputation_ind)
```

Arguments

- `sumstats_dt`: data table obj of the summary statistics file for the GWAS
- `path`: Filepath for the summary statistics file to be formatted
- `convert_n_int`: Binary, if N (the number of samples) is not an integer, should this be rounded? Default is TRUE.
- `imputation_ind`: Binary, Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.

Value

list containing `sumstats_dt`, the modified summary statistics data table object.

check_n_num

Ensure all SNPs have N less than X std dev below mean

Description

In case some SNPs were genotyped by a specialized genotyping array and have substantially more samples than others. These will be removed.

Usage

```r
check_n_num(
    sumstats_dt,  
    path, 
    N_std, 
    N_dropNA = FALSE, 
    log_folder_ind, 
    check_save_out, 
    tabix_index, 
    nThread, 
    log_files
)
```
check_on_ref_genome

Arguments

- **path**: Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

- **N_std**: numeric The number of standard deviations above the mean a SNP’s N is needed to be removed. Default is 5.

- **N_dropNA**: Drop rows where N is missing. Default is TRUE.

- **log_folder_ind**: Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

- **tabix_index**: Index the formatted summary statistics with tabix for fast querying.

- **nThread**: Number of threads to use for parallel processes.

- **log_files**: list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list

Description

Ensure all SNPs are on the reference genome

Usage

```r
check_on_ref_genome(
  sumstats_dt,  # Summary statistics data table
  path,  # Filepath for the summary statistics file
  ref_genome,  # Reference genome
  on_ref_genome,  # Whether SNPs are on the reference genome
  indels = indels,  # Indels
  rsids,  # Rsids
  imputation_ind,  # Imputation information
  log_folder_ind,  # Log file indicator
  check_save_out,  # Whether to save output
  tabix_index,  # Tabix indexing
  nThread,  # Number of threads
  log_files,  # Log file locations
  dbSNP  # dbsNP information
)
```
Arguments

- **path**: Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

- **ref_genome**: Name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

- **on_ref_genome**: Binary Should a check take place that all SNPs are on the reference genome by SNP ID. Default is TRUE.

- **indels**: Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.

- **imputation_ind**: Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.

- **log_folder_ind**: Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

- **tabix_index**: Index the formatted summary statistics with tabix for fast querying.

- **nThread**: Number of threads to use for parallel processes.

- **log_files**: list of log file locations

- **dbSNP**: version of dbSNP to be used for imputation (144 or 155).

Value

A list containing two data tables:

- **sumstats_dt**: the modified summary statistics data table object
- **rsids**: snpsByld, filtered to SNPs of interest if loaded already. Or else NULL
- **log_files**: log file list

check_pos_se

Ensure that the standard error (se) is positive for all SNPs Also impute se if missing

Description

Ensure that the standard error (se) is positive for all SNPs Also impute se if missing
check_pos_se

Usage

check_pos_se(
 sumstats_dt,
 path,
 pos_se,
 log_folder_ind,
 imputation_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files,
 impute_se
)

Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

pos_se Binary Should the standard Error (SE) column be checked to ensure it is greater than 0? Those that are, are removed (if present in sumstats file). Default TRUE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.

nThread Number of threads to use for parallel processes.

log_files list of log file locations

impute_se Binary, whether the standard error should be imputed using other effect data if it isn’t present in the sumstats. Note that this imputation is an approximation so could have an effect on downstream analysis. Use with caution. The different methods MungeSumstats will try and impute se (in this order or priority) are:

1. BETA / Z 2. abs(BETA/ qnorm(P/2)) Default is FALSE.

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list
check_range_p_val

Ensure that the p values are not >1 and if so set to 1

Description

Ensure that the p values are not >1 and if so set to 1

Usage

check_range_p_val(sumstats_dt, convert_large_p, convert_neg_p, imputation_ind)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS
convert_large_p Binary, should p-values >1 be converted to 1? P-values >1 should not be possible and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.
convert_neg_p Binary, should p-values <0 be converted to 0? Negative p-values should not be possible and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.
imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.

Value

list containing sumstats_dt, the modified summary statistics data table object

Source

sumstats_dt <- MungeSumstats::formatted_example() sumstats_dt$P[1:3] <- 5 sumstats_dt$P[6:10] <- -5 sumstats <- check_range_p_val(sumstats_dt = sumstats_dt, convert_large_p = TRUE, convert_neg_p = TRUE, imputation_ind = TRUE)
check_row.snp

Ensure all rows have SNPs beginning with rs or SNP; drop those that don’t

Description

Ensure all rows have SNPs beginning with rs or SNP; drop those that don’t

Usage

check_row.snp(
 sumstats_dt,
 path,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files
)

Arguments

path
 Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

log_folder_ind
 Binary. Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index
 Index the formatted summary statistics with tabix for fast querying.

nThread
 Number of threads to use for parallel processes.

log_files
 list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and log file list
check_save_path

Check if save path and log folder is appropriate

Description

Check if save path and log folder is appropriate

Usage

check_save_path(
 save_path,
 log_folder,
 log_folder_ind,
 tabix_index,
 write_vcf = FALSE,
 verbose = TRUE
)

Arguments

save_path File path to save formatted data.Defaults to tempfile(fileext = ".tsv.gz").
log_folder Filepath to the directory for the log files and the log of MungeSumstats messages to be stored. Default is a temporary directory. Note the name of the log files (log messages and log outputs) are now the same as the name of the file specified in the save path parameter with the extension '_log_msg.txt' and '_log_output.txt' respectively.
log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
tabix_index Index the formatted summary statistics with tabix for fast querying.
write_vcf Whether to write as VCF (TRUE) or tabular file (FALSE).
verbose Print messages.

Value

Corrected save_path, the file type, the separator, corrected log_folder, the log file extension.
check_signed_col

Ensure that there is at least one signed column in summary statistics file Impute beta if user requests

Description

Ensure that there is at least one signed column in summary statistics file Impute beta if user requests

Usage

check_signed_col(
 sumstats_dt,
 impute_beta,
 log_folder_ind,
 rsids,
 imputation_ind,
 check_save_out,
 tabix_index,
 log_files,
 nThread
)

Arguments

- **sumstats_dt**: data table obj of the summary statistics file for the GWAS
- **impute_beta**: Binary, whether BETA should be imputed using other effect data if it isn’t present in the sumstats. Note that this imputation is an approximation (for Z & SE approach) so could have an effect on downstream analysis. Use with caution. The different methods MungeSumstats will try and impute beta (in this order or priority) are:
 1. log(OR) 2. Z x SE Default value is FALSE.
- **log_folder_ind**: Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.
- **imputation_ind**: Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.
- **tabix_index**: Index the formatted summary statistics with `tabix` for fast querying.
- **log_files**: list of log file locations
- **nThread**: Number of threads to use for parallel processes.
check_small_p_val

Value
null

Description
Ensure that the non-negative p-values are not 5e-324 or lower, if so set to 0

Usage
check_small_p_val(sumstats_dt, convert_small_p, imputation_ind)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS
convert_small_p Binary, should non-negative p-values <= 5e-324 be converted to 0? Small p-values pass the R limit and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.
imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.

Value
list containing sumstats_dt, the modified summary statistics data table object

Source
check_strand_ambiguous

Remove SNPs with strand-ambiguous alleles

Description

Remove SNPs with strand-ambiguous alleles

Usage

check_strand_ambiguous(
 sumstats_dt,
 path,
 ref_genome,
 strand_ambig_filter,
 log_folder_ind,
 check_save_out,
 tabix_index,
 nThread,
 log_files
)

Arguments

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

strand_ambig_filter Binary Should SNPs with strand-ambiguous alleles be removed. Default is FALSE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

tabix_index Index the formatted summary statistics with tabix for fast querying.

nThread Number of threads to use for parallel processes.

log_files list of log file locations

Value

list containing sumstats_dt, the modified summary statistics data table object and the log file list
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Usage</th>
<th>Arguments</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>check_tabular</td>
<td>Ensure valid tabular format</td>
<td>check_tabular(header)</td>
<td>header: The summary statistics file for the GWAS</td>
<td>Whether the file is tabular</td>
</tr>
<tr>
<td>check_two_step_col</td>
<td>Ensure that CHR:BP aren’t merged into 1 column</td>
<td>check_two_step_col(sumstats_dt, path)</td>
<td>sumstats_dt: data table obj of the summary statistics file for the GWAS, path: Filepath for the summary statistics file to be formatted</td>
<td>list containing sumstats_dt, the modified summary statistics data table object</td>
</tr>
</tbody>
</table>
check_vcf Check if the inputted file is in VCF format

Description

Check if the inputted file is in VCF format

Usage

check_vcf(header)

Arguments

header Header of the GWAS summary statistics file.

Value

Whether the file is vcf or not

check_vital_col Ensure that all necessary columns are in the summary statistics file

Description

Ensure that all necessary columns are in the summary statistics file

Usage

check_vital_col(sumstats_dt)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS

Value

null
check_zscore

Check for Z-score column

Description

The following ensures that a Z-score column is present. The Z-score formula we used here is an R implementation of the formula used in LDSC's munge_sumstats.py:

Usage

```r
check_zscore(
    sumstats_dt,
    imputation_ind,
    compute_z = "BETA",
    force_new_z = FALSE,
    standardise_headers = FALSE,
    mapping_file
)
```

Arguments

- **sumstats_dt**: data table obj of the summary statistics file for the GWAS.
- **imputation_ind**: Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.
- **compute_z**: Whether to compute Z-score column. Default is FALSE. This can be computed from Beta and SE with \(\frac{\text{Beta}}{\text{SE}} \) or \(Z = \text{sign(BETA)} \times \text{sqrt(stats::qchisq(P,1,lower=FALSE))} \). **Note** that imputing the Z-score from P for every SNP will not be perfectly correct and may result in a loss of power. This should only be done as a last resort. Use 'BETA' to impute by BETA/SE and 'P' to impute by SNP p-value.
- **force_new_z**: When a "Z" column already exists, it will be used by default. To override and compute a new Z-score column from P set force_new_z=TRUE.
- **standardise_headers**: Run standardise_sumstats_column_headers_crossplatform first.
- **mapping_file**: MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing of the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.
Details

\[
\text{np.sqrt(chi2.isf(P, 1))}
\]

The R implementation is adapted from the GenomicSEM::munge function, after optimizing for speed using data.table:

\[
\text{sumstats_dt[, } Z := \text{sign(BETA)} \times \sqrt{\text{stats::qchisq(P,1,lower=FALSE)}} \text{]}
\]

NOTE: compute_z is set to TRUE by default to ensure standardisation of the "Z" column (which can be computed differently in different datasets).

Value

\[
\text{list("sumstats_dt"=sumstats_dt)}
\]

column_dictionary
Map column names to positions.

Description

Useful in situations where you need to specify columns by index instead of name (e.g. awk queries).

Usage

```
column\_dictionary(file\_path)
```

Arguments

- **file_path**
 Path to full summary stats file (or any really file you want to make a column dictionary for).

Value

Named list of column positions.

Source

Borrowed function from echotabix.
```
eduAttainOkbayPth <- system.file("extdata", "eduAttainOkbay.txt", package = "MungeSumstats" ) tmp <- tempfile(fileext = ".tsv") file.copy(eduAttainOkbayPth, tmp) cdic <- MungeSumstats:::column\_dictionary(file\_path = tmp)
```
Description

Check for N column if not present and user wants, impute N based on user’s sample size. **NOTE** this will be the same value for each SNP which is not necessarily correct and may cause issues down the line. N can also be inputted with "ldsc", "sum", "giant" or "metal" by passing one or multiple of these.

Usage

```r
compute_nsize(
  sumstats_dt,
  imputation_ind = FALSE,
  compute_n = c("ldsc", "giant", "metal", "sum"),
  standardise_headers = FALSE,
  force_new = FALSE,
  return_list = TRUE
)
```

Arguments

- `sumstats_dt`: data table obj of the summary statistics file for the GWAS.
- `imputation_ind`: Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.
- `compute_n`: How to compute per-SNP sample size (new column "N").
 - 0: N will not be computed.
 - >0: If any number >0 is provided, that value will be set as N for every row. **Note**: Computing N this way is incorrect and should be avoided if at all possible.
 - "sum": N will be computed as: cases (N_CAS) + controls (N_CON), so long as both columns are present.
 - "ldsc": N will be computed as effective sample size: \(\text{Neff} = \frac{(N_{\text{CAS}}+N_{\text{CON}})(N_{\text{CAS}}/(N_{\text{CAS}}+N_{\text{CON}}))}{\text{mean}(N_{\text{CAS}}/(N_{\text{CAS}}+N_{\text{CON}})(N_{\text{CAS}}+N_{\text{CON}})==\max(N_{\text{CAS}}+N_{\text{CON}}))} \).
 - "giant": N will be computed as effective sample size: \(\text{Neff} = \frac{2}{1/N_{\text{CAS}} + 1/N_{\text{CON}}} \).
 - "metal": N will be computed as effective sample size: \(\text{Neff} = \frac{4}{1/N_{\text{CAS}} + 1/N_{\text{CON}}} \).
Compute (effective) sample size

Description

Computes sample sum (as new column "N") or effective sample size (ESS) (as new column "Neff"). Computing ESS is important as it takes into account the proportion of cases to controls (i.e. class imbalance) so as not to overestimate your statistical power.

Usage

\[
\text{compute_sample_size}(\text{sumstats_dt}, \text{method} = c(\text{"ldsc", "giant", "metal", "sum"}), \text{force_new} = \text{FALSE}, \text{append_method_name} = \text{FALSE})
\]

Arguments

- \text{sumstats_dt}: Summary statistics data.table.
- \text{method}: Method for computing (effective) sample size.
 - "ldsc":
 \[
 N_{\text{eff}} = \frac{(N_{\text{CAS}} + N_{\text{COn}}) \times (N_{\text{CAS}} / (N_{\text{CAS}} + N_{\text{COn}}))}{\text{mean}((N_{\text{CAS}} / (N_{\text{CAS}} + N_{\text{COn}})) \times (N_{\text{CAS}} + N_{\text{COn}})} = \text{max}((N_{\text{CAS}} + N_{\text{COn}})))
 \]
 bulik/ldsc GitHub Issue bulik/ldsc GitHub code
 - "giant":
 \[
 N_{\text{eff}} = \frac{2}{\frac{1}{N_{\text{CAS}}} + \frac{1}{N_{\text{COn}}}}
 \]
 Winkler et al. 2014, Nature
compute_sample_size_n

Add user supplied sample size

Description

Add user supplied sample size

Usage

compute_sample_size_n(sumstats_dt, method, force_new = FALSE)

Arguments

sumstats_dt Summary statistics data.table.
method Method for computing (effective) sample size.

• "ldsc":
 \[Neff = \frac{(N_{C\text{AS}}+N_{C\text{ON}})\times(N_{C\text{AS}}/(N_{C\text{AS}}+N_{C\text{ON}}))}{\text{mean}((N_{C\text{AS}}/(N_{C\text{AS}}+N_{C\text{ON}}))\times(N_{C\text{AS}}+N_{C\text{ON}}))} \]

Willer et al. 2010, Bioinformatics

• "metal":
 \[Neff = \frac{4/(1/N_{C\text{AS}} + 1/N_{C\text{ON}})}{N_{C\text{AS}} + N_{C\text{ON}}} \]

• "sum":
 \[N = N_{C\text{AS}} + N_{C\text{ON}} \]
 Simple summation of cases and controls that does not account for class imbalance.

• "<integer>":
 \[N = \text{<integer>} \]
 If method is a positive integer, it will be used as N for every row.

force_new If "Neff" (or "N") already exists in sumstats_dt, replace it with the recomputed version.
append_method_name should Neff column have an indicator to explain the method that makes it. Default is FALSE unless multiple methods are passed

Details

There are many different formulas for calculating ESS, but LDSC is probably the best method available here, as it doesn’t assume that the proportion of controls:cases is 2:1 (as in GIANT) or 4:1 (as in METAL).

Value

A data.table with a new column "Neff" or "N"
compute_sample_size_neff

Compute Neff/N

Description
Compute Neff/N

Usage
compute_sample_size_neff(
 sumstats_dt,
 method,
 force_new = FALSE,
 append_method_name = FALSE
)

Arguments
sumstats_dt Summary statistics data.table.
method Method for computing (effective) sample size.

• "ldsc":
Neff = (N_CAS + N_CON)*(N_CAS/(N_CAS + N_CON))/mean((N_CAS/(N_CAS +
N_CON))[(N_CAS + N_CON) == max(N_CAS + N_CON)])
bulik/ldsc GitHub Issue bulik/ldsc GitHub code
• "giant":
\[N_{eff} = \frac{2}{1/N_{Cas} + 1/N_{Con}} \]
Winkler et al. 2014, Nature

• "metal":
\[N_{eff} = \frac{4}{1/N_{Cas} + 1/N_{Con}} \]
Willer et al. 2010, Bioinformatics

• "sum":
\[N = N_{Cas} + N_{Con} \]
Simple summation of cases and controls that does not account for class imbalance.

• "<integer>":
\[N = <\text{integer}> \]
If method is a positive integer, it will be used as N for every row.

force_new
If "Neff" (or "N") already exists in sumstats_dt, replace it with the recomputed version.

append_method_name
Should Neff column have an indicator to explain the method that makes it. Default is FALSE unless multiple methods are passed.

Value
No return

convert_sumstats
Convert summary statistics to desired object type

Description
Convert summary statistics to desired object type

Usage

```r
convert_sumstats(
  sumstats_dt,
  return_format = c("data.table", "vranges", "granges")
)
```

Arguments

- **return_format**
 Object type to convert to; "data.table", "GenomicRanges" or "VRanges" (default is "data.table").

Value
Summary statistics in the converted format
DF_to_dt

DF_to_dt
DataFrame to data.table

Description

Efficiently convert DataFrame to data.table.

Usage

`DF_to_dt(DF)`

Arguments

- **DF**
 `DataFrame` object.

Value

VCF data in data.table format.

Source

Solution from Bioc forum

downloader

downloader wrapper

Description

R wrapper for `axel` (multi-threaded) and `download.file` (single-threaded) download functions.

Usage

```r
downloader(
  input_url,
  output_path,
  download_method = "axel",
  background = FALSE,
  force_overwrite = FALSE,
  quiet = TRUE,
  show_progress = TRUE,
  continue = TRUE,
  nThread = 1,
  alternate = TRUE,
  check_certificates = TRUE,
  timeout = 10 * 60
)
```
Arguments

input_url input_url.
output_path output_path.
download_method

"axel" (multi-threaded) or "download.file" (single-threaded).
background Run in background
force_overwrite Overwrite existing file.
quiet Run quietly.
show_progress show_progress.
continue continue.
nThread Number of threads to parallelize over.
alternate alternate,
check_certificates
check_certificates

timeout How many seconds before giving up on download. Passed to download.file. Default: 10*60 (10min).

Value

Local path to downloaded file.

Source

Suggestion to avoid 'proc$get_built_file() : Build process failed'

See Also

Other downloaders: axel()

download_vcf Download VCF file and its index file from Open GWAS

Description

Ideally, we would use gwasvcf instead but it hasn’t been made available on CRAN or Bioconductor yet, so we can’t include it as a dep.
download_vcf

Usage

download_vcf(
 vcf_url,
 vcf_dir = tempdir(),
 vcf_download = TRUE,
 download_method = "download.file",
 force_new = FALSE,
 quiet = FALSE,
 timeout = 10 * 60,
 nThread = 1
)

Arguments

vcf_url Remote URL to VCF file.
vcf_dir Where to download the original VCF from Open GWAS. WARNING: This is set to tempdir() by default. This means the raw (pre-formatted) VCFs be deleted upon ending the R session. Change this to keep the raw VCF file on disk (e.g. vcf_dir="./raw_vcf").
vcf_download Download the original VCF from Open GWAS.
download_method "axel" (multi-threaded) or "download.file" (single-threaded).
force_new Overwrite a previously downloaded VCF with the same path name.
quiet Run quietly.
timeout How many seconds before giving up on download. Passed to download.file. Default: 10*60 (10min).
nThread Number of threads to parallelize over.

Value

List containing the paths to the downloaded VCF and its index file.

Examples

only run the examples if user has internet access:
if(try(is.character(getURL("www.google.com")))==TRUE){
 vcf_url <- "https://gwas.mrcieu.ac.uk/files/ieu-a-298/ieu-a-298.vcf.gz"
 out_paths <- download_vcf(vcf_url = vcf_url)
}
drop_duplicate_cols
Drop duplicate columns

Description
Drop columns with identical names (if any exist) within a data.table.

Usage
drop_duplicate_cols(dt)

Arguments
- **dt** data.table

Value
Null output

drop_duplicate_rows
Drop duplicate rows

Description
Drop rows with duplicate values across all columns.

Usage
drop_duplicate_rows(dt, verbose = TRUE)

Arguments
- **dt** data.table
- **verbose** Print messages.

Value
Filtered dt.
find_sumstats

Search Open GWAS for datasets matching criteria

Description

For each argument, searches for any datasets matching a case-insensitive substring search in the respective metadata column. Users can supply a single character string or a list/vector of character strings.

Usage

```r
find_sumstats(
  ids = NULL,
  traits = NULL,
  years = NULL,
  consortia = NULL,
  authors = NULL,
  populations = NULL,
  categories = NULL,
  subcategories = NULL,
  builds = NULL,
  pmids = NULL,
  min_sample_size = NULL,
  min_ncase = NULL,
  min_ncontrol = NULL,
  min_nsnp = NULL,
  include_NAs = FALSE,
  access_token = check_access_token()
)
```

Arguments

- `ids` List of Open GWAS study IDs (e.g. c("prot-a-664", "ieu-b-4760").
- `traits` List of traits (e.g. c("parkinson", "Alzheimer").
- `years` List of years (e.g. seq(2015, 2021) or c(2010, 2012, 2021)).
- `consortia` List of consortia (e.g. c("MRC-IEU", "Neale Lab").
- `authors` List of authors (e.g. c("Elsworth", "Kunkle", "Neale").
- `populations` List of populations (e.g. c("European", "Asian").
- `categories` List of categories (e.g. c("Binary", "Continuous", "Disease", "Risk factor").
- `subcategories` List of categories (e.g. c("neurological", "Immune", "cardio").
- `builds` List of genome builds (e.g. c("hg19", "grch37").
- `pmids` List of PubMed ID (exact matches only) (e.g. c(29875488, 30305740, 28240269)).
- `min_sample_size` Minimum total number of study participants (e.g. 5000).
min_ncase Minimum number of case participants (e.g. 1000).
min_ncontrol Minimum number of control participants (e.g. 1000).
min_nsnp Minimum number of SNPs (e.g. 200000).
include_NAs Include datasets with missing metadata for size criteria (i.e. min_sample_size, min_ncase, or min_ncontrol).
access_token Google OAuth2 access token. Used to authenticate level of access to data

Details
By default, returns metadata for all studies currently in Open GWAS database.

Value
(Filter) GWAS metadata table.

Examples
By ID
metagwas <- find_sumstats(ids = c(
 "ieu-b-4760",
 "prot-a-1725",
 "prot-a-664"
))

By ID amd sample size
metagwas <- find_sumstats(
 ids = c("ieu-b-4760", "prot-a-1725", "prot-a-664"),
 min_sample_size = 5000
)

By criteria
metagwas <- find_sumstats(
 traits = c("alzheimer", "parkinson"),
 years = seq(2015, 2021)
)

Description
Returns an example of summary stats that have had their column names already standardised with standardise_header.
format_sumstats

Usage

formatted_example(
 path = system.file("extdata", "eduAttainOkbay.txt", package = "MungeSumstats"),
 formatted = TRUE,
 sorted = TRUE
)

Arguments

path Path to raw example file. Default to built-in dataset.
formatted Whether the column names should be formatted (default: TRUE).
sorted Whether the rows should be sorted by genomic coordinates (default: TRUE).

Value

sumstats_dt

Examples

sumstats_dt <- MungeSumstats::formatted_example()

format_sumstats

Description

Check that summary statistics from GWAS are in a homogeneous format

Usage

format_sumstats(
 path,
 ref_genome = NULL,
 convert_ref_genome = NULL,
 chain_source = "ensembl",
 convert_small_p = TRUE,
 convert_large_p = TRUE,
 convert_neg_p = TRUE,
 compute_z = FALSE,
 force_new_z = FALSE,
 compute_n = 0L,
 convert_n_int = TRUE,
 impute_beta = FALSE,
 es_is_beta = TRUE,
 impute_se = FALSE,
 analysis_trait = NULL,
ignore_multi_trait = FALSE,
INFO_filter = 0.9,
FRQ_filter = 0,
pos_se = TRUE,
effect_columns_nonzero = FALSE,
N_std = 5,
N_dropNA = TRUE,
chr_style = "Ensembl",
rmv_chr = c("X", "Y", "MT"),
on_ref_genome = TRUE,
infer_eff_direction = TRUE,
strand_ambig_filter = FALSE,
allele_flip_check = TRUE,
allele_flip_drop = TRUE,
allele_flip_z = TRUE,
allele_flip_fq = TRUE,
bi_allelic_filter = TRUE,
flip_fq_as_biallelic = FALSE,
snp_ids_are_rs_ids = TRUE,
remove_multi_rs_snp = FALSE,
frq_is_maf = TRUE,
indels = TRUE,
drop_indels = FALSE,
dbSNP = 155,
check_dups = TRUE,
sort_coordinates = TRUE,
nThread = 1,
save_path = tempfile(fileext = ".tsv.gz"),
write_vcf = FALSE,
tabix_index = FALSE,
return_data = FALSE,
return_format = "data.table",
ldsc_format = FALSE,
save_format = NULL,
log_folder_ind = FALSE,
log_mungesumstats_msgs = FALSE,
log_folder = tempdir(),
imputation_ind = FALSE,
force_new = FALSE,
mapping_file = sumstatsColHeaders,
rmv_chrPrefix = NULL
)

Arguments

path
Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.
ref_genome
name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

convert_ref_genome
name of the reference genome to convert to ("GRCh37" or "GRCh38"). This will only occur if the current genome build does not match. Default is not to convert the genome build (NULL).

chain_source
source of the chain file to use in liftover, if converting genome build ("ucsc" or "ensembl"). Note that the UCSC chain files require a license for commercial use. The Ensembl chain is used by default ("ensembl").

convert_small_p
Binary, should non-negative p-values <= 5e-324 be converted to 0? Small p-values pass the R limit and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.

convert_large_p
Binary, should p-values >1 be converted to 1? P-values >1 should not be possible and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.

convert_neg_p
Binary, should p-values <0 be converted to 0? Negative p-values should not be possible and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.

compute_z
Whether to compute Z-score column. Default is FALSE. This can be computed from Beta and SE with (Beta/SE) or P (Z:=sign(BETA)*sqrt(stats::qchisq(P,1,lower=FALSE))). Note that imputing the Z-score from P for every SNP will not be perfectly correct and may result in a loss of power. This should only be done as a last resort. Use 'BETA' to impute by BETA/SE and 'P' to impute by SNP p-value.

force_new_z
When a "Z" column already exists, it will be used by default. To override and compute a new Z-score column from P set force_new_z=TRUE.

compute_n
Whether to impute N. Default of 0 won’t impute, any other integer will be imputed as the N (sample size) for every SNP in the dataset. Note that imputing the sample size for every SNP is not correct and should only be done as a last resort. N can also be inputted with "ldsc", "sum", "giant" or "metal" by passing one of these for this field or a vector of multiple. Sum and an integer value creates an N column in the output whereas giant, metal or ldsc create an Neff or effective sample size. If multiples are passed, the formula used to derive it will be indicated.

convert_n_int
Binary, if N (the number of samples) is not an integer, should this be rounded? Default is TRUE.

impute_beta
Binary, whether BETA should be imputed using other effect data if it isn’t present in the sumstats. Note that this imputation is an approximation (for Z & SE approach) so could have an effect on downstream analysis. Use with caution. The different methods MungeSumstats will try and impute beta (in this order or priority) are:

1. log(OR) 2. Z x SE Default value is FALSE.

es_is_beta
Binary, whether to map ES to BETA. We take BETA to be any BETA-like value (including Effect Size). If this is not the case for your sumstats, change this to FALSE. Default is TRUE.
impute_se Binary, whether the standard error should be imputed using other effect data if it isn’t present in the sumstats. Note that this imputation is an approximation so could have an effect on downstream analysis. Use with caution. The different methods MungeSumstats will try and impute se (in this order or priority) are:
 1. BETA / Z 2. abs(BETA/ qnorm(P/2)) Default is FALSE.

analysis_trait If multiple traits were studied, name of the trait for analysis from the GWAS. Default is NULL.

ignore_multi_trait If you have multiple traits (p-values) in the study but you want to ignore these instead use a standard named p-value, set to TRUE. By default is FALSE which will check for multi-traits.

INFO_filter numeric The minimum value permissible of the imputation information score (if present in sumstats file). Default 0.9.

FRQ_filter numeric The minimum value permissible of the frequency(FRQ) of the SNP (i.e. Allele Frequency (AF)) (if present in sumstats file). By default no filtering is done, i.e. value of 0.

pos_se Binary Should the standard Error (SE) column be checked to ensure it is greater than 0? Those that are, are removed (if present in sumstats file). Default TRUE.

effect_columns_nonzero Binary should the effect columns in the data BETA, OR (odds ratio), LOG_ODDS, SIGNED_SUMSTAT be checked to ensure no SNP=0. Those that do are removed (if present in sumstats file). Default FALSE.

N_std numeric The number of standard deviations above the mean a SNP’s N is needed to be removed. Default is 5.

N_dropNA Drop rows where N is missing. Default is TRUE.

chr_style Chromosome naming style to use in the formatted summary statistics file ("NCBI", "UCSC", "dbSNP", or "Ensembl"). The NCBI and Ensembl styles both code chromosomes as 1-22, X, Y, MT; the UCSC style is chr1-chr22, chrX, chrY, chrM; and the dbSNP style is ch1-ch22, chX, chY, chMT. Default is Ensembl.

rmv_chr Chromosomes to exclude from the formatted summary statistics file. Use NULL if no filtering is necessary. Default is c("X", "Y", "MT") which removes all non-autosomal SNPs.

on_ref_genome Binary Should a check take place that all SNPs are on the reference genome by SNP ID. Default is TRUE.

infer_eff_direction Binary Should a check take place to ensure the alleles match the effect direction? Default is TRUE.

strand_ambig_filter Binary Should SNPs with strand-ambiguous alleles be removed. Default is FALSE.

allele_flip_check Binary Should the allele columns be checked against reference genome to infer if flipping is necessary. Default is TRUE.

allele_flip_drop Binary Should the SNPs for which neither their A1 or A2 base pair values match a reference genome be dropped. Default is TRUE.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allele_flip_z</td>
<td>Binary should the Z-score be flipped along with effect and FRQ columns like Beta? It is assumed to be calculated off the effect size not the P-value and so will be flipped i.e. default TRUE.</td>
</tr>
<tr>
<td>allele_flip_frq</td>
<td>Binary should the frequency (FRQ) column be flipped along with effect and Z-score columns like Beta? Default TRUE.</td>
</tr>
<tr>
<td>bi_allelic_filter</td>
<td>Binary Should non-biallelic SNPs be removed. Default is TRUE.</td>
</tr>
<tr>
<td>flip_frq_as_biallelic</td>
<td>Binary Should non-bi-allelic SNPs frequency values be flipped as 1-p despite there being other alternative alleles? Default is FALSE but if set to TRUE, this allows non-bi-allelic SNPs to be kept despite needing flipping.</td>
</tr>
<tr>
<td>snp_ids_are_rs_ids</td>
<td>Binary Should the supplied SNP ID’s be assumed to be RSIDs. If not, imputation using the SNP ID for other columns like base-pair position or chromosome will not be possible. If set to FALSE, the SNP RS ID will be imputed from the reference genome if possible. Default is TRUE.</td>
</tr>
<tr>
<td>remove_multi_rs_snp</td>
<td>Binary Sometimes summary statistics can have multiple RSIDs on one row (i.e. related to one SNP), for example "rs5772025_rs397784053". This can cause an error so by default, the first RS ID will be kept and the rest removed e.g."rs5772025". If you want to just remove these SNPs entirely, set it to TRUE. Default is FALSE.</td>
</tr>
<tr>
<td>frq_is_maf</td>
<td>Conventionally the FRQ column is intended to show the minor/effect allele frequency (MAF) but sometimes the major allele frequency can be inferred as the FRQ column. This logical variable indicates that the FRQ column should be renamed to MAJOR_ALLELE_FRQ if the frequency values appear to relate to the major allele i.e. >0.5. By default this mapping won’t occur i.e. is TRUE.</td>
</tr>
<tr>
<td>indels</td>
<td>Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.</td>
</tr>
<tr>
<td>drop_indels</td>
<td>Binary, should any indels found in the sumstats be dropped? These can not be checked against a reference dataset and will have the same RS ID and position as SNPs which can affect downstream analysis. Default is False.</td>
</tr>
<tr>
<td>dbSNP</td>
<td>version of dbSNP to be used for imputation (144 or 155).</td>
</tr>
<tr>
<td>check_dups</td>
<td>whether to check for duplicates - if formatting QTL datasets this should be set to FALSE otherwise keep as TRUE. Default is TRUE.</td>
</tr>
<tr>
<td>sort_coordinates</td>
<td>Whether to sort by coordinates of resulting sumstats</td>
</tr>
<tr>
<td>nThread</td>
<td>Number of threads to use for parallel processes.</td>
</tr>
<tr>
<td>save_path</td>
<td>File path to save formatted data. Defaults to tempfile(fileext=".tsv.gz").</td>
</tr>
<tr>
<td>write_vcf</td>
<td>Whether to write as VCF (TRUE) or tabular file (FALSE).</td>
</tr>
<tr>
<td>tabix_index</td>
<td>Index the formatted summary statistics with tabix for fast querying.</td>
</tr>
<tr>
<td>return_data</td>
<td>Return data. table, GRanges or VRanges directly to user. Otherwise, return the path to the save data. Default is FALSE.</td>
</tr>
</tbody>
</table>
format_sumstats

return_format If return_data is TRUE. Object type to be returned ("data.table", "vranges", "granges").

ldsc_format DEPRECATED, do not use. Use save_format="LDSC" instead.

save_format Output format of sumstats. Options are NULL - standardised output format from MungeSumstats, LDSC - output format compatible with LDSC and openGWAS - output compatible with openGWAS VCFs. Default is "NULL".

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

log_mungesumstats_msgs Binary Should a log be stored containing all messages and errors printed by MungeSumstats in a run. Default is FALSE.

log_folder Filepath to the directory for the log files and the log of MungeSumstats messages to be stored. Default is a temporary directory. Note the name of the log files (log messages and log outputs) are now the same as the name of the file specified in the save path parameter with the extension ".log_msg.txt" and ".log_output.txt" respectively.

imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. **Note** these columns will be in the formatted summary statistics returned. Default is FALSE.

force_new If a formatted file of the same names as save_path exists, formatting will be skipped and this file will be imported instead (default). Set force_new=TRUE to override this.

mapping_file MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing of the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.

rmv_chrPrefix Is now deprecated, do not use. Use chr_style instead - chr_style = 'Ensembl' will give the same result as rmv_chrPrefix=TRUE used to give.

Value

The address for the modified sumstats file or the actual data dependent on user choice. Also, if log files wanted by the user, the return in both above instances are a list.

Examples

Pass path to Educational Attainment Okbay sumstat file to a temp directory

eduAttainOkbayPth <- system.file("extdata", "eduAttainOkbay.txt", package = "MungeSumstats"
Call uses reference genome as default with more than 2GB of memory, which is more than what 32-bit Windows can handle so remove certain checks
Using dbSNP = 144 for speed as it’s smaller but you should use 155 unless you know what you are doing and need 144

```r
is_32bit_windows <- .Platform$OS.type == "windows" & .Platform$r_arch == "i386"
if (!is_32bit_windows) {
  reformatted <- format_sumstats(
    path = eduAttainOkbayPth,
    ref_genome = "GRCh37",
    dbSNP = 144
  )
} else {
  reformatted <- format_sumstats(
    path = eduAttainOkbayPth,
    ref_genome = "GRCh37",
    on_ref_genome = FALSE,
    strand_ambig_filter = FALSE,
    bi_allelic_filter = FALSE,
    allele_flip_check = FALSE,
    dbSNP=144
  )
}
# returned location has the updated summary statistics file
```

get_access_token

Get access token for OAuth2 access to MR Base

Description

Get access token for OAuth2 access to MR Base

Usage

```r
get_access_token()
```

Value

access token string
get_chain_file Download chain file for liftover

Description
Download chain file for liftover

Usage
get_chain_file(
 from = c("hg38", "hg19"),
 to = c("hg19", "hg38"),
 chain_source = c("ucsc", "ensembl"),
 save_dir = tempdir()
)

Arguments
from genome build converted from ("hg38", "hg19")
to genome build converted to ("hg19", "hg38")
chain_source chain file source used ("ucsc" as default, or "ensembl")
save_dir where is the chain file saved? Default is a temp directory
verbose extra messages printed? Default is TRUE

Value
loaded chain file for liftover

Source
UCSC chain files
Ensembl chain files

get_eff_frq_allele_combns
Get combinations of uncorrected allele and effect (and frq) columns

Description
Get combinations of uncorrected allele and effect (and frq) columns
Usage

get_eff_frq_allele_combns(
 mapping_file = sumstatsColHeaders,
 eff_frq_cols = c("BETA", "OR", "LOG_ODDS", "SIGNED_SUMSTAT", "Z", "FRQ")
)

Arguments

mapping_file MungeSumstats has a pre-defined column-name mapping file which should cover
the most common column headers and their interpretations. However, if a col-
umn header that is in your file is missing of the mapping we give is incorrect
you can supply your own mapping file. Must be a 2 column dataframe with col-
umn names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for
default mapping and necessary format.

eff_frq_cols Corrected effect or frequency column names found in a sumstats. Default of
BETA, OR, LOG_ODDS, SIGNED_SUMSTAT, Z and FRQ.

Value

datatable containing uncorrected and corrected combinations

get_genome_build Infers the genome build of the summary statistics file (GRCh37 or
GRCh38) from the data. Uses SNP (RSID) & CHR & BP to get genome
build.

Description

Infers the genome build of the summary statistics file (GRCh37 or GRCh38) from the data. Uses
SNP (RSID) & CHR & BP to get genome build.

Usage

get_genome_build(
 sumstats,
 nThread = 1,
 sampled_snps = 10000,
 standardise_headers = TRUE,
 mapping_file = sumstatsColHeaders,
 dbSNP = 155,
 header_only = FALSE,
 allele_match_ref = FALSE,
 ref_genome = NULL
)
get Genome Builds

Arguments

sumstats data table/data frame obj of the summary statistics file for the GWAS, or file path to summary statistics file.
nThread Number of threads to use for parallel processes.
sampled_snps Downsample the number of SNPs used when inferring genome build to save time.
standardise_headers Run standardise_sumstats_column_headers_crossplatform.
mapping_file MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing of the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.
dbSNP version of dbSNP to be used (144 or 155). Default is 155.
header_only Instead of reading in the entire sumstats file, only read in the first N rows where N = sampled_snps. This should help speed up cases where you have to read in sumstats from disk each time.
allele_match_ref Instead of returning the genome_build this will return the proportion of matches to each genome build for each allele (A1,A2).
ref_genome name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

Value

ref_genome the genome build of the data

get Genome Builds

Description

Infers the genome build of summary statistics files (GRCh37 or GRCh38) from the data. Uses SNP (RSID) & CHR & BP to get genome build.

Usage

get Genome Builds(
 sumstats_list,
 header_only = TRUE,
 sampled_snps = 10000,
 names_from_paths = FALSE,
 dbSNP = 155,
 nThread = 1
)
Arguments

- **sumstats_list**: A named list of paths to summary statistics, or a named list of `data.table` objects.
- **header_only**: Instead of reading in the entire sumstats file, only read in the first N rows where N=sampled_snps. This should help speed up cases where you have to read in sumstats from disk each time.
- **sampled_snps**: Downsample the number of SNPs used when inferring genome build to save time.
- **names_from_paths**: Infer the name of each item in sumstats_list from its respective file path. Only works if sumstats_list is a list of paths.
- **dbSNP**: Version of dbSNP to be used (144 or 155). Default is 155.
- **nThread**: Number of threads to use for parallel processes.

Details

Iterative version of `get_genome_build`.

Value

- `ref_genome` the genome build of the data

Examples

```r
# Pass path to Educational Attainment Okbay sumstat file to a temp directory
eduAttainOkbayPth <- system.file("extdata", "eduAttainOkbay.txt",
    package = "MungeSumstats"
)
sumstats_list <- list(ss1 = eduAttainOkbayPth, ss2 = eduAttainOkbayPth)

## Call uses reference genome as default with more than 2GB of memory,
## which is more than what 32-bit Windows can handle so remove certain checks
is_32bit_windows <-
  .Platform$OS.type == "windows" && .Platform$r_arch == "i386"
if (!is_32bit_windows) {

  # multiple sumstats can be passed at once to get all their genome builds:
  #ref_genomes <- get_genome_builds(sumstats_list = sumstats_list)
  #just passing first here for speed
  sumstats_list_quick <- list(ss1 = eduAttainOkbayPth)
  ref_genomes <- get_genome_builds(sumstats_list = sumstats_list_quick,
        dbSNP=144)
}
```
get_query_content
Parse out json response from httr object

Description
Parse out json response from httr object

Usage
get_query_content(response)

Arguments
response
Output from httr

Value
Parsed json output from query, often in form of data frame. If status code is not successful then return the actual response.

get_unique_name_log_file
Simple function to ensure the new entry name to a list doesn’t have the same name as another entry

Description
Simple function to ensure the new entry name to a list doesn’t have the same name as another entry

Usage
get_unique_name_log_file(name, log_files)

Arguments
name
proposed name for the entry
log_files
list of log file locations

Value
a unique name (character)
get_vcf_sample_ids

Get VCF sample ID(s)

Description
Get VCF sample ID(s)

Usage
get_vcf_sample_ids(path)

Arguments
path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

Value
sample_id

granges_to_dt GenomicRanges to data.table

Description
Convert a GRanges into a data.table.

Usage
granges_to_dt(gr)

Arguments
gr A GRanges object.

Value
A data.table object.

Source
Code adapted from GenomicDistributions.
gwasinfo

Get list of studies with available GWAS summary statistics through API

Description

Get list of studies with available GWAS summary statistics through API

Usage

```r
gwasinfo(id = NULL, access_token = check_access_token())
```

Arguments

- `id`
 List of MR-Base IDs to retrieve. If NULL (default) retrieves all available datasets
- `access_token`
 Google OAuth2 access token. Used to authenticate level of access to data

Value

Dataframe of details for all available studies

hg19ToHg38

UCSC Chain file hg19 to hg38

Description

UCSC Chain file hg19 to hg38, .chain.gz file, downloaded from https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/ on 09/10/21

Format

gunzipped chain file

Details

UCSC Chain file hg19 to hg38, .chain.gz file, downloaded on 09/10/21 To be used as a back up if the download from UCSC fails.

Source

The chain file was downloaded from https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/
utils::download.file('ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/liftOver/hg19ToHg38.over.chain.gz',...
Description
UCSC Chain file hg38 to hg19, .chain.gz file, downloaded from https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/ on 09/10/21

Format
gunzipped chain file

Details
UCSC Chain file hg38 to hg19, .chain.gz file, downloaded on 09/10/21 To be used as a back up if the download from UCSC fails.

Source
The chain file was downloaded from https://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/
utils::download.file('ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz', tempdir())

Description
Local ieu-a-298 file from IEU Open GWAS, downloaded on 09/10/21.

Format
gunzipped tsv file

Details
Local ieu-a-298 file from IEU Open GWAS, downloaded on 09/10/21. This is done in case the download in the package vignette fails.

Source
The chain file was downloaded from https://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/
utils::download.file('ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz', tempdir())
import_sumstats

Source

The file was downloaded with: MungeSumstats::import_sumstats(ids = "ieu-a-298", ref_genome = "GRCH37")

import_sumstats

Import full genome-wide GWAS summary statistics from Open GWAS

Description

Requires internet access to run.

Usage

```r
import_sumstats(
  ids,
  vcf_dir = tempdir(),
  vcf_download = TRUE,
  save_dir = tempdir(),
  write_vcf = FALSE,
  download_method = "download.file",
  quiet = TRUE,
  force_new = FALSE,
  force_new_vcf = FALSE,
  nThread = 1,
  parallel_across_ids = FALSE,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ids</td>
<td>List of Open GWAS study IDs (e.g. <code>c("prot-a-664", "ieu-b-4760")</code>).</td>
</tr>
<tr>
<td>vcf_dir</td>
<td>Where to download the original VCF from Open GWAS. WARNING: This is set</td>
</tr>
<tr>
<td></td>
<td>to <code>tempdir()</code> by default. This means the raw (pre-formatted) VCFs be deleted</td>
</tr>
<tr>
<td></td>
<td>upon ending the R session. Change this to keep the raw VCF file on disk (e.g.</td>
</tr>
<tr>
<td></td>
<td><code>vcf_dir="/raw_vcf"</code>).</td>
</tr>
<tr>
<td>vcf_download</td>
<td>Download the original VCF from Open GWAS.</td>
</tr>
<tr>
<td>save_dir</td>
<td>Directory to save formatted summary statistics in.</td>
</tr>
<tr>
<td>write_vcf</td>
<td>Whether to write as VCF (TRUE) or tabular file (FALSE).</td>
</tr>
<tr>
<td>download_method</td>
<td>"axel" (multi-threaded) or "download.file" (single-threaded).</td>
</tr>
<tr>
<td>quiet</td>
<td>Run quietly.</td>
</tr>
<tr>
<td>force_new</td>
<td>If a formatted file of the same names as save_path exists, formatting will be</td>
</tr>
<tr>
<td></td>
<td>skipped and this file will be imported instead (default). Set force_new=TRUE</td>
</tr>
<tr>
<td></td>
<td>to override this.</td>
</tr>
</tbody>
</table>

force_new_vcf Overwrite a previously downloaded VCF with the same path name.
nThread Number of threads to use for parallel processes.
parallel_across_ids
If parallel_across_ids=TRUE and nThread>1, then each ID in ids will be processed in parallel.

Arguments passed on to format_sumstats

path Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

convert_ref_genome name of the reference genome to convert to ("GRCh37" or "GRCh38"). This will only occur if the current genome build does not match. Default is not to convert the genome build (NULL).

chain_source source of the chain file to use in liftover, if converting genome build ("ucsc" or "ensembl"). Note that the UCSC chain files require a license for commercial use. The Ensembl chain is used by default ("ensembl").

convert_small_p Binary, should non-negative p-values <= 5e-324 be converted to 0? Small p-values pass the R limit and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.

convert_large_p Binary, should p-values >1 be converted to 1? P-values >1 should not be possible and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.

convert_neg_p Binary, should p-values <0 be converted to 0? Negative p-values should not be possible and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.

compute_z Whether to compute Z-score column. Default is FALSE. This can be computed from Beta and SE with (Beta/SE) or P (Z:=sign(BETA)*sqrt(stats::qchisq(P,1,lower=FALSE)).
Note that imputing the Z-score from P for every SNP will not be perfectly correct and may result in a loss of power. This should only be done as a last resort. Use 'BETA' to impute by BETA/SE and 'P' to impute by SNP p-value.

force_new_z When a "Z" column already exists, it will be used by default. To override and compute a new Z-score column from P set force_new_z=TRUE.

compute_n Whether to impute N. Default of 0 won’t impute, any other integer will be imputed as the N (sample size) for every SNP in the dataset.
Note that imputing the sample size for every SNP is not correct and should only be done as a last resort. N can also be imputed with "ldsc", "sum", "giant" or "metal" by passing one of these for this field or a vector of multiple. Sum and an integer value creates an N column in the output whereas giant, metal or ldsc create an Neff or effective sample size. If multiples are passed, the formula used to derive it will be indicated.

convert_n_int Binary, if N (the number of samples) is not an integer, should this be rounded? Default is TRUE.
import_sumstats

impute_beta Binary, whether BETA should be imputed using other effect data if it isn’t present in the sumstats. Note that this imputation is an approximation (for Z & SE approach) so could have an effect on downstream analysis. Use with caution. The different methods MungeSumstats will try and impute beta (in this order or priority) are:

1. log(OR) 2. Z x SE Default value is FALSE.

es_is_beta Binary, whether to map ES to BETA. We take BETA to be any BETA-like value (including Effect Size). If this is not the case for your sumstats, change this to FALSE. Default is TRUE.

impute_se Binary, whether the standard error should be imputed using other effect data if it isn’t present in the sumstats. Note that this imputation is an approximation so could have an effect on downstream analysis. Use with caution. The different methods MungeSumstats will try and impute se (in this order or priority) are:

1. BETA / Z 2. abs(BETA/ qnorm(P/2)) Default is FALSE.

analysis_trait If multiple traits were studied, name of the trait for analysis from the GWAS. Default is NULL.

ignore_multi_trait If you have multiple traits (p-values) in the study but you want to ignore these and instead use a standard named p-value, set to TRUE. By default is FALSE which will check for multi-traits.

INFO_filter numeric The minimum value permissible of the imputation information score (if present in sumstats file). Default 0.9.

FRQ_filter numeric The minimum value permissible of the frequency(FRQ) of the SNP (i.e. Allele Frequency (AF)) (if present in sumstats file). By default no filtering is done, i.e. value of 0.

pos_se Binary Should the standard Error (SE) column be checked to ensure it is greater than 0? Those that are, are removed (if present in sumstats file). Default TRUE.

effect_columns_nonzero Binary should the effect columns in the data BETA,OR (odds ratio),LOG_ODDS,SIGNED_SUMSTAT be checked to ensure no SNP=0. Those that do are removed(if present in sumstats file). Default FALSE.

N_std numeric The number of standard deviations above the mean a SNP’s N is needed to be removed. Default is 5.

N_dropNA Drop rows where N is missing. Default is TRUE.

chr_style Chromosome naming style to use in the formatted summary statistics file ("NCBI", "UCSC", "dbSNP", or "Ensembl"). The NCBI and Ensembl styles both code chromosomes as 1-22, X, Y, MT; the UCSC style is chr1-chr22, chrX, chrY, chrM; and the dbSNP style is ch1-ch22, chX, chY, chMT. Default is Ensembl.

rmv_chrPrefix Is now deprecated, do not use. Use chr_style instead - chr_style = 'Ensembl' will give the same result as rmv_chrPrefix=TRUE used to give.

rmv_chr Chromosomes to exclude from the formatted summary statistics file. Use NULL if no filtering is necessary. Default is c("X", "Y", "MT") which removes all non-autosomal SNPs.

on_ref_genome Binary Should a check take place that all SNPs are on the reference genome by SNP ID. Default is TRUE.
infer_eff_direction Binary Should a check take place to ensure the alleles match the effect direction? Default is TRUE.

strand_ambig_filter Binary Should SNPs with strand-ambiguous alleles be removed. Default is FALSE.

allele_flip_check Binary Should the allele columns be checked against reference genome to infer if flipping is necessary. Default is TRUE.

allele_flip_drop Binary Should the SNPs for which neither their A1 or A2 base pair values match a reference genome be dropped. Default is TRUE.

allele_flip_z Binary should the Z-score be flipped along with effect and FRQ columns like Beta? It is assumed to be calculated off the effect size not the P-value and so will be flipped i.e. default TRUE.

allele_flip_frq Binary should the frequency (FRQ) column be flipped along with effect and z-score columns like Beta? Default TRUE.

bi_allelic_filter Binary Should non-biallelic SNPs be removed. Default is TRUE.

flip_frq_as_biallelic Binary Should non-bi-allelic SNPs frequency values be flipped as 1-p despite there being other alternative alleles? Default is FALSE but if set to TRUE, this allows non-bi-allelic SNPs to be kept despite needing flipping.

snp_ids_are_rs_ids Binary Should the supplied SNP ID’s be assumed to be RSIDs. If not, imputation using the SNP ID for other columns like base-pair position or chromosome will not be possible. If set to FALSE, the SNP RS ID will be imputed from the reference genome if possible. Default is TRUE.

remove_multi_rs_snp Binary Sometimes summary statistics can have multiple RSIDs on one row (i.e. related to one SNP), for example "rs5772025_rs397784053". This can cause an error so by default, the first RS ID will be kept and the rest removed e.g. "rs5772025". If you want to just remove these SNPs entirely, set it to TRUE. Default is FALSE.

frq_is_maf Conventionally the FRQ column is intended to show the minor/effect allele frequency (MAF) but sometimes the major allele frequency can be inferred as the FRQ column. This logical variable indicates that the FRQ column should be renamed to MAJOR_ALLELE_FRQ if the frequency values appear to relate to the major allele i.e. >0.5. By default this mapping won’t occur i.e. is TRUE.

indels Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.

drop_indels Binary, should any indels found in the sumstats be dropped? These can not be checked against a reference dataset and will have the same RS ID and position as SNPs which can affect downstream analysis. Default is False.

dbSNP version of dbSNP to be used for imputation (144 or 155).

check_dups whether to check for duplicates - if formatting QTL datasets this should be set to FALSE otherwise keep as TRUE. Default is TRUE.

sort_coordinates Whether to sort by coordinates of resulting sumstats
import_sumstats

save_path File path to save formatted data. Defaults to tempfile(fileext=".tsv.gz").

tabix_index Index the formatted summary statistics with tabix for fast querying.

return_data Return data.table, GRanges or VRanges directly to user. Otherwise, return the path to the save data. Default is FALSE.

return_format If return_data is TRUE. Object type to be returned ("data.table", "vranges", "granges").

ldsc_format DEPRECATED, do not use. Use save_format="LDSC" instead.

save_format Output format of sumstats. Options are NULL - standardised output format from MungeSumstats, LDSC - output format compatible with LDSC and openGWAS - output compatible with openGWAS VCFs. Default is NULL.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

log_mungesumstats_msgs Binary Should a log be stored containing all messages and errors printed by MungeSumstats in a run. Default is FALSE

log_folder Filepath to the directory for the log files and the log of MungeSumstats messages to be stored. Default is a temporary directory. Note the name of the log files (log messages and log outputs) are now the same as the name of the file specified in the save path parameter with the extension '_log_msg.txt' and '_log_output.txt' respectively.

imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the allelles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.

mapping_file MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing or the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.

Value

Either a named list of data objects or paths, depending on the arguments passed to format_sumstats.

Examples

only run the examples if user has internet access:
if(try(is.character(getURL("www.google.com")))==TRUE){
 ### Search by criteria
 metagwas <- find_sumstats(
 traits = c("parkinson", "alzheimer"),
 min_sample_size = 5000
}
Only use a subset for testing purposes

```r
dplyr::arrange(metagwas, nsnp)$id
```

Default usage

```r
You can supply `import_sumstats()` with a list of as many OpenGWAS IDs as you want, but we'll just give one to save time.
```

```r
Call uses reference genome as default with more than 2GB of memory, which is more than what 32-bit Windows can handle so remove certain checks commented out down to runtime

```r
datasets <- import_sumstats(ids = ids[1])
```

---

**index_tabular**

Tabix-index file: table

---

**Description**

Convert summary stats file to tabix format.

**Usage**

```r
index_tabular(
 path,
 chrom_col = "CHR",
 start_col = "BP",
 end_col = start_col,
 overwrite = TRUE,
 remove_tmp = TRUE,
 verbose = TRUE
)
```

**Arguments**

- `path`: Path to GWAS summary statistics file.
- `chrom_col`: Name of the chromosome column in `sumstats_dt` (e.g. "CHR").
- `start_col`: Name of the starting genomic position column in `sumstats_dt` (e.g. "POS","start").
- `end_col`: Name of the ending genomic position column in `sumstats_dt` (e.g. "POS","end"). Can be the same as `start_col` when `sumstats_dt` only contains SNPs that span 1 base pair (bp) each.
- `overwrite`: A logical(1) indicating whether dest should be over-written, if it already exists.
- `remove_tmp`: Remove the temporary uncompressed version of the file (.tsv).
- `verbose`: Print messages.
Value

Path to tabix-indexed tabular file

Source

Borrowed function from `echotabix`.

See Also

Other tabix: `index_vcf()`

Examples

```r
sumstats_dt <- MungeSumstats::formatted_example()
path <- tempfile(fileext = "tsv")
MungeSumstats::write_sumstats(sumstats_dt = sumstats_dt, save_path = path)
indexed_file <- MungeSumstats::index_tabular(path = path)
```

---

```
index_vcf Tabix-index file: VCF
```

Description

Convert summary stats file to tabix format

Usage

```r
index_vcf(path, verbose = TRUE)
```

Arguments

- `path`  Path to VCF.
- `verbose`  Print messages.

Value

Path to tabix-indexed tabular file

Source

Borrowed function from `echotabix`.

See Also

Other tabix: `index_tabular()`
infer_effect_column

Examples

    eduAttainOkbayPth <- system.file("extdata", "eduAttainOkbay.txt",
                                         package = "MungeSumstats")
    sumstats_dt <- data.table::fread(eduAttainOkbayPth, nThread = 1)
    sumstats_dt <-
        MungeSumstats:::standardise_sumstats_column_headers_crossplatform(
            sumstats_dt = sumstats_dt)$sumstats_dt
    sumstats_dt <- MungeSumstats:::sort_coords(sumstats_dt = sumstats_dt)
    path <- tempfile(fileext = ".tsv")
    MungeSumstats::write_sumstats(sumstats_dt = sumstats_dt, save_path = path)

    indexed_file <- MungeSumstats:::index_tabular(path = path)

infer_effect_column  

Infer if effect relates to a1 or A2 if ambiguously named

Description

Three checks are made to infer which allele the effect/frequency information relates to if they are ambiguous (named A1 and A2 or equivalent):

1. Check if ambiguous naming conventions are used (i.e. allele 1 and 2 or equivalent). If not exit, otherwise continue to next checks. This can be checked by using the mapping file and splitting A1/A2 mappings by those that contain 1 or 2 (ambiguous) or doesn’t contain 1 or 2 e.g. effect, tested (unambiguous so fine for MSS to handle as is).

2. Look for effect column/frequency column where the A1/A2 explicitly mentioned, if found then we know the direction and should update A1/A2 naming so A2 is the effect column. We can look for such columns by getting every combination of A1/A2 naming and effect/freq naming.

3. If note found in 2, a final check should be against the reference genome, whichever of A1 and A2 has more of a match with the reference genome should be taken as not the effect allele. There is an assumption in this but is still better than guessing the ambiguous allele naming.

Usage

    infer_effect_column(
            sumstats_dt,         
            dbSNP = 155,         
            sampled_snps = 10000,    
            mapping_file = sumstatsColHeaders,    
            nThread = nThread,    
            ref_genome = NULL,    
            on_ref_genome = TRUE,    
            infer_eff_direction = TRUE,    
            return_list = TRUE
   )
Arguments

- **sumstats_dt**: data table obj of the summary statistics file for the GWAS.
- **dbSNP**: version of dbSNP to be used for imputation (144 or 155).
- **sampled_snps**: Downsample the number of SNPs used when inferring genome build to save time.
- **mapping_file**: MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing or the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.
- **nThread**: Number of threads to use for parallel processes.
- **ref_genome**: name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.
- **on_ref_genome**: Binary Should a check take place that all SNPs are on the reference genome by SNP ID. Default is TRUE.
- **infer_eff_direction**: Binary Should a check take place to ensure the alleles match the effect direction? Default is TRUE.
- **return_list**: Return the `sumstats_dt` within a named list (default: TRUE).

Value

list containing `sumstats_dt`, the modified summary statistics data table object

Examples

```r
sumstats <- MungeSumstats::formatted_example()
for speed, don't run on_ref_genome part of check (on_ref_genome = FALSE)
sumstats_dt2 <- infer_effect_column(sumstats_dt = sumstats, on_ref_genome = FALSE)
```

is_tabix  

Is tabix

Description

Is a file bgz-compressed and tabix-indexed.

Usage

```r
is_tabix(path)
```
### legacy_ids

**Value**
- logical: whether the file is tabix-indexed or not.

**Description**
Convert current IDs to legacy IDs

**Usage**
- `legacy_ids(x)`

**Arguments**
- `x` Vector of ids

**Value**
- vector of back compatible ids

### liftover

**Genome build liftover**

**Description**
Transfer genomic coordinates from one genome build to another.

**Usage**
- `liftover(
  sumstats_dt,
  convert_ref_genome,
  ref_genome,
  chain_source = "ensembl",
  imputation_ind = TRUE,
  chrom_col = "CHR",
  start_col = "BP",
  end_col = start_col,
  as_granges = FALSE,
  style = "NCBI",
  verbose = TRUE
)"
Arguments

sumstats_dt  data table obj of the summary statistics file for the GWAS.
convert_ref_genome  name of the reference genome to convert to ("GRCh37" or "GRCh38"). This will only occur if the current genome build does not match. Default is not to convert the genome build (NULL).
ref_genome  name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.
chain_source  chain file source used ("ucsc" as default, or "ensembl")
imputation_ind  Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.
chrom_col  Name of the chromosome column in sumstats_dt (e.g. "CHR").
start_col  Name of the starting genomic position column in sumstats_dt (e.g. "POS","start").
end_col  Name of the ending genomic position column in sumstats_dt (e.g. "POS","end"). Can be the same as start_col when sumstats_dt only contains SNPs that span 1 base pair (bp) each.
as_granges  Return results as GRanges instead of a data.table (default: FALSE).
style  Style to return GRanges object in (e.g. "NCBI" = 4; "UCSC" = "chr4"); (default: "NCBI").
verbose  Print messages.

Value

Lifted summary stats in data.table or GRanges format.

Source

liftOver
UCSC chain files
Ensembl chain files

Examples

sumstats_dt <- MungeSumstats::formatted_example()

sumstats_dt_hg38 <- liftover(sumstats_dt=sumstats_dt,
                          ref_genome = "hg19",
                          convert_ref_genome="hg38")
list_sumstats  List munged summary statistics

Description

Searches for and lists local GWAS summary statistics files munged by format_sumstats or import_sumstats.

Usage

list_sumstats(
  save_dir = getwd(),
  pattern = "*.tsv.gz$",
  ids_from_file = TRUE,
  verbose = TRUE
)

Arguments

- **save_dir**: Top-level directory to recursively search for summary statistics files within.
- **pattern**: Regex pattern to search for files with.
- **ids_from_file**: Try to extract dataset IDs from file names. If **FALSE**, will infer IDs from the directory names instead.
- **verbose**: Print messages.

Value

Named vector of summary stats paths.

Examples

```r
save_dir <- system.file("extdata", package = "MungeSumstats")
munged_files <- MungeSumstats::list_sumstats(save_dir = save_dir)
```

load_ref_genome_data  Load the reference genome data for SNPs of interest

Description

Load the reference genome data for SNPs of interest

Usage

load_ref_genome_data(snps, ref_genome, dbSNP = c(144, 155), msg = NULL)
load_snp_loc_data

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snps</td>
<td>Character vector SNPs by rs_id from sumstats file of interest.</td>
</tr>
<tr>
<td>ref_genome</td>
<td>Name of the reference genome used for the GWAS (GRCh37 or GRCh38)</td>
</tr>
<tr>
<td>dbSNP</td>
<td>Version of dbSNP to be used (144 or 155)</td>
</tr>
<tr>
<td>msg</td>
<td>Optional name of the column missing from the dataset in question. Default is NULL</td>
</tr>
</tbody>
</table>

Value

data table of snpsById, filtered to SNPs of interest.

Source

```r
sumstats_dt <- formatted_example()
rsids <- MungeSumstats:::load_ref_genome_data(snps = sumstats_dt$SNP, ref_genome = "GRCH37", dbSNP=144)
```

Description

Loads the SNP locations and alleles for Homo sapiens extracted from NCBI dbSNP Build 144. Reference genome version is dependent on user input.

Usage

```r
load_snp_loc_data(ref_genome, dbSNP = c(144, 155), msg = NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ref_genome</td>
<td>Name of the reference genome used for the GWAS (GRCh37 or GRCh38)</td>
</tr>
<tr>
<td>dbSNP</td>
<td>Version of dbSNP to be used (144 or 155)</td>
</tr>
<tr>
<td>msg</td>
<td>Optional name of the column missing from the dataset in question</td>
</tr>
</tbody>
</table>

Value

SNP_LOC_DATA SNP positions and alleles for Homo sapiens extracted from NCBI dbSNP Build 144

Examples

```r
SNP_LOC_DATA <- load_snp_loc_data("GRCH37", dbSNP=144)
```
Example logs file

Description
Example logs file produced by `format_sumstats`.

Usage
logs_example(read = FALSE)

Arguments
read
Whether to read the logs file into memory.

Value
Path to logs file.

Source
```
eduAttainOkbayPth <- system.file("extdata", "eduAttainOkbay.txt", package = "MungeSumstats")
sumstats_dt <- data.table::fread(eduAttainOkbayPth) #### Introduce values that need
```

Ensure A1 and A2 are upper case

Description
Ensure A1 and A2 are upper case

Usage
make_allele_upper(sumstats_dt, log_files)

Arguments
log_files
list of log file locations

Value
list containing sumstats_dt, the modified summary statistics data table object and the log file list
### messenger

**Print messages**

**Description**

Print messages with option to silence.

**Usage**

```r
messenger(..., v = TRUE)
```

**Arguments**

- `...`: Message input.
- `v`: Whether to print messages.

**Value**

Null output.

---

### message_parallel

**Send messages to console even from within parallel processes**

**Description**

Send messages to console even from within parallel processes

**Usage**

```r
message_parallel(...)```

Value

A message
parse_dropped_chrom
Parse number of SNPs dropped due to being on chrom X, Y or MT

Description
Support function for `parse_logs`.

Usage
`parse_dropped_chrom(l)`

Arguments
- `l` Lines of text from log file.

Value
Numeric

parse_dropped_duplicates
Parse number of SNPs dropped due to being duplicates

Description
Support function for `parse_logs`.

Usage
`parse_dropped_duplicates(l)`

Arguments
- `l` Lines of text from log file.

Value
Numeric
parse_dropped_INFO

Parse number of SNPs dropped due to being below the INFO threshold

Description
Support function for parse_logs.

Usage
parse_dropped_INFO(l)

Arguments

l

Lines of text from log file.

Value
Numeric

parse_dropped_nonA1A2

Parse number of SNPs dropped due to not matching the ref genome A1 or A2

Description
Support function for parse_logs.

Usage
parse_dropped_nonA1A2(l)

Arguments

l

Lines of text from log file.

Value
Numeric
parse_dropped_nonBiallelic

 Parse number of SNPs dropped due to not being bi-allelic

Description

Support function for parse_logs.

Usage

parse_dropped_nonBiallelic(l)

Arguments

l Lines of text from log file.

Value

Numeric

parse_dropped_nonRef

 Parse number of SNPs dropped due to being in the ref genome

Description

Support function for parse_logs.

Usage

parse_dropped_nonRef(l)

Arguments

l Lines of text from log file.

Value

Numeric
parse_flipped

Description

Support function for `parse_logs`.

Usage

```r
parse_flipped(l)
```

Arguments

- `l` Lines of text from log file.

Value

Numeric

parse_genome_build

Description

Genome build inferred from the summary statistics

Usage

```r
parse_genome_build(l)
```

Arguments

- `l` Lines of text from log file.

Value

Character
parse_idStandard

Standardised IEU MRC OpenGWAS ID

Description

Support function for `parse_logs`.

Usage

```
parse_idStandard(l)
```

Arguments

- `l` Lines of text from log file.

Value

Character

parse_logs

Parse data from log files

Description

Parses data from the log files generated by `format_sumstats` or `import_sumstats` when the argument `log_mungesumstats_msgs` is set to TRUE.

Usage

```
parse_logs(
  save_dir = getwd(),
  pattern = "MungeSumstats_log_msg.txt$",
  verbose = TRUE
)
```

Arguments

- `save_dir` Top-level directory to recursively search for log files within.
- `pattern` Regex pattern to search for files with.
- `verbose` Print messages.

Value

`data.table` of parsed log data.
Examples
save_dir <- system.file("extdata",package = "MungeoSumstats")
log_data <- MungeoSumstats::parse_logs(save_dir = save_dir)

parse_pval_large

Parse number of SNPs with p-values > 1

Description
Support function for parse_logs.

Usage
parse_pval_large(l)

Arguments
l
Lines of text from log file.

Value
Numeric

parse_pval_neg

Parse number of SNPs with p-values < 0

Description
Support function for parse_logs.

Usage
parse_pval_neg(l)

Arguments
l
Lines of text from log file.

Value
Numeric
parse_pval_small

Parse number of SNPs with non-negative p-values \leq 5e^{-324}

Description
Support function for parse_logs.

Usage
parse_pval_small(l)

Arguments

1 Lines of text from log file.

Value
Numeric

parse_report

Parse "Summary statistics report" metrics

Description
Support function for parse_logs.

Usage
parse_report(l, entry = 1, line = 1)

Arguments

1 Lines of text from log file.

Value
Numeric
parse_snps_freq_05
Parse number/percent of SNPs with FREQ values >0.5

Description
Support function for parse_logs.

Usage
parse_snps_freq_05(l, percent = FALSE)

Arguments
1 Lines of text from log file.

Value
Numeric

parse_snps_not_formatted
Parse number of SNPs not correctly formatted

Description
Support function for parse_logs.

Usage
parse_snps_not_formatted(l)

Arguments
1 Lines of text from log file.

Value
Numeric
parse_time
Parse the total time taken the munge the file

Description
Support function for `parse_logs`.

Usage
`parse_time(l)`

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>Lines of text from log file.</td>
</tr>
</tbody>
</table>

Value

Character

preview_sumstats
Preview formatted sum stats saved to disk

Description
Prints the first n lines of the sum stats.

Usage
`preview_sumstats(save_path, nrows = 5L)`

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>save_path</td>
<td>File path to save formatted data. Defaults to <code>tempfile(fileext".tsv.gz")</code>.</td>
</tr>
</tbody>
</table>

Value

No return
raw_ALSvcf

GWAS Amyotrophic lateral sclerosis ieu open GWAS project - Subset

Description

VCF (VCFv4.2) of the GWAS Amyotrophic lateral sclerosis ieu open GWAS project Dataset: ebi-a-GCST005647. A subset of 99 SNPs

Format

vcf document with 528 items relating to 99 SNPs

Details

A VCF file (VCFv4.2) of the GWAS Amyotrophic lateral sclerosis ieu open GWAS project has been subsetted here to act as an example summary statistic file in VCF format which has some issues in the formatting. MungeSumstats can correct these issues and produced a standardised summary statistics format.

ALSvcf.vcf

NA

Source

The summary statistics VCF (VCFv4.2) file was downloaded from https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST005647/ and formatted to a .rda with the following: #Get example VCF dataset, use

GWAS Amyotrophic lateral sclerosis ALS_GWAS_VCF <- readLines("ebi-a-GCST005647.vcf.gz")

#Subset to just the first 99 SNPs ALSvcf <- ALS_GWAS_VCF[1:528] writeLines(ALSvcf,"inst/extdata/ALSvcf.vcf")

raw_eduAttainOkbay

GWAS Educational Attainment Okbay 2016 - Subset

Description

GWAS Summary Statistics on Educational Attainment by Okbay et al 2016: PMID: 27898078 PMCID: PMC5509058 DOI: 10.1038/ng1216-1587b. A subset of 93 SNPs

Format

txt document with 94 items

Details

GWAS Summary Statistics on Educational Attainment by Okbay et al 2016 has been subsetted here to act as an example summary statistic file which has some issues in the formatting. MungeSumstats can correct these issues.
eduAttainOkbay.txt

NA

Source
The summary statistics file was downloaded from https://www.nature.com/articles/ng.3552 and formatted to a .rda with the following:

```r
#Get example dataset, use Educational-Attainment_Okbay_2016
link<"Educational-Attainment_Okbay_2016/EduYears_Discovery_5000.txt" eduAttainOkbay<-readLines(link)
#There is an issue where values end with .0, this 0 is removed in func #There are also SNPs not on ref genome or are bi/tri allelic #So need to remove these in this dataset as its used for testing tmp <- tempfile() writeLines(eduAttainOkbay,con=tmp) eduAttainOkbay <- data.table::fread(tmp) #DT read removes the .0's #remove those not on ref genome and with bi/tri allelic rmv <- c("rs192818565", "rs79925071", "rs1606974", "rs1871109", "rs73074378", "rs7955289") eduAttainOkbay <- eduAttainOkbay[!MarkerName %in% rmv] eduAttainOkbay <- readLines(tmp) writeLines(eduAttainOkbay,"inst/extdata/eduAttainOkbay.txt")
```

Description
Read in file header

Usage
```
read_header(path, n = 2L, skip_vcf_metadata = FALSE, nThread = 1)
```

Arguments
- **path**: Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.
- **n**: integer. The (maximal) number of lines to read. Negative values indicate that one should read up to the end of input on the connection.
- **skip_vcf_metadata**: logical, should VCF metadata be ignored
- **nThread**: Number of threads to use for parallel processes.

Value
First n lines of the VCF header

Examples
```
path <- system.file("extdata", "eduAttainOkbay.txt",
                  package = "MungeSumstats")
header <- read_header(path = path)
```
read_sumstats
Determine summary statistics file type and read them into memory

Description
Determine summary statistics file type and read them into memory

Usage

```r
read_sumstats(
  path,  
nrows = Inf,  
standardise_HEADERS = FALSE,  
samples = 1,  
sampled_rows = 10000L,  
nThread = 1,  
mapping_file = sumstatsColHeaders
)
```

Arguments

- **path**
 Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

- **nrows**
 integer. The (maximal) number of lines to read. If Inf, will read in all rows.

- **standardise_HEADERS**
 Standardise headers first.

- **samples**
 Which samples to use:
 - 1 : Only the first sample will be used (DEFAULT).
 - NULL : All samples will be used.
 - c("<sample_id1>","<sample_id2>",...) : Only user-selected samples will be used (case-insensitive).

- **sampled_rows**
 First N rows to sample. Set NULL to use full sumstats_file. when determining whether cols are empty.

- **nThread**
 Number of threads to use for parallel processes.

- **mapping_file**
 MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing of the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.

Value

- data.table of formatted summary statistics
Examples

```r
path <- system.file("extdata", "eduAttainOkbay.txt", 
  package = "MungeSumstats"
)
eduAttainOkbay <- read_sumstats(path = path)
```

Description

Read in a VCF file as a VCF or a data.table. Can optionally save the VCF/data.table as well.

Usage

```r
read_vcf(
  path,
  as_datatable = TRUE,
  save_path = NULL,
  tabix_index = FALSE,
  samples = 1,
  which = NULL,
  use_params = TRUE,
  sampled_rows = 10000L,
  download = TRUE,
  vcf_dir = tempdir(),
  download_method = "download.file",
  force_new = FALSE,
  mt_thresh = 100000L,
  nThread = 1,
  verbose = TRUE
)
```

Arguments

- **path**
 Path to local or remote VCF file.
- **as_datatable**
 Return the data as a data.table (default: TRUE) or a VCF (FALSE).
- **save_path**
 File path to save formatted data. Defaults to tempfile(fileext=".tsv.gz").
- **tabix_index**
 Index the formatted summary statistics with tabix for fast querying.
- **samples**
 Which samples to use:
 - 1 : Only the first sample will be used (DEFAULT).
 - NULL : All samples will be used.
 - c("<sample_id1>"","<sample_id2>",...) : Only user-selected samples will be used (case-insensitive).
- **which**
 Genomic ranges to be added if supplied. Default is NULL.
use_params When TRUE (default), increases the speed of reading in the VCF by omitting columns that are empty based on the head of the VCF (NAs only). NOTE that this requires the VCF to be sorted, bgzip-compressed, tabix-indexed, which `read_vcf` will attempt to do.

sampled_rows First N rows to sample. Set NULL to use full sumstats_file. when determining whether cols are empty.

download Download the VCF (and its index file) to a temp folder before reading it into R. This is important to keep TRUE when nThread>1 to avoid making too many queries to remote file.

vcf_dir Where to download the original VCF from Open GWAS. WARNING: This is set to tempdir() by default. This means the raw (pre-formatted) VCFs be deleted upon ending the R session. Change this to keep the raw VCF file on disk (e.g. vcf_dir="./raw_vcf").

download_method "axel" (multi-threaded) or "download.file" (single-threaded).

force_new If a formatted file of the same names as save_path exists, formatting will be skipped and this file will be imported instead (default). Set force_new=TRUE to override this.

mt_thresh When the number of rows (variants) in the VCF is < mt_thresh, only use single-threading for reading in the VCF. This is because the overhead of parallelisation outweighs the speed benefits when VCFs are small.

nThread Number of threads to use for parallel processes.

verbose Print messages.

Value The VCF file in data.table format.

Source

Benchmarking

```r
library(VCFWrenchR) library(VariantAnnotation) path <- "https://gwas.mrcieu.ac.uk/files/ubm-a-2929/ubm-a-2929.vcf.gz"
vcf <- VariantAnnotation::readVcf(file = path) N <- 1e5 vcf_sub <- vcf[1:N,] res <- microbenchmark::microbenchmark("vcf2df"="dat1 <- MungeSumstats:::vcf2df(vcf = vcf_sub)" , "VCFWrenchR"="dat2 <- as.data.frame(x = vcf_sub)" , "VRanges"="dat3 <- data.table::as.data.table(methods::as(vcf_sub, "VRanges"))" ), times=1 )
```

Discussion on VariantAnnotation GitHub

Discussion on VariantAnnotation GitHub

Examples

Local file

```r
path <- system.file("extdata","ALSvcf.vcf", package="MungeSumstats")
sumstats_dt <- read_vcf(path = path)
```

Remote file

```
# Small GWAS (0.2Mb)
# path <- "https://gwas.mrcieu.ac.uk/files/ieu-a-298/ieu-a-298.vcf.gz"
```
read_vcf_genome

R

sumstats_dt2 <- read_vcf(path = path)
Large GWAS (250Mb)
path <- "https://gwas.mrcieu.ac.uk/files/ubm-a-2929/ubm-a-2929.vcf.gz"
sumstats_dt3 <- read_vcf(path = path, nThread=11)

Very large GWAS (500Mb)
path <- "https://gwas.mrcieu.ac.uk/files/ieu-a-1124/ieu-a-1124.vcf.gz"
sumstats_dt4 <- read_vcf(path = path, nThread=11)

read_vcf_genome Read VCF genome

Description

Get the genome build of a remote or local VCF file.

Usage

read_vcf_genome(
 header = NULL,
 validate = FALSE,
 default_genome = "HG19/GRCh37",
 verbose = TRUE
)

Arguments

- **header** Header extracted by `scanVcfHeader`.
- **validate** Validate genome name using `mapGenomeBuilds`.
- **default_genome** When no genome can be extracted, default to this genome build.
- **verbose** Print messages.

Value

- **genome**
read_vcf_info

Description

Parse INFO column in VCF file.

Usage

```r
read_vcf_info(sumstats_dt)
```

Arguments

- `sumstats_dt`: Summary stats data.table.

Value

Null output.

read_vcf_markername

Description

Parse MarkerName/SNP column in VCF file.

Usage

```r
read_vcf_markername(sumstats_dt)
```

Arguments

- `sumstats_dt`: Summary stats data.table.

Value

Null output.
Description

Read a VCF file across 1 or more threads in parallel. If tilewidth is not specified, the size of each chunk will be determined by total genome size divided by ntile. By default, ntile is equal to the number of threads, nThread. For further discussion on how this function was optimised, see here and here.

Usage

```r
read_vcf_parallel(
  path,
  samples = 1,
  which = NULL,
  use_params = TRUE,
  as_datatable = TRUE,
  sampled_rows = 10000L,
  include_xy = FALSE,
  download = TRUE,
  vcf_dir = tempdir(),
  download_method = "download.file",
  force_new = FALSE,
  tilewidth = NULL,
  mt_thresh = 100000L,
  nThread = 1,
  ntile = nThread,
  verbose = TRUE
)
```

Arguments

- **path**: Path to local or remote VCF file.
- **samples**: Which samples to use:
 - 1: Only the first sample will be used (DEFAULT).
 - NULL: All samples will be used.
 - c("<sample_id1>",<sample_id2>,...): Only user-selected samples will be used (case-insensitive).
- **which**: Genomic ranges to be added if supplied. Default is NULL.
- **use_params**: When TRUE (default), increases the speed of reading in the VCF by omitting columns that are empty based on the head of the VCF (NAs only). NOTE that this requires the VCF to be sorted, bgzip-compressed, tabix-indexed, which read_vcf will attempt to do.
- **as_datatable**: Return the data as a data.table (default: TRUE) or a VCF (FALSE).
sampled_rows
First N rows to sample. Set NULL to use full `sumstats_file` when determining whether cols are empty.

download
Download the VCF (and its index file) to a temp folder before reading it into R. This is important to keep TRUE when nThread>1 to avoid making too many queries to remote file.

vcf_dir
Where to download the original VCF from Open GWAS. WARNING: This is set to `tempdir()` by default. This means the raw (pre-formatted) VCFs be deleted upon ending the R session. Change this to keep the raw VCF file on disk (e.g. `vcf_dir="./raw_vcf"`).

download_method
"axel" (multi-threaded) or "download.file" (single-threaded).

force_new
If a formatted file of the same names as `save_path` exists, formatting will be skipped and this file will be imported instead (default). Set `force_new=TRUE` to override this.

tilewidth
The desired tile width. The effective tile width might be slightly different but is guaranteed to never be more than the desired width.

mt_thresh
When the number of rows (variants) in the VCF is < `mt_thresh`, only use single-threading for reading in the VCF. This is because the overhead of parallelisation outweighs the speed benefits when VCFs are small.

nThread
Number of threads to use for parallel processes.

ntile
The number of tiles to generate.

verbose
Print messages.

Value
VCF file.

Source

```r
path <- "https://gwas.mrcieu.ac.uk/files/ieu-a-298/ieu-a-298.vcf.gz" #### Single-threaded
#### vcf <- MungeSumstats:::read_vcf_parallel(path = path) #### Parallel #### vcf2 <-
MungeSumstats:::read_vcf_parallel(path = path, nThread=11)
```

read_vcf_pval
Read VCF: p-value column

Description

Parse p-value column in VCF file.

Usage

```r
read_vcf_pval(sumstats_dt)
```
register_cores

Arguments

- sumstats_dt: Summary stats data.table.

Value

Null output.

register_cores
Register cores

Description

Register a multi-threaded instances using **BiocParallel**.

Usage

```r
register_cores(workers = 1, progressbar = TRUE)
```

Arguments

- workers: integer(1) Number of workers. Defaults to the maximum of 1 or the number of cores determined by `detectCores` minus 2 unless environment variables `R_PARALLELY_AVAILABLECORES_FALLBACK` or `BIOCPARALLEL_WORKER_NUMBER` are set otherwise. For a SOCK cluster, `workers` can be a character() vector of host names.

- progressbar: logical(1) Enable progress bar (based on plyr:::progress_text).

Value

Null output.

remove_empty_cols
Remove empty columns

Description

Remove columns that are empty or contain all the same values in a data.table.

Usage

```r
remove_empty_cols(sumstats_dt, sampled_rows = NULL, verbose = TRUE)
```
select_api

Arguments

sampled_rows First N rows to sample. Set NULL to use full sumstats_file. when determining whether cols are empty.
verbose Print messages.

Value

Null output.

report_summary Report info on current state of the summary statistics

Description

Prints report.

Usage

 report_summary(sumstats_dt, orig_dims = NULL)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS.

Value

No return

select_api Toggle API address between development and release

Description

From ieugwasr.

Usage

 select_api(where = "public", verbose = TRUE)

Arguments

where Which API to use. Choice between "local", "release", "test". Default = "local"

Value

No return
select_vcf_fields

Select VCF fields

Description

Select non-empty columns from each VCF field type.

Usage

```r
select_vcf_fields(
  path,
  sampled_rows = 10000L,
  which = NULL,
  samples = NULL,
  nThread = 1,
  verbose = TRUE
)
```

Arguments

- **path**
 - Path to local or remote VCF file.

- **sampled_rows**
 - First N rows to sample. Set NULL to use full sumstats_file when determining whether cols are empty.

- **which**
 - Genomic ranges to be added if supplied. Default is NULL.

- **samples**
 - Which samples to use:
 - 1 : Only the first sample will be used (*DEFAULT*).
 - NULL : All samples will be used.
 - c("<sample_id1>"","<sample_id2>"...,) : Only user-selected samples will be used (case-insensitive).

- **nThread**
 - Number of threads to use for parallel processes.

- **verbose**
 - Print messages.

Value

ScanVcfParam object.
sort_coords

Sort sum stats

Sort summary statistics table by genomic coordinates.

Usage

```r
sort_coords(
  sumstats_dt,
  sort_coordinates = TRUE,
  sort_method = c("data.table", "GenomicRanges")
)
```

Arguments

- `sumstats_dt` : `data.table` obj of the summary statistics file for the GWAS.
- `sort_method` : Method to sort coordinates by:
 - "data.table" (default) Uses `setorder`, which is must faster than "GenomicRanges" but less robust to variations in some sum stats files.
 - "GenomicRanges" Uses `sort.GenomicRanges`, which is more robust to variations in sum stats files but much slower than the "data.table" method.
- `sort_coords` : Whether to sort by coordinates.
- `make_ordered` : Make CHR into an ordered factor to ensure they go from 1-22, X, Y.

Value

Sorted `sumstats_dt`

sort_coords_datatable

Sort sum stats: data.table

Sort summary statistics table by genomic coordinates using a fast `data.table`-native strategy.

Usage

```r
sort_coords_datatable(
  sumstats_dt,
  chr_col = "CHR",
  start_col = "BP",
  end_col = start_col
)
```
sort_coord_genomicranges

Arguments

sumstats_dt
data.table obj of the summary statistics file for the GWAS.
chr_col
Chromosome column name.
start_col
Genomic end position column name.

Value

Sorted sumstats_dt

--

sort_coord_genomicranges

$Sort$ sum $stats$: $GenomicRanges$

--

Description

Sort summary statistics table by genomic coordinates using a slower (but in some cases more robust) GenomicRanges strategy

Usage

sort_coord_genomicranges(sumstats_dt)

Arguments

sumstats_dt
data.table obj of the summary statistics file for the GWAS.

Value

Sorted sumstats_dt

--

standardise_header

$Standardise$ the $column$ $headers$ in the $Summary$ $Statistics$ $files$

--

Description

Use a reference data table of common column header names (stored in sumstatsColHeaders or user inputted mapping file) to convert them to a standard set, i.e. chromosome -> CHR. This function does not check that all the required column headers are present. The amended header is written directly back into the file
Usage

standardise_header(
 sumstats_dt,
 mapping_file = sumstatsColHeaders,
 uppercase_unmapped = TRUE,
 return_list = TRUE
)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS.
mapping_file MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing of the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.

uppercase_unmapped For columns that could not be identified in the mapping_file, return them in the same format they were input as (without forcing them to uppercase).

return_list Return the sumstats_dt within a named list (default: TRUE).

Value

list containing sumstats_dt, the modified summary statistics data table object

Examples

sumstats_dt <- data.table::fread(system.file("extdata", "eduAttainOkbay.txt",
 package = "MungeSumstats")
sumstats_dt2 <- standardise_header(sumstats_dt=sumstats_dt)

sumstatsColHeaders Summary Statistics Column Headers

Description

List of uncorrected column headers often found in GWAS Summary Statistics column headers. Note the effect allele will always be the A2 allele, this is the approach done for VCF(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805039). This is enforced with the column header corrections here and also the check allele flipping test.

Usage

data("sumstatsColHeaders")
supported_suffixes

Description

List supported file formats

Usage

supported_suffixes(
 tabular = TRUE,
 tabular_compressed = TRUE,
 vcf = TRUE,
 vcf_compressed = TRUE
)

Arguments

- tabular: Include tabular formats.
- tabular_compressed: Include compressed tabular formats.
- vcf: Include Variant Call Format.
- vcf_compressed: Include compressed Variant Call Format.

Value

File formats

Source

The code to prepare the .Rda file file from the marker file is:

```r
# Most the data in the below table comes from the LDSC github wiki data("sumstatsColHeaders") # Make additions to sumstatsColHeaders using github version of MungeSumstats
se_cols <- data.frame("Uncorrected"=c("SE","se","STANDARD.ERROR","STANDARD_ERROR","STANDARD-ERROR"),
  "Corrected"=rep("SE",5)) #sumstatsColHeaders <- rbind(sumstatsColHeaders,se_cols)
#Once additions are made, order & save the new mapping dataset #now sort ordering -important for logic that # uncorrected=corrected comes first
sumstatsColHeaders$ordering <- sumstatsColHeaders$Uncorrected==sumstatsColHeaders$Corrected
sumstatsColHeaders <- sumstatsColHeaders[order(sumstatsColHeaders$Corrected, sumstatsColHeaders$ordering == TRUE),]
rownames(sumstatsColHeaders) <- 1:nrow(sumstatsColHeaders) sumstatsColHeaders$ordering <- NULL #manually move FRWQUENCY to above MAR - github issue 95
frequency <- sumstatsColHeaders[sumstatsColHeaders$Uncorrected=="FREQUENCY",]
maf <- sumstatsColHeaders[sumstatsColHeaders$Uncorrected=="MAF",]
if(as.integer(rownames(frequency))>as.integer(rownames(maf))){
  sumstatsColHeaders[as.integer(rownames(frequency)),] <- maf
  sumstatsColHeaders[as.integer(rownames(maf)),] <- frequency
}
usethis::use_data(sumstatsColHeaders,overwrite = TRUE, internal=TRUE)
save(sumstatsColHeaders, file="data/sumstatsColHeaders.rda") # You will need to restart your r session for effects to take account
```
Description

Convert a data.table to GRanges.

Usage

to_granges(
 sumstats_dt,
 seqnames.field = "CHR",
 start.field = "BP",
 end.field = "BP",
 style = c("NCBI", "UCSC")
)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS.

seqnames.field A character vector of recognized names for the column in df that contains the chromosome name (a.k.a. sequence name) associated with each genomic range. Only the first name in seqnames.field that is found in colnames(df) is used. If no one is found, then an error is raised.

start.field A character vector of recognized names for the column in df that contains the start positions of the genomic ranges. Only the first name in start.field that is found in colnames(df) is used. If no one is found, then an error is raised.

end.field A character vector of recognized names for the column in df that contains the end positions of the genomic ranges. Only the first name in start.field that is found in colnames(df) is used. If no one is found, then an error is raised.

style GRanges style to convert to, "NCBI" or "UCSC".

Value

GRanges object

Description

Convert to VRanges
Usage

to_vranges(sumstats_dt)

Arguments

sumstats_dt data table obj of the summary statistics file for the GWAS.

Value

VRanges object

unlist_dt

Unlist a data.table

Description

Identify columns that are lists and turn them into vectors.

Usage

unlist_dt(dt, verbose = TRUE)

Arguments

dt data.table
verbose Print messages.

Value

dt with list columns turned into vectors.

validate_parameters

Ensure that the input parameters are logical

Description

Ensure that the input parameters are logical
validate_parameters (path, ref_genome, convert_ref_genome, convert_small_p, es_is_beta, compute_z, compute_n, convert_n_int, analysis_trait, INFO_filter, FRQ_filter, pos_se, effect_columns_nonzero, N_std, N_dropNA, chr_style, rmv_chr, on_ref_genome, infer_eff_direction, strand_ambig_filter, allele_flip_check, allele_flip_drop, allele_flip_z, allele_flip_frq, bi_allelic_filter, flip_frq_as_biallelic, snp_ids_are_rs_ids, remove_multi_rs_snp, frq_is_maf, indels, drop_indels, check_dups, dbSNP, write_vcf, return_format, ldsc_format, save_format, imputation_ind, log_folder_ind, log_mungesumstats_msgs, mapping_file, tabix_index, chain_source, rmv_chrPrefix)
validate_parameters

Arguments

path
Filepath for the summary statistics file to be formatted. A dataframe or datatable of the summary statistics file can also be passed directly to MungeSumstats using the path parameter.

ref_genome
name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.

convert_ref_genome
name of the reference genome to convert to ("GRCh37" or "GRCh38"). This will only occur if the current genome build does not match. Default is not to convert the genome build (NULL).

convert_small_p
Binary, should non-negative p-values <= 5e-324 be converted to 0? Small p-values pass the R limit and can cause errors with LDSC/MAGMA and should be converted. Default is TRUE.

es_is_beta
Binary, whether to map ES to BETA. We take BETA to be any BETA-like value (including Effect Size). If this is not the case for your sumstats, change this to FALSE. Default is TRUE.

compute_z
Whether to compute Z-score column. Default is FALSE. This can be computed from Beta and SE with (Beta/SE) or P (Z:=sign(BETA)*sqrt(stats::qchisq(P,1,lower=FALSE))). Note that imputing the Z-score from P for every SNP will not be perfectly correct and may result in a loss of power. This should only be done as a last resort. Use 'BETA' to impute by BETA/SE and 'P' to impute by SNP p-value.

compute_n
Whether to impute N. Default of 0 won’t impute, any other integer will be imputed as the N (sample size) for every SNP in the dataset. Note that imputing the sample size for every SNP is not correct and should only be done as a last resort. N can also be imputed with "ldsc", "sum", "giant" or "metal" by passing one of these for this field or a vector of multiple. Sum and an integer value creates an N column in the output whereas giant, metal or ldsc create an Neff or effective sample size. If multiples are passed, the formula used to derive it will be indicated.

convert_n_int
Binary, if N (the number of samples) is not an integer, should this be rounded? Default is TRUE.

analysis_trait
If multiple traits were studied, name of the trait for analysis from the GWAS. Default is NULL.

INFO_filter
numeric The minimum value permissible of the imputation information score (if present in sumstats file). Default 0.9.

FRQ_filter
numeric The minimum value permissible of the frequency(FRQ) of the SNP (i.e. Allele Frequency (AF)) (if present in sumstats file). By default no filtering is done, i.e. value of 0.

pos_se
Binary Should the standard Error (SE) column be checked to ensure it is greater than 0? Those that are, are removed (if present in sumstats file). Default TRUE.

effect_columns_nonzero
Binary should the effect columns in the data BETA,OR (odds ratio),LOG_ODDS,SIGNED_SUMSTAT be checked to ensure no SNP=0. Those that do are removed(if present in sumstats file). Default FALSE.
N_std numeric The number of standard deviations above the mean a SNP's N is needed to be removed. Default is 5.
N_dropNA Drop rows where N is missing. Default is TRUE.
chr_style Chromosome naming style to use in the formatted summary statistics file ("NCBI", "UCSC", "dbSNP", or "Ensembl"). The NCBI and Ensembl styles both code chromosomes as 1-22, X, Y, MT; the UCSC style is chr1-chr22, chrX, chrY, chrM; and the dbSNP style is ch1-ch22, chX, chY, chMT. Default is Ensembl.
rmv_chr Chromosomes to exclude from the formatted summary statistics file. Use NULL if no filtering is necessary. Default is c("X", "Y", "MT") which removes all non-autosomal SNPs.
on_ref_genome Binary Should a check take place that all SNPs are on the reference genome by SNP ID. Default is TRUE.
infer_eff_direction Binary Should a check take place to ensure the alleles match the effect direction? Default is TRUE.
strand_ambig_filter Binary Should SNPs with strand-ambiguous alleles be removed. Default is FALSE.
allele_flip_check Binary Should the allele columns be checked against reference genome to infer if flipping is necessary. Default is TRUE.
allele_flip_drop Binary Should the SNPs for which neither their A1 or A2 base pair values match a reference genome be dropped. Default is TRUE.
allele_flip_z Binary should the Z-score be flipped along with effect and FRQ columns like Beta? It is assumed to be calculated off the effect size not the P-value and so will be flipped i.e. default TRUE.
allele_flip_frq Binary should the frequency (FRQ) column be flipped along with effect and Z-score columns like Beta? Default TRUE.
bi_allelic_filter Binary Should non-biallelic SNPs be removed. Default is TRUE.
flip_frq_as_biallelic Binary Should non-bi-allelic SNPs frequency values be flipped as 1-p despite there being other alternative alleles? Default is FALSE but if set to TRUE, this allows non-bi-allelic SNPs to be kept despite needing flipping.
snp_ids_are_rs_ids Binary Should the supplied SNP ID’s be assumed to be RSIDs. If not, imputation using the SNP ID for other columns like base-pair position or chromosome will not be possible. If set to FALSE, the SNP RS ID will be imputed from the reference genome if possible. Default is TRUE.
remove_multi_rs.snp Binary Sometimes summary statistics can have multiple RSIDs on one row (i.e. related to one SNP), for example "rs5772025_rs397784053". This can cause an error so by default, the first RS ID will be kept and the rest removed e.g."rs5772025". If you want to just remove these SNPs entirely, set it to TRUE. Default is FALSE.
validate_parameters

frq_is_maf Conventionally the FRQ column is intended to show the minor/effect allele frequency (MAF) but sometimes the major allele frequency can be inferred as the FRQ column. This logical variable indicates that the FRQ column should be renamed to MAJOR_ALLELE_FRQ if the frequency values appear to relate to the major allele i.e. >0.5. By default this mapping won’t occur i.e. is TRUE.

indels Binary does your Sumstats file contain Indels? These don’t exist in our reference file so they will be excluded from checks if this value is TRUE. Default is TRUE.

drop_indels Binary, should any indels found in the sumstats be dropped? These can not be checked against a reference dataset and will have the same RS ID and position as SNPs which can affect downstream analysis. Default is False.

check_dups whether to check for duplicates - if formatting QTL datasets this should be set to FALSE otherwise keep as TRUE. Default is TRUE.

dbSNP version of dbSNP to be used for imputation (144 or 155).

write_vcf Whether to write as VCF (TRUE) or tabular file (FALSE).

return_format If return_data is TRUE. Object type to be returned ("data.table", "vranges", "granges").

ldsc_format DEPRECATED, do not use. Use save_format="LDSC" instead.

save_format Output format of sumstats. Options are NULL - standardised output format from MungeSumstats, LDSC - output format compatible with LDSC and openGWAS - output compatible with openGWAS VCFs. Default is NULL.

imputation_ind Binary Should a column be added for each imputation step to show what SNPs have imputed values for differing fields. This includes a field denoting SNP allele flipping (flipped). On the flipped value, this denoted whether the alleles where switched based on MungeSumstats initial choice of A1, A2 from the input column headers and thus may not align with what the creator intended. Note these columns will be in the formatted summary statistics returned. Default is FALSE.

log_folder_ind Binary Should log files be stored containing all filtered out SNPs (separate file per filter). The data is outputted in the same format specified for the resulting sumstats file. The only exception to this rule is if output is vcf, then log file saved as .tsv.gz. Default is FALSE.

log_mungesumstats_msgs Binary Should a log be stored containing all messages and errors printed by MungeSumstats in a run. Default is FALSE

mapping_file MungeSumstats has a pre-defined column-name mapping file which should cover the most common column headers and their interpretations. However, if a column header that is in your file is missing of the mapping we give is incorrect you can supply your own mapping file. Must be a 2 column dataframe with column names "Uncorrected" and "Corrected". See data(sumstatsColHeaders) for default mapping and necessary format.

tabix_index Index the formatted summary statistics with tabix for fast querying.

chain_source source of the chain file to use in liftover, if converting genome build ("ucsc" or "ensembl"). Note that the UCSC chain files require a license for commercial use. The Ensembl chain is used by default ("ensembl").

rmv_chrPrefix Is now deprecated, do. not use. Use chr_style instead - chr_style = ‘Ensembl’ will give the same result as rmv_chrPrefix=TRUE used to give.
Value

No return

vcf2df

VCF to DF

Description

Function to convert a VariantAnnotation CollapsedVCF/ExpandedVCF object to a data.frame.

Usage

```
vcf2df(
  vcf,
  add_sample_names = TRUE,
  add_rowranges = TRUE,
  drop_empty_cols = TRUE,
  unique_cols = TRUE,
  unique_rows = TRUE,
  unlist_cols = TRUE,
  sampled_rows = NULL,
  verbose = TRUE
)
```

Arguments

- `vcf` Variant Call Format (VCF) file imported into R as a VariantAnnotation CollapsedVCF/ExpandedVCF object.
- `add_sample_names` Append sample names to column names (e.g. "EZ" -> "EZ_ubm-a-2929").
- `add_rowranges` Include rowRanges from VCF as well.
- `drop_empty_cols` Drop columns that are filled entirely with: NA, ".", or "".
- `unique_cols` Only keep uniquely named columns.
- `unique_rows` Only keep unique rows.
- `unlist_cols` If any columns are lists instead of vectors, unlist them. Required to be TRUE when unique_rows=TRUE.
- `sampled_rows` First N rows to sample. Set NULL to use full sumstats_file. when determining whether cols are empty.
- `verbose` Print messages.

Value

data.frame version of VCF
write_sumstats

Source

Original code source

vcfR:

```r
if(!require("pinfsc50")) install.packages("pinfsc50") vcf_file <- system.file("extdata", "pinf_sc50.vcf.gz", package = "pinfsc50") vcf <- read.vcfR( vcf_file, verbose = FALSE ) vcf_df_list <- vcfR::vcfR2tidy(vcf, single_frame=TRUE) vcf_df <- data.table::data.table(vcf_df_list$dat)
```

Examples

```r
#### VariantAnnotation ####
# path <- "https://github.com/brentp/vcfanno/raw/master/example/exac.vcf.gz"
path <- system.file("extdata", "ALSvcf.vcf", package = "MungeSumstats")

vcf <- VariantAnnotation::readVcf(file = path)
vcf_df <- MungeSumstats:::vcf2df(vcf = vcf)
```

write_sumstats

Write sum stats file to disk

Description

Write sum stats file to disk

Usage

```r
write_sumstats(
  sumstats_dt, save_path, ref_genome = NULL, sep = "\t", write_vcf = FALSE, save_format = NULL, tabix_index = FALSE, nThread = 1, return_path = FALSE, save_path_check = FALSE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sumstats_dt</td>
<td>data table obj of the summary statistics file for the GWAS.</td>
</tr>
<tr>
<td>save_path</td>
<td>File path to save formatted data. Defaults to tempfile(fileext=".tsv.gz").</td>
</tr>
<tr>
<td>ref_genome</td>
<td>name of the reference genome used for the GWAS ("GRCh37" or "GRCh38"). Argument is case-insensitive. Default is NULL which infers the reference genome from the data.</td>
</tr>
</tbody>
</table>
write_sumstats

sep

The separator between columns. Defaults to the character in the set [, \t | ; :]
that separates the sample of rows into the most number of lines with the same
number of fields. Use NULL or "" to specify no separator; i.e. each line a single
character column like base::readLines does.

write_vcf

Whether to write as VCF (TRUE) or tabular file (FALSE).

save_format

Output format of sumstats. Options are NULL - standardised output format from
MungeSumstats, LDSC - output format compatible with LDSC and openGWAS
- output compatible with openGWAS VCFs. Default is NULL.

tabix_index

Index the formatted summary statistics with tabix for fast querying.

nThread

The number of threads to use. Experiment to see what works best for your data
on your hardware.

return_path

Return save_path. This will have been modified in some cases (e.g. after
compressing and tabix-indexing a previously un-compressed file).

save_path_check

Ensure path name is valid (given the other arguments) before writing (default:
FALSE).

Value

If return_path=TRUE, returns save_path. Else returns NULL.

Source

VariantAnnotation::writeVcf has some unexpected/silent file renaming behavior

Examples

path <- system.file("extdata", "eduAttainOkbay.txt",
 package = "MungeSumstats"
)
eduAttainOkbay <- read_sumstats(path = path)
write_sumstats(
 sumstats_dt = eduAttainOkbay,
 save_path = tempfile(fileext = ".tsv.gz")
)
Index

* datasets
 sumstatsColHeaders, 110
* downloaders
 axel, 6
downloader, 51
* internal
 api_query, 5
axel, 6
check_access_token, 7
check_allele_flip, 7
check_allele_merge, 9
check_bi_allelic, 10
check_bp_range, 11
check_chr, 12
check_col_order, 13
check_drop_indels, 13
check_dup_bp, 14
check_dup_col, 15
check_dup_row, 16
check_dup_snps, 17
check_effect_columns_nonzero, 18
check_empty_cols, 19
check_four_step_col, 19
check_frat, 20
check_fratmaf, 21
check_info_score, 21
check_miss_data, 23
check_multi_gwas, 24
check_multi_rs_snps, 25
check_n_int, 32
check_n_num, 32
check_no_allele, 26
check_no_chr_bp, 27
check_no_rs_snps, 29
check_no_snps, 30
check_numeric, 31
check_on_ref_genome, 33
check_pos_neg, 34
check_range_p_val, 36
check_row_snps, 37
check_save_path, 38
check_signed_col, 39
check_small_p_val, 40
check_strand_ambiguous, 41
check_tabular, 42
check_two_step_col, 42
check_vcf, 43
check_vital_col, 43
check_zscore, 44
column_dictionary, 45
compute_sample_size, 47
compute_sample_size_n, 48
compute_sample_size_neff, 49
convert_sumstats, 50
DF_to_dt, 51
downloader, 51
drop_duplicate_cols, 54
drop_duplicate_rows, 54
get_access_token, 63
get_chain_file, 64
get_genome_build, 65
get_query_content, 68
get_unique_name_log_file, 68
get_vcf_sample_ids, 69
granges_to_dt, 69
gwasinfo, 70
index_vcf, 78
is_tabix, 80
legacy_ids, 81
logs_example, 85
make_allele_upper, 85
message_parallel, 86
messager, 86
parse_dropped_chrom, 87
parse_dropped_duplicates, 87
parse_dropped_INFO, 88
parse_dropped_nonA1A2, 88
parse_dropped_nonBiallelic, 89
parse_dropped_nonRef, 89
parse_flipped, 90
parse_genome_build, 90
parse_idStandard, 91
parse_pval_large, 92
parse_pval_neg, 92
parse_pval_small, 93
parse_report, 93
parse_snps_freq_05, 94
parse_snps_not_formatted, 94
parse_time, 95
preview_sumstats, 95
read_vcf_genome, 101
read_vcf_info, 102
read_vcf_markername, 102
read_vcf_parallel, 103
read_vcf_pval, 104
remove_empty_cols, 105
report_summary, 106
select_api, 106
select_vcf_fields, 107
sort_coord_genomicranges, 109
sort_coords, 108
sort_coords_datatable, 108
supported_suffixes, 111
to_granges, 112
to_vranges, 112
unlist_dt, 113
validate_parameters, 113

* tabix
 index_tabular, 77
 index_vcf, 78

api_query, 5
axel, 6, 52

collapsed_vcf, 43
check_access_token, 7
check_allele_flip, 7
check_allele_merge, 9
check_bi_allelic, 10
check_bp_range, 11
check_chr, 12
check_col_order, 13
check_drop_indels, 13
check_dup_bp, 14
check_dup_col, 15
check_dup_row, 16
check_dup_snps, 17
check_effect_columns_nonzero, 18
check_empty_cols, 19
check_four_step_col, 19
check_frrq, 20
check_frrq_maf, 21
check_info_score, 21
check_ldsc_format, 22
check_miss_data, 23
check_multi_gwas, 24
check_multi_rs_snp, 25
check_n_int, 32
check_n_num, 32
check_no_allele, 26
check_no_chr_bp, 27
check_no_rs_snp, 29
check_no_snps, 30
check_numeric, 31
check_on_ref_genome, 33
check_pos_se, 34
check_range_p_val, 36
check_row_snps, 37
check_save_path, 38
check_signed_col, 39
check_small_p_val, 40
check_strand_ambiguous, 41
check_tabular, 42
check_two_step_col, 42
check_vcf, 43
check_vital_col, 43
check_zscore, 44
CollapsedVCF, 118
column_dictionary, 45
collapse_nsize, 46
collapse_sample_size, 47
collapse_sample_size_n, 48
collapse_sample_size_neff, 49
collapse_sumstat, 50
data.table, 51, 69, 82, 91, 99, 103, 108, 109, 112
DataFrame, 51
DF_to_dt, 51
download.file, 51
download_vcf, 52
downloader, 6, 51
drop_duplicate_cols, 54
drop_duplicate_rows, 54
ExpandedVCF, 118
INDEX

find_sumstats, 55
format_sumstats, 31, 57, 73, 83, 85, 91
formatted_example, 56
get_access_token, 63
get_chain_file, 64
generate_frequencies, 64
generate_genome_build, 65
generate_genome_build, 66
generate_query_content, 68
generate_unique_name_log_file, 68
generate_vcf_sample_ids, 69
GRanges, 69, 82, 112
groups_to_dt, 69
gwasinfo, 70
hg19ToHg38, 70
hg38ToHg19, 71
ieu-a-298, 71
import_sumstats, 72, 83, 91
index_tabular, 77, 78
index_vcf, 78, 78
infer_effect_column, 79
is_tabix, 80
legacy_ids, 81
liftover, 81
list_sumstats, 83
load_ref_genome_data, 83
load_snp_loc_data, 84
logs_example, 85
make_allele_upper, 85
mapGenomeBuilds, 101
message_parallel, 86
message, 86
parse_dropped_chrom, 87
parse_dropped_duplicates, 87
parse_dropped_INFO, 88
parse_dropped_nonA1A2, 88
parse_dropped_nonBiallelic, 89
parse_dropped_nonRef, 89
parse_flipped, 90
parse_genome_build, 90
parse_idStandard, 91
parse_logs, 87–91, 91, 92–95
parse_pval_large, 92
parse_pval_neg, 92
parse_pval_small, 93
parse_report, 93
parse_snps_freq_05, 94
parse_snps_not_formatted, 94
parse_time, 95
preview_sumstats, 95
raw_ALSvcf, 96
raw_eduAttainOkbay, 96
read_header, 97
read_sumstats, 98
read_vcf, 99, 100, 103
read_vcf_genome, 101
read_vcf_info, 102
read_vcf_markername, 102
read_vcf_parallel, 103
read_vcf_pval, 104
register_cores, 105
remove_empty_cols, 105
report_summary, 106
scanVcfHeader, 101
select_api, 106
select_vcf_fields, 107
setorderv, 108
sort.GenomicRanges, 108
sort_coord_genomicranges, 109
sort_coords, 108
sort_coords_datatable, 108
standardise_header, 56, 109
sumstatsColHeaders, 110
supported_suffixes, 111
to_granges, 112
to_vranges, 112
unlist_dt, 113
validate_parameters, 113
VCF, 99, 103
vcf2df, 118
write_sumstats, 119