Package ‘NADfinder’

March 28, 2024

Type Package
Title Call wide peaks for sequencing data
Version 1.26.0
Encoding UTF-8
Author Jianhong Ou, Haibo Liu, Jun Yu, Hervé Pagès, Paul Kaufman, Lihua Julie Zhu
Maintainer Jianhong Ou <jianhong.ou@duke.edu>,
 Lihua Julie Zhu <julie.zhu@umassmed.edu>
Description Nucleolus is an important structure inside the nucleus in eukaryotic cells. It is the site for transcribing rDNA into rRNA and for assembling ribosomes, aka ribosome biogenesis. In addition, nucleoli are dynamic hubs through which numerous proteins shuttle and contact specific non-rDNA genomic loci. Deep sequencing analyses of DNA associated with isolated nucleoli (NAD-seq) have shown that specific loci, termed nucleolus-associated domains (NADs) form frequent three-dimensional associations with nucleoli. NAD-seq has been used to study the biological functions of NAD and the dynamics of NAD distribution during embryonic stem cell (ESC) differentiation. Here, we developed a Biocductor package NADfinder for bioinformatic analysis of the NAD-seq data, including baseline correction, smoothing, normalization, peak calling, and annotation.
License GPL (>= 2)
Depends R (>= 3.4), BiocGenerics, IRanges, GenomicRanges, S4Vectors, SummarizedExperiment
Imports graphics, methods, baseline, signal, GenomicAlignments, GenomeInfoDb, rtracklayer, limma, trackViewer, stats, utils, Rsamtools, metap, EmpiricalBrownsMethod, ATACseqQC, corrplot, csaw
Suggests RUnit, BiocStyle, knitr, BSgenome.Mmusculus.UCSC.mm10, testthat, BiocManager, rmarkdown
Identify nucleolus-associated domains (NADs) from NAD-seq

Description

Sliding-window based peak calling algorithm using whole genome sequences as control
backgroundCorrection

Correct ratios for background

Description
Correct ratios of read counts per sliding window for background.

Usage
backgroundCorrection(ratios, degree = 3, ...)

Arguments
- ratios: A vector of numeric. It is log2-transformed ratios, CPMRatios or OddRatios of counts for each window.
- degree: Degree of polynomial. default 3.
- ...: parameters could be passed to baseline.modpolyfit.

Details
This function implements the backgound correction methods of algorithm for polynomial fitting. See details via baseline.modpolyfit. This function expects the trendency of decreasing of the ratios from 5' end to 3' end.

Value
A vector of numeric. It is the background corrected log2-transformed ratios, CPMRatios or Odd-Ratios.

Examples
x <- runif(200)
background <- rep(c(20:1)/100, each=10)
backgroundCorrection(x)

butterFilter

Low pass filter on ratios by butterworth filter

Description
The Butterworth filter is a type of signal processing filter designed to have as flat a frequency response as possible in the passband.
Usage

butterFilter(ratios, N = ceiling(length(ratios)/200))

Arguments

ratios A vector of numeric. It is log2-transformed ratios, CPMRatios or OddRatios in each window.
N numeric(1) or integer(1). Critical frequencies of the low pass filter will be set as 1/N. 1/N is a cutoff at 1/N-th of the Nyquist frequency. By default, it is suppose there are about 200 peaks in the inputs.

Value

A vector of numeric with same length of input ratios. The vector indicates smoothed ratios.

Examples

ratios <- runif(20000)
butterFilter(ratios)

callPeaks

Call peaks using transformed, background corrected, and smoothed ratios with biological replicates

description

Use limma to calculate p-values for NADs

Usage

callPeaks(
 se,
 backgroundCorrectedAssay = "bcRatio",
 normalization.method = "quantile",
 N = 100,
 cutoffAdjPvalue = 1e-04,
 countFilter = 1000,
 combineP.method = "minimump",
 smooth.method = "loess",
 lfc = log2(1.5),
 ...
)

Arguments

- **se**: An object of `RangedSummarizedExperiment` with assays of raw counts, transformed ratios, background corrected ratios, smoothed ratios and z-scores. It should be an element of output of `smoothRatiosByChromosome`.

- **backgroundCorrectedAssay**: character(1). Assays names for background corrected log2-transformed ratios, CPMRatios or OddRatios.

- **normalization.method**: character(1) specifying the normalization method to be used. Choices are "none", "scale", "quantile" or "cyclicloess". See `normalizeBetweenArrays` for details.

- **N**: numeric(1) or integer(1). The number of neighboring windows used for loess smoothing or the inverse of the critical frequencies of the low pass filter for butterworth filter. 1/N is a cutoff at 1/N-th of the Nyquist frequency. Default 100.

- **cutoffAdjPvalue**: numeric(1). Cutoff adjust p-value.

- **countFilter**: numeric(1). Cutoff value for mean of raw reads count in each window.

- **combineP.method**: A method used to combine P-values. Default minmump

- **smooth.method**: A method used to smooth the ratios. Choices are "loess", "none" and "butterworthfilter".

- **lfc**: the minimum log2-fold-change that is considered scientifically meaningful

- **...**: Parameter not used.

Details

By default, use the mean smoothed ratio for each peak region to calculate p-values.

Value

An object of GRanges of peak list with metadata "AveSig", "P.Value", and "adj.P.Val", where "AveSig" means average signal such as average log2OddsRatio, log2CPMRatio or log2Ratio.

Author(s)

Jianhong Ou, Haibo Liu and Julie Zhu

Examples

data(triplicate.count)
se <- triplicate.count
se <- log2se(se, transformation = "log2CPMRatio",
 nucleolusCols = c("N18.subsampled.srt-2.bam",
 "N18.subsampled.srt-3.bam",
 "N18.subsampled.srt.bam"),
 genomeCols = c("G18.subsampled.srt-2.bam",
 "G18.subsampled.srt-3.bam",...
cumulativePercentage

Plot the cumulative percentage of tag allocation.

Description

Plot the difference between the cumulative percentage of tag allocation in paired samples.

computeLibSizeChrom

Perform overlap queries between reads and genome by sliding windows Count reads over sliding windows.

Description

Perform overlap queries between reads and genome by sliding windows Count reads over sliding windows.

Usage

computeLibSizeChrom(aln_list)

Arguments

aln_list a list.

Value

A RangedSummarizedExperiment object with chromosome-level depth The assays slot holds the counts, rowRanges holds the annotation from the sliding widows of genome. metadata contains lib.size.chrom for holding chromosome-level sequence depth

Author(s)

Jun Yu, Hervé Pagès and Julie Zhu
Usage

cumulativePercentage(
 se,
 binWidth = 1e+05,
 backgroundCorrectedAssay = "bcRatio",
 ...
)

Arguments

se An object of RangedSummarizedExperiment with assays of raw counts, transformed ratios, background correct ratios, smoothed ratios and z-scores. It should be an element of the output of smoothRatiosByChromosome.
binWidth numeric(1) or integer(1). The width of each bin.
backgroundCorrectedAssay character(1). Assays names for background correction ratios.
...
 Parameter not used.

Value

A list of data.frame with the cumulative percentages.

References

Examples

library(SummarizedExperiment)
data(triplicate.count)
se <- triplicate.count
se <- log2se(se, transformation = "log2CPMRatio",
 nucleolusCols = c("N18.subsampled.srt-2.bam",
 "N18.subsampled.srt-3.bam",
 "N18.subsampled.srt.bam"),
 genomeCols = c("G18.subsampled.srt-2.bam",
 "G18.subsampled.srt-3.bam",
 "G18.subsampled.srt.bam"))
se <- smoothRatiosByChromosome(se, chr="chr18")
cumulativePercentage(se[["chr18"]])
exportSignals

Output signals for visualization

Description

Output signals to bedgraph, bed, wig, etc, for track viewer

Usage

exportSignals(dat, assayName, colName, con, format = "bedGraph", ...)

Arguments

dat
An object of GRanges, or RangedSummarizedExperiment with assays of raw counts, ratios, background correct ratios, smoothed ratios and z-scores. It should be an element of output of smoothRatiosByChromosome

assayName
character(1). Assay name for RangedSummarizedExperiment

colName
character(1). Column name of metadata of dat or assay of dat for coverage weight, see coverage, RangedSummarizedExperiment.

con
The connection to which data is saved. If this is a character vector, it is assumed to be a filename and a corresponding file connection is created and then closed after exporting the object. If missing, a SimpleRleList will be returned.

format
The format of the output. see export.

...
Parameters to be passed to export

Value

If con is missing, a SimpleRleList will be returned. Otherwise, nothing is returned.

Examples

gr <- GRanges("chr1", IRanges(seq_len(100), 201:300), reads=rep(1, 100))
myTrackLine <- new("TrackLine", name="my track",
 description="description of my track",
 color=col2rgb("red")[, 1],
 visibility="full")
exportSignals(gr, colName="reads",
 con="test.bedGraph", trackLine=myTrackLine)
data(triplicate.count)
exportSignals(triplicate.count, "counts",
 "G18.subsampled.srt.bam", "test.bw", format="bigWig")
getCorrelations

Get correlation coefficients and p-values between biological replicates

Description

Get correlations and p-values between biological replicates based on coverage signal for peak regions. The signals will be filtered by the background cutoff value before calculated correlations. This function also output a correlation plots using the corplot.

Usage

getCorrelations(
 se,
 chr = paste0("chr", seq_len(19)),
 ratioAssay = "ratio",
 window = 10000L,
 cutoff = 1,
 method = c("spearman", "pearson", "kendall"),
 file_name = "Correlation plots.pdf",
 ...
)

Arguments

se A RangedSummarizedExperiment object. The output from log2se.
chr A vector of character. Filter for seqnames. It should be the chromosome names to be kept.
ratioAssay character(1). Column name of ratio for correlation calculation.
window numeric(1) or integer(1). The window size for summary of the ratios.
cutoff numeric(1). All the coverage signals lower than cutoff value in a given window will be filtered out.
method character(1) indicating which correlation coefficient is to be computed. See cor.
file_name A file name for output correlation plots
...
Parameters not used.

Value

A list of matrixes of correlation coefficients and p-values.

Author(s)

Jianhong Ou, Haibo Liu
Examples

data(triplicate.count)
se <- triplicate.count
se <- log2se(se, transformation = "log2CPMRatio",
 nucleolusCols = c("N18.subsampled.srt-2.bam",
 "N18.subsampled.srt-3.bam",
 "N18.subsampled.srt.bam"),
 genomeCols = c("G18.subsampled.srt-2.bam",
 "G18.subsampled.srt-3.bam",
 "G18.subsampled.srt.bam"))
getCorrelations(se, chr="chr18")

groupZscores

Calculate z-scores for each peak

Description

Detect peaks and calculate z-scores for each peak

Usage

groupZscores(zscore)

Arguments

zscore A vector of numeric. It is the z-scores of ratios for each window.

Value

A data.frame with column names as "zscore", "group", "grp.zscore", and "pvalue".

Examples

x <- seq_len(500)
a <- 2 * 2*pi/length(x)
y <- 20 * sin(x*a)
noise1 <- 20 * 1/10 * sin(x*a*10)
zscore <- y+noise1
groupZscores(zscore)
IntersectionNotStrict

Description

Count reads overlapping a set of genome features represented as genomic ranges. This function does not work for parallel.

Usage

```r
IntersectionNotStrict(
  features,
  reads,
  ignore.strand = TRUE,
  inter.feature = FALSE
)
```

Arguments

- **features**: A object of GRanges representing the feature regions to be counted.
- **reads**: An object that represents the data to be counted. See `summarizeOverlaps`. If reads are more than 1 bam files, it should be a vector of character with full path, otherwise current working directory is the default directory. For paired end reads,
- **ignore.strand**: logical(1). ignore strand?
- **inter.feature**: not used. This parameter is required by `summarizeOverlaps`.

Value

return a summarized experiment object with chromosome-level depth information for each input sample as metadata.

log2se

calculate the log2 transformed ratios for SummarizedExperiment class

Description

Calculate the log2 transformed ratios for nucleolus vs genome. pseudo-count will be used to avoid x/0 or log(0).
Usage

```r
log2se(
  se, 
  nucleolusCols, 
  genomeCols, 
  pseudocount = 1L, 
  transformation = c("log2OddsRatio", "log2CPMRatio", "log2Ratio"), 
  chrom.level.lib = TRUE
)
```

Arguments

- `se`: A `RangedSummarizedExperiment` object. The output of `tileCount`.
- `nucleolusCols`, `genomeCols`: column Names of counts for nucleolus and genome. They should be the column names in the assays of `se`. Ratios will be calculated as \(\log_2(\text{transformed nucleolusCols}/\text{transformed genomeCols}) \).
- `pseudocount`: default to 1, pseudo-count used to avoid x/0 or log(0).
- `transformation`: transformation type
- `chrom.level.lib`: indicating whether calculating CPM or odds using sequence depth of the whole genome or the corresponding chromosome

Value

A `RangedSummarizedExperiment` object with log2 transformed ratios. Assays will be named as nucleolus, genome and ratio.

Author(s)

Jianhong Ou and Julie Zhu

Examples

```r
library(SummarizedExperiment)
se <- SummarizedExperiment(assays=list(counts=DataFrame(A=seq_len(3), 
  B=rep(1, 3), C=rep(4, 3), D=rep(2, 3))), 
  rowRanges=GRanges(c("chr1", "chr1", "chr2"), 
    IRanges(c(1, 10, 20), width=9)))
metadata(se)$lib.size.chrom <- data.frame( 
  c(1000, 1000), c(2000, 2000), c(200, 200), c(300, 300))
colnames(metadata(se)$lib.size.chrom) <- c("A", "B", "C", "D")
rownames(metadata(se)$lib.size.chrom) <- c("chr1", "chr2")
log2se(se, nucleolusCols = c("A", "C"), genomeCols = c("B", "D"), 
  transformation = "log2Ratio")
log2se(se, nucleolusCols = c("A", "C"), genomeCols = c("B", "D"), 
  transformation = "log2CPMRatio")
log2se(se, nucleolusCols = c("A", "C"), genomeCols = c("B", "D"), 
  transformation = "log2OddsRatio")
```
peakdet

Detect peak positions

Description

Detect the peak positions and valley positions leveraging github::dgromer/peakdet

Usage

```r
peakdet(y, delta = 0, silence = TRUE)
```

Arguments

- `y`: A numeric vector for searching peaks
- `delta`: A numeric vector of length 1, defining the minimum absolute changes required for local maximum or minimum detection when slope sign changes. If it is set to 0, the delta will be set to 1/10 of the range of `y`.
- `silence`: logical(1). If false, echo the delta value when delta is set as 0.

Value

A list with `peakpos` and `valleypos`. Both `peakpos` and `valleypos` are numeric vectors storing the positions of peaks or valleys.

Examples

```r
y <- runif(200)
peakdet(y)

y <- sin(seq(0,20))
peakdet(y)
```

plotSig

Plot signals with ideograms

Description

Plot signals with ideograms for **GRangesList**.

Usage

```r
plotSig(ideo, grList, mcolName, ...)
```
smoothRatiosByChromosome

Arguments

 info Output of loadIdeogram.
 gList A GRangesList of data to plot.
 mcolName Column name of metadata of GRangesList for plotting.
 ... Parameters to pass to ideogramPlot

Value

Invisible argument list for ideogramPlot.

Examples

```r
library(trackViewer)
#ideo <- loadIdeogram("mm10")
ideo <- readRDS(system.file("extdata", "ideo.mm10.rds", 
package = "NADfinder"))
gr1 <- gr2 <- ideo
mcols(gr1) <- DataFrame(score=runif(length(gr1)))
mcols(gr2) <- DataFrame(score=runif(length(gr2)))
grList <- GRangesList(gr1, gr2)
plotSig(ideo, grList, mcolName="score", layout=list("chr1"))
```

single.count

Counts data for chromosome 18 for an experiment of a single pair of samples

Description

Counts data for chromosome 18 for an experiment of a single pair of samples

smoothRatiosByChromosome

Background correction and signal smoothing per chromosome

Description

Split the ratios by chromosome and do background correction and signal smoothing.
Usage

\begin{verbatim}
smoothRatiosByChromosome(
 se,
 chr = paste0("chr", c(seq_len(21), "X", "Y")),
 ratioAssay = "ratio",
 backgroundCorrectedAssay = "bcRatio",
 smoothedRatioAssay = "smoothedRatio",
 zscoreAssay = "zscore",
 backgroundPercentage = 0.25,
 chrom.level.background = TRUE,
 ...
)
\end{verbatim}

Arguments

- **se**: An object of \texttt{RangedSummarizedExperiment} with log2-transformed ratios, CPM-Ratios or OddRatios. Output of \texttt{log2se}
- **chr**: A character vector, used to filter out seqnames. It should be the chromosome names to be kept.
- **ratioAssay**: The name of assay in \texttt{se}, which store the values (log2-transformed ratios, CPM-Ratios or OddRatios) to be smoothed.
- **backgroundPercentage**: numeric(1). Percentage of values for background, see \texttt{zscoreOverBck}. The percentage of values lower than this threshold will be treated as background, with 25 percentile as default.
- **chrom.level.background**: logical(1): TRUE or FALSE, default to TRUE, use chromosome-level background to calculate z-score
- **...**: Parameters could be passed to \texttt{butterFilter}.

Value

A \texttt{SimpleList} of \texttt{RangedSummarizedExperiment} with smoothed ratios.

Author(s)

Jianhong Ou, Haibo Liu and Julie Zhu

Examples

\begin{verbatim}
data(single.count)
se <- single.count
dat <- log2se(se, nucleolusCols="N18.subsampled.srt.bam", genomeCols="G18.subsampled.srt.bam", transformation="log2CPMRatio")
dat1 <- smoothRatiosByChromosome(dat, N=100, chr = c("chr18", "chr19"))
\end{verbatim}
dat2 <- smoothRatiosByChromosome(dat, N=100, chr = c("chr18", "chr19"),
 chrom.level.background = FALSE)

tileCount

Perform overlap queries between reads and genome by windows

Description

tileCount extends `summarizeOverlaps` by finding coverage for each fixed window in the whole genome

Usage

```r
tileCount(
  reads,
  genome,
  excludeChrs = c("chrM", "M", "Mt", "MT"),
  windowSize = 50000,
  step = 10000,
  mode = IntersectionNotStrict,
  dataOverSamples = FALSE,
  ...
)
```

Arguments

- `read`: A `GRanges`, `GRangesList` (should be one read per list element), `GAlignments`, `GAlignmentsList`, `GAlignmentPairs` or `BamFileList` object that represents the data to be counted by `summarizeOverlaps`. If reads are more than 1 bam files, it should be a vector of character with full path, otherwise current working directory is the default directory.
- `genome`: A `BSgenome` object from/on which to get/set the sequence and metadata information.
- `excludeChrs`: A vector of string: chromosomes/scaffolds of no interest for NAD analysis. see `summarizeOverlaps`. default is `countByOverlaps`, alia of `countOverlaps(features, reads, ignore.strand=ignore.strand)`
- `windowSize`: numeric(1) or integer(1). Size of the windows.
- `step`: numeric(1) or integer(1). Step of generating silding windows.
- `mode`: One of the pre-defined count methods.
- `dataOverSamples`: logical(1). Data over several samples when use `GRangesList` as input.
- `...`: Additional arguments passed to `summarizeOverlaps`.

Value

A `RangedSummarizedExperiment` object. The assays slot holds the counts, rowRanges holds the annotation from the sliding widows of genome. metadata contains lib.size.chrom for holding chromosome-level sequence depth.

Author(s)

Jianhong Ou, Haibo Liu, Herve Pages and Julie Zhu

Examples

```r
if (interactive())
{
  fls <- list.files(system.file("extdata", package="NADfinder"), recursive=FALSE, pattern="*bam$", full=TRUE)
  names(fls) <- basename(fls)
  if (!require(BSgenome.Mmusculus.UCSC.mm10))
  {
    if (!requireNamespace("BiocManager", quietly=TRUE))
      install.packages("BiocManager")
    BiocManager::install("BSgenome.Mmusculus.UCSC.mm10")
    library(BSgenome.Mmusculus.UCSC.mm10)
  }
  se <- tileCount2(reads = fls,
                   genome = Mmusculus,
                   excludeChrs = c("chrM", paste0("chr", c(1:17,19), "chrX", "chrY"),
                                   windowSize=50000, step=10000)
}
```

`tileCount2`
Perform overlap queries between reads and genome by sliding windows Count reads over sliding windows.

Description

Perform overlap queries between reads and genome by sliding windows Count reads over sliding windows.

```r
if (interactive())
fls <- list.files(system.file("extdata", package="NADfinder"), recursive=FALSE, pattern="*bam$", full=TRUE) names(fls) <- basename(fls)
se <- tileCount2(reads = fls, windowSize=50000, step=10000)
```
Usage

tileCount2(
 reads,
 fragment.length = 100,
 windowSize = 50000,
 restrict = paste0("chr", c(1:19, "X", "Y")),
 step = 1000,
 filter = 0,
 pe = "both"
)

tileCount2(
 reads,
 fragment.length = 100,
 windowSize = 50000,
 restrict = paste0("chr", c(1:19, "X", "Y")),
 step = 1000,
 filter = 0,
 pe = "both"
)

Arguments

reads An object that represents the names and path of the bam files to be counted. If
reads are more than 1 bam files, it should be a vector of character with full path. This function now works for paired end reads

fragment.length integer(1). An integer scalar or a list of two integer scalars/vectors, containing
the average length(s) of the sequenced fragments in each libary.

windowSize numeric(1) or integer(1). Size of the windows.

restrict restrict to a set of chromosomes, default to mouse chromosomes.

step numeric(1) or integer(1). Step of generating silding windows.

filter default to 0 without filtering. An integer scalar for the minimum count sum
across libraries for each window

pe a character string indicating whether paired-end data is present; set to "none",
"both", "first" or "second"

Value

A RangedSummarizedExperiment object with chromosome-level depth The assays slot holds the
counts, rowRanges holds the annotation from the sliding widows of genome. metadata contains
lib.size.chrom for holding chromosome-level sequence depth

Author(s)

Jun Yu, Hervé Pagès and Julie Zhu
transformData

Examples

```r
if (interactive())
{
  fls <- list.files(system.file("extdata", package="NADfinder"),
                   recursive=FALSE, pattern="*bam$", full=TRUE)
  names(fls) <- basename(fls)

  se <- tileCount2(reads = fls,
                   windowSize=50000, step=10000)
}
```

transformData

transform counts to log2 cpm ratios, log2 ratios or log2 odds ratios

Description

calculate the log2 ratios, log2 cpm (count per million) ratios, or log2 odds ratios for nucleolus vs genome. pseudo-count will be used to avoid x/0 or log(0).

Usage

```r
transformData(
  A,
  B,
  seqnames.A,
  seqnames.B,
  pseudo.count = 1L,
  transformation = c("log2OddsRatio", "log2CPMRatio", "log2Ratio"),
  chrom.level.lib = TRUE,
  lib.size.A,
  lib.size.B
)
```

Arguments

- **A, B**: window-level counts for nucleolus and genome, extracted from the assays of the output of the tileCounts function
- **seqnames.A, seqnames.B**: seqnames, extracted from the rowRanges of the output of the tileCounts function
- **pseudo.count**: pseudo-count will be used to avoid x/0 or log(0), default to 1.
- **transformation**: transformation type
- **chrom.level.lib**: indicating whether calculating CPM or odds using sequence depth of the whole genome or the corresponding chromosome
trimPeaks

Trim peaks

Description

Filter the peaks by pvalue and trim the range of peaks for an NAD or ChIP-seq experiment without biological replicates.

Usage

trimPeaks(
 se,
 cutoffAdjPvalue = 0.05,
 padjust.method = "BH",
 backgroundPercentage = 0.25,
 countFilter = 1000,
ratioAssay = "ratio",
backgroundCorrectedAssay = "bcRatio",
smoothedRatioAssay = "smoothedRatio",
zscoreAssay = "zscore"
)

Arguments

se
An object of RangedSummarizedExperiment with assays of raw counts, ratios,
background corrected ratios, smoothed ratios and z-scores. It should be an ele-
ment of the output of smoothRatiosByChromosome
cutoffAdjPvalue
numeric(1). Cutoff of adjusted p-value.
padjust.method
character(1). The method to use for adjusting p-values, which is passed to
p.adjust function
backgroundPercentage
numeric(1). Cutoff value for the peaks height.
countFilter
numeric(1) or integer(1). Cutoff value for mean of raw reads count of the Nu-
cleolar/ChIP samples in each window.
ratioAssay
character(1). The name of assay in se, which store the values to be smoothed.
backgroundCorrectedAssay, smoothedRatioAssay, zscoreAssay
Assays names for background-corrected ratios, smoothed ratios and z-scores
based on background corrected ratios.

Value

An object of GRanges.

Examples

data(single.count)
se <- single.count
dat <- log2se(se, nucleolusCols="N18.subsampled.srt.bam", genomeCols="G18.subsampled.srt.bam",
transformation="log2CPMRatio")
Smooth the ratios for each chromosome.
dat <- smoothRatiosByChromosome(dat, N=100, chr=c("chr18","chr19"))
peaks <- trimPeaks(dat["chr18"],
 backgroundPercentage=.25,
 cutoffAdjPvalue=0.05, countFilter=1000)

triplicate.count
Counts data for chromosome 18 for an expriment with triplicates

Description

Counts data for chromosome 18 for an expriment with triplicates
Description

Calculate the z-scores over the background distribution.

Usage

zscoreOverBck(ratios, backgroundPercentage = 0.25)

Arguments

ratios A numeric vector containing the transformed, background corrected and smoothed ratios in each window.
backgroundPercentage numeric(1). Low percentile for background distribution.

Value

A vector of numeric. Z-scores.

Author(s)

Jianhong Ou and Julie Zhu

Examples

r <- runif(200)
zscoreOverBck(r)
Index

* data
 - single.count, 14
 - triplicate.count, 21

- backgroundCorrection, 3
- BamFileList, 16
- baseline.modpolyfit, 3
- butterFilter, 3, 15
- callPeaks, 4
- computeLibSizeChrom, 6
- cor, 9
- corrplot, 9
- coverage, 8
- cumulativePercentage, 6
- export, 8
- exportSignals, 8
- GAlignmentPairs, 16
- GAlignments, 16
- GAlignmentsList, 16
- getCorrelations, 9
- GRanges, 8, 11, 16, 21
- GRangesList, 13, 14, 16
- groupZscores, 10
- ideogramPlot, 14
- IntersectionNotStrict, 11
- loadIdeogram, 14
- log2se, 9, 11, 15
- NADfinder (NADfinder-package), 2
- NADfinder-package, 2
- normalizeBetweenArrays, 5
- peakdet, 13
- plotSig, 13
- RangedSummarizedExperiment, 5–9, 12, 15, 17, 18, 21
- SimpleList, 15
- SimpleRleList, 8
- single.count, 14
- smoothRatiosByChromosome, 5, 7, 8, 14, 21
- summarizeOverlaps, 11, 16
- tileCount, 12, 16
- tileCount2, 17
- transformData, 19
- trimPeaks, 20
- triplicate.count, 21
- zscoreOverBck, 15, 22