Package ‘NBAMSeq’

April 11, 2024

Type Package
Title Negative Binomial Additive Model for RNA-Seq Data
Version 1.18.0
Description High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation.

License GPL-2
URL https://github.com/reese3928/NBAMSeq
BugReports https://github.com/reese3928/NBAMSeq/issues
Encoding UTF-8
Imports DESeq2, mgcv(>= 1.8-24), BiocParallel, genefilter, methods, stats,
Depends R (>= 3.6), SummarizedExperiment, S4Vectors
Suggests knitr, rmarkdown, testthat, ggplot2
RoxygenNote 6.1.0
VignetteBuilder knitr
biocViews RNASeq, DifferentialExpression, GeneExpression, Sequencing, Coverage

git_url https://git.bioconductor.org/packages/NBAMSeq
git_branch RELEASE_3_18
git_last_commit 56721c1
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-10
Author Xu Ren [aut, cre],
 Pei Fen Kuan [aut]
Maintainer Xu Ren <xuren2120@gmail.com>
makeExample

R topics documented:

 makeExample .. 2
 makeplot ... 3
 NBAMSeq .. 3
 NBAMSeq-methods ... 4
 NBAMSeqDataSet .. 5
 NBAMSeqDataSet-class .. 6
 results .. 7

Index 8

makeExample Make an example NBAMSeqDataSet

Description

This function makes an example NBAMSeqDataSet

Usage

makeExample(n = 200, m = 30)

Arguments

n number of genes
m number of samples

Value

a NBAMSeqDataSet object

References

Examples

gsd = makeExample()
makeplot

Making plots to visualize nonlinear associations

Description

This function makes plots to visualize nonlinear associations.

Usage

makeplot(object, phenoname, genename, ...)

Arguments

 object a NBAMSeqDataSet object
 phenoname the name of nonlinear variable to be visualized
 genename the name of gene to be visualized
 ... additional arguments provided to plot.gam

Value

the plot made by plot.gam() function

Examples

gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)
makeplot(gsd, "pheno", "gene3", main = "gene10")

NBAMSeq

Differential expression analysis based on negative binomial additive model

Description

This function performs differential expression analysis based on negative binomial additive model.

Usage

NBAMSeq(object, gamma = 2.5, parallel = FALSE, fitlin = FALSE, BPPARAM = bpparam(), ...)

Arguments

object a NBAMSeqData object
gamma a number greater or equal to 1. Increase gamma to create smoother models. Default gamma is 2.5. See `gam` for details.
parallel either TRUE or FALSE indicating whether parallel should be used. Default is FALSE
fitlin either TRUE or FALSE indicating whether linear model should be fitted. Default is FALSE
BPPARAM an argument provided to `bplapply`. See `register` for details.
... additional arguments provided to `gam`

Value

a NBAMSeqData object

References

Examples

gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)

Description

Accessor functions and replace methods for NBAMSeqData object

For `getDesign()`: accessor to the design formula
For `getsf()`: accessor to the size factors
Replace methods for NBAMSeqData object
For `setsf()`: replace size factors

Usage

gdesign = getDesign(theObject)

S4 method for signature 'NBAMSeqDataSet'
gdesign = getDesign(theObject)

getsf(theObject)
S4 method for signature 'NBAMSeqDataSet'
getsf(theObject)

setsf(theObject) <- value

S4 replacement method for signature 'NBAMSeqDataSet,numeric'
setsf(theObject) <- value

Arguments

- **theObject**: a NBAMSeqDataSet object
- **value**: the values to be included in the object

Value

- For `getDesign()`: design formula
- For `getsf()`: size factor
- For `setsf()`: NBAMSeq object

References

Examples

```r
## For getDesign() ##
gsd = makeExample()
design_gsd = getDesign(gsd)

## For getsf() ##
gsd = makeExample()
sf = getsf(gsd)

## For setsf() ##
n = 100
m = 50
gsd = makeExample(n = n, m = m)
sf = sample(1:5, m, replace = TRUE)
setsf(gsd) = sf
```

Description

NBAMSeqData constructor
Usage

NBAMSeqDataSet(countData, colData, design, ...)

Arguments

countData a matrix or data frame contains gene count
colData a DataFrame or data.frame
design a mgcv type design. e.g. ~ s(pheno) or ~ s(pheno) + var1 + var2
... optional arguments passed to SummarizedExperiment

Value

a NBAMSeqDataSet object

Examples

n = 100 ## n stands for number of genes
m = 20 ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m)
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
pheno = runif(m, 20, 80)
colData = data.frame(pheno = pheno)
rownames(colData) = paste0("sample", 1:m)
gsd = NBAMSeqDataSet(countData = countData, colData = colData, design = ~s(pheno))

Description

NBAMSeqDataSet is a class inherited from SummarizedExperiment. It is used to store the count matrix, colData, and design formula in differential expression analysis.

Slots

design a mgcv-type design formula

References

Description

This function pulls out result from NBAMSeqDataSet object returned by NBAMSeq

Usage

results(object, name, contrast, indepfilter = TRUE, alpha = 0.1, pAdjustMethod = "BH", parallel = FALSE, BPPARAM = bpparam(), ...)

Arguments

object a NBAMSeqDataSet object returned by NBAMSeq
name the name of nonlinear variable or continuous linear variable
contrast a character of length 3. 1st element: name of factor variable; 2nd element: name of numerator level; 3rd element: name of denominator level. contrast = c("group", "treatment", "control") means comparing treatment vs control for group variable.
indepfilter either TRUE or FALSE indicating whether independent filtering should be performed. Default is TRUE.
alpha significant threshold for declaring genes as differentially expressed. Default is 0.1.
pAdjustMethod p-value adjustment method. Default is "BH". See p.adjust for details.
parallel either TRUE or FALSE indicating whether parallel should be used. Default is FALSE.
BPPARAM an argument provided to bplapply. See register for details.
... additional arguments provided to pvalueAdjustment function in DESeq2. See results for details.

Value

a DataFrame which contains the result

References

Examples

gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)
res = results(gsd, name = "pheno")
Index

bplapply, 4, 7

getDesign (NBAMSeq-methods), 4
getDesign, NBAMSeqDataSet-method
 (NBAMSeq-methods), 4
getsf (NBAMSeq-methods), 4
getsf, NBAMSeqDataSet-method
 (NBAMSeq-methods), 4

makeExample, 2
makeplot, 3

NBAMSeq, 3, 7
NBAMSeq-methods, 4
NBAMSeqDataSet, 5
NBAMSeqDataSet-class, 6

p.adjust, 7
plot.gam, 3

register, 4, 7
results, 7, 7

setsf<- (NBAMSeq-methods), 4
setsf<-, NBAMSeqDataSet, numeric-method
 (NBAMSeq-methods), 4
SummarizedExperiment, 6