Package ‘NBAMSeq’

April 4, 2024

Type Package

Title Negative Binomial Additive Model for RNA-Seq Data

Version 1.18.0

Description High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation.

License GPL-2

URL https://github.com/reese3928/NBAMSeq

BugReports https://github.com/reese3928/NBAMSeq/issues

Encoding UTF-8

Imports DESeq2, mgcv(>= 1.8-24), BiocParallel, genefilter, methods, stats,

Depends R (>= 3.6), SummarizedExperiment, S4Vectors

Suggests knitr, rmarkdown, testthat, ggplot2

RoxygenNote 6.1.0

VignetteBuilder knitr

biocViews RNASeq, DifferentialExpression, GeneExpression, Sequencing, Coverage

git_url https://git.bioconductor.org/packages/NBAMSeq

git_branch RELEASE_3_18

git_last_commit 56721c1

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-03

Author Xu Ren [aut, cre], Pei Fen Kuan [aut]

Maintainer Xu Ren <xuren2120@gmail.com>
makeExample

R topics documented:

makeExample .. 2
makeplot ... 3
NBAMSeq .. 3
NBAMSeq-methods .. 4
NBAMSeqDataSet ... 5
NBAMSeqDataSet-class 6
results ... 7

Index 8

makeExample

Make an example NBAMSeqDataSet

Description

This function makes an example NBAMSeqDataSet

Usage

makeExample(n = 200, m = 30)

Arguments

n
number of genes

m
number of samples

Value

a NBAMSeqDataSet object

References

https://doi.org/10.1186/s13059-014-0550-8

Examples

gsd = makeExample()
makeplot

Making plots to visualize nonlinear associations

Description

This function makes plots to visualize nonlinear associations.

Usage

makeplot(object, phenoname, genename, ...)

Arguments

- **object**: a NBAMSeqDataSet object
- **phenoname**: the name of nonlinear variable to be visualized
- **genename**: the name of gene to be visualized
- **...**: additional arguments provided to `plot.gam`

Value

the plot made by `plot.gam()` function

Examples

```r
gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)
makeplot(gsd, "pheno", "gene3", main = "gene10")
```

NBAMSeq

Differential expression analysis based on negative binomial additive model

Description

This function performs differential expression analysis based on negative binomial additive model.

Usage

```r
NBAMSeq(object, gamma = 2.5, parallel = FALSE, fitlin = FALSE,
        BPPARAM = bpparam(), ...)
```
NBAMSeq-methods

Arguments

- object: a NBAMSeqDataSet object
- gamma: a number greater or equal to 1. Increase gamma to create smoother models. Default gamma is 2.5. See `gam` for details.
- parallel: either TRUE or FALSE indicating whether parallel should be used. Default is FALSE
- fitlin: either TRUE or FALSE indicating whether linear model should be fitted. Default is FALSE
- BPPARAM: an argument provided to `bplapply`. See `register` for details.
- ...: additional arguments provided to `gam`

Value

- a NBAMSeqDataSet object

References

Examples

gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)

Description

Accessor functions and replace methods for NBAMSeqDataSet object

For `getDesign()`: accessor to the design formula
For `getsf()`: accessor to the size factors
Replace methods for NBAMSeqDataSet object
For `setsf()`: replace size factors

Usage

getDesign(theObject)

S4 method for signature 'NBAMSeqDataSet'
getDesign(theObject)

getsf(theObject)
NBAMSeqDataSet

NBAMSeqDataSet constructor

Description

NBAMSeqDataSet constructor

```r
## S4 method for signature 'NBAMSeqDataSet'
getsf(theObject)

setsf(theObject) <- value

## S4 replacement method for signature 'NBAMSeqDataSet,numeric'
setsf(theObject) <- value

**Arguments**

- **theObject**: a NBAMSeqDataSet object
- **value**: the values to be included in the object

**Value**

For `getDesign()`: design formula
For `getsf()`: size factor
For `setsf()`: NBAMSeq object

**References**


**Examples**

```r
For getDesign()
gsd = makeExample()
design_gsd = getDesign(gsd)

For getsf()
gsd = makeExample()
sf = getsf(gsd)

For setsf()
n = 100
m = 50
gsd = makeExample(n = n, m = m)
sf = sample(1:5, m, replace = TRUE)
setsf(gsd) = sf
```
Usage

\texttt{NBAMSeqDataSet(countData, colData, design, ...)}

Arguments

- \texttt{countData}: a matrix or data frame contains gene count
- \texttt{colData}: a \texttt{DataFrame} or \texttt{data.frame}
- \texttt{design}: a mgcv type design. e.g. \texttt{~ s(phen0) or ~ s(phen0) + var1 + var2}
- \ldots: optional arguments passed to \texttt{SummarizedExperiment}

Value

a NBAMSeqDataSet object

Examples

\begin{verbatim}
  n = 100  ## n stands for number of genes
  m = 20   ## m stands for sample size
  countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m)
  mode(countData) = "integer"
  colnames(countData) = paste0("sample", 1:m)
  rownames(countData) = paste0("gene", 1:n)
  pheno = runif(m, 20, 80)
  colData = data.frame(pheno = pheno)
  rownames(colData) = paste0("sample", 1:m)
  gsd = NBAMSeqDataSet(countData = countData, colData = colData, design = ~s(phen0))
\end{verbatim}

Description

\texttt{NBAMSeqDataSet} is a class inherited from \texttt{SummarizedExperiment}. It is used to store the count matrix, \texttt{colData}, and design formula in differential expression analysis.

Slots

- \texttt{design}: a mgcv-type design formula

References

**Description**

This function pulls out result from NBAMSeqDataSet object returned by `NBAMSeq`.

**Usage**

```r
results(object, name, contrast, indepfilter = TRUE, alpha = 0.1, pAdjustMethod = "BH", parallel = FALSE, BPPARAM = bpparam(), ...)```

Arguments

- `object`: a NBAMSeqDataSet object returned by `NBAMSeq`.
- `name`: the name of nonlinear variable or continuous linear variable.
- `contrast`: a character of length 3. 1st element: name of factor variable; 2nd element: name of numerator level; 3rd element: name of denominator level. `contrast = c("group", "treatment", "control")` means comparing treatment vs control for group variable.
- `indepfilter`: either TRUE or FALSE indicating whether independent filtering should be performed. Default is TRUE.
- `alpha`: significant threshold for declaring genes as differentially expressed. Default is 0.1.
- `parallel`: either TRUE or FALSE indicating whether parallel should be used. Default is FALSE.
- `BPPARAM`: an argument provided to `bplapply`. See `register` for details.
- `...`: additional arguments provided to `pvalueAdjustment` function in DESeq2. See `results` for details.

Value

a DataFrame which contains the result

References

Examples

```r
gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)
res = results(gsd, name = "pheno")```
Index

bplapply, 4, 7

gam, 4
getDesign (NBAMSeq-methods), 4
getDesign, NBAMSeqDataSet-method (NBAMSeq-methods), 4
getsf (NBAMSeq-methods), 4
getsf, NBAMSeqDataSet-method (NBAMSeq-methods), 4

makeExample, 2
makeplot, 3

NBAMSeq, 3, 7
NBAMSeq-methods, 4
NBAMSeqDataSet, 5
NBAMSeqDataSet-class, 6

p.adjust, 7
plot.gam, 3

register, 4, 7
results, 7, 7

setsf<- (NBAMSeq-methods), 4
setsf<-, NBAMSeqDataSet, numeric-method (NBAMSeq-methods), 4
SummarizedExperiment, 6