Package ‘NPARC’

March 19, 2024

Type Package

Title Non-parametric analysis of response curves for thermal proteome profiling experiments

Version 1.14.0

Author Dorothee Childs, Nils Kurzawa

Maintainer Nils Kurzawa <nilskurzawa@gmail.com>

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Depends R (>= 4.0.0)

Imports dplyr, tidyr, BiocParallel, broom, MASS, rlang, magrittr, stats, methods

Suggests testthat, devtools, knitr, rprojroot, rmarkdown, ggplot2, BiocStyle

VignetteBuilder knitr

biocViews Software, Proteomics

git_url https://git.bioconductor.org/packages/NPARC

git_branch RELEASE_3_18

git_last_commit 5f7d872

Date/Publication 2024-03-18
R topics documented:

fitSingleSigmoid ... 2
getParams ... 3
NPARC ... 3
NPARCFit ... 4
NPARCTest ... 5
runNPARC ... 5
stauro_TPP_data_tidy ... 6

Index 8

fitSingleSigmoid Fit sigmoid model

Description

Fit sigmoid model

Usage

fitSingleSigmoid(x, y, start = c(Pl = 0, a = 550, b = 10))

Arguments

x numeric vector of the independent variables (typically temperature)
y numeric vector of the dependent variables (typically relative abundance measurements)
start numeric vector of start parameters for the melting curve equation

Details

Fits the following function to the data: \(y = \frac{(1 - Pl)}{(1 + exp((b - a/x)))} + Pl \)

Value

model summary of type "nls"

Examples

data(stauro_TPP_data_tidy)
stk4 <- dplyr::filter(stauro_TPP_data_tidy, grepl("STK4", uniqueID))
fitSingleSigmoid(stk4$temperature, stk4$relAbundance)
getParams

Control parameters for model fitting

Description
Control parameters for model fitting

Usage
getParams(start = c(P1 = 0, a = 550, b = 10), maxAttempts = 100)

Arguments
- **start** Numeric vector of start parameters for the melting curve equation
- **maxAttempts** Number of resampling steps in case of unsuccessful model fits

Value
list of two elements: 1) "start" listing the starting parameters for melting curve fitting, 2) "maxAttempts" listing the maximal number of attempts the fit should be allowed

Examples
```r
data(stauro_TPP_data_tidy)
df <- dplyr::filter(stauro_TPP_data_tidy, grepl("MAPK|ATP|CDK|GTP|CRK", uniqueID))
testResults <- runNPARC(x = df$temperature,
y = df$relAbundance,
id = df$uniqueID,
groupsAlt = df$compoundConcentration,
dfType = "empirical",
control = getParams(maxAttempts = 50))
```

NPARC

NPARC package

Description
Non-parametric analysis of response curves

Details
See the preprint on Childs, Bach, Franken et al. (2019): Non-parametric analysis of thermal proteome profiles reveals novel drug-binding proteins
NPARCfit

Fit null and alternative models for Non-parametric analysis of response curves

Description

Fit melting curve and return model metrics as well as predictions for the null and alternative models.

Usage

```r
NPARCfit(x, y, id, control = getParams(), groupsNull = NULL, groupsAlt, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE), returnModels = FALSE)
```

Arguments

- `x` numeric vector of the independent variables (typically temperature)
- `y` numeric vector of the dependent variables (typically relative abundance measurements)
- `id` character vector with the protein ID to which each each data point belongs.
- `control` list of parameters used to control specific parts of the analyse
- `groupsNull` one or more vectors with grouping variables for the null models. See details.
- `groupsAlt` one or more vectors with grouping variables for the alternative models. See details.
- `BPPARAM` BiocParallel parameter object to invoke curve fitting in parallel. Default: BiocParallel::SerialParam()
- `returnModels` boolean value. If true, the fitted models are returned together with the test results

Details

`groupsNull` or `groupsAlt` can either be a single vector each, or data.frames of the same length as `x` and `y` with one column per factor

Value

data frame with fitted model parameters and additional columns listing e.g. residuals sum of squares

Examples

```r
data(stauro_TPP_data_tidy)
df <- dplyr::filter(stauro_TPP_data_tidy, grepl("CDK|GTP|CRK", uniqueID))
testResults <- NPARCfit(x = df$temperature,  
y = df$relAbundance,  
id = df$uniqueID,  
groupsAlt = df$compoundConcentration)
```
NPARCtest

Perform F-test

Description
Perform F-test

Usage
NPARCtest(modelMetrics, dfType = c("empirical", "theoretical"))

Arguments
- modelMetrics: data.frame with results of the model fit in long format.
- dfType: character value indicating the method for degrees of freedom computation for the F-test. Theoretical yields the text-book solution. Empirical yields estimates derived from the distribution moments of the RSS.

Value
data frame with fitted model parameters and additional columns listing e.g. residuals sum of squares of null and alternative model and raw and adjusted p values retrieved from testing

Examples
data(stauro_TPP_data_tidy)
df <- dplyr::filter(stauro_TPP_data_tidy, grepl("CDK|GTP|CRK", uniqueID))
fits <- NPARCfit(x = df$temperature,
 y = df$relAbundance,
 id = df$uniqueID,
 groupsNull = NULL,
 groupsAlt = df$compoundConcentration,
 returnModels = FALSE)
modelMetrics <- fits$metrics
testRes <- NPARCtest(modelMetrics, dfType = "theoretical")

runNPARC
Non-parametric analysis of response curves

Description
Wrapper function for melting curve fitting and hypothesis testing.

Usage
runNPARC(x, y, id, groupsNull = NULL, groupsAlt,
 BPPARAM = BiocParallel::SerialParam(progressbar = TRUE),
 dfType = c("theoretical", "empirical"), control = getParams())
Arguments

x
numeric vector of the independent variables (typically temperature)

y
umeric vector of the dependent variables (typically relative abundance measurements)

id
character vector with the protein ID to which each data point belongs.

groupsNull
one or more vectors with grouping variables for the null models. See details.

groupsAlt
one or more vectors with grouping variables for the alternative models. See details.

BPPARAM
BiocParallel parameter object to invoke curve fitting in parallel. Default: BiocParallel::SerialParam()

dfType
character value indicating the method for degrees of freedom computation for the F-test. Theoretical yields the text-book solution. Empirical yields estimates derived from the distribution moments of the RSS.

control
list of parameters used to control specific parts of the analyse

Details

groupsNull or groupsAlt can either be a single vector each, or data.frames of the same length as x and y with one column per factor

Value

data frame with fitted model parameters and additional columns listing e.g. residuals sum of squares of null and alternative model

Examples

data(stauro_TPP_data_tidy)
df <- dplyr::filter(stauro_TPP_data_tidy, grepl("CDK\|GTP\|CRK", uniqueID))
testResults <- runNPARC(x = df$temperature,
y = df$relAbundance,
id = df$uniqueID,
groupsAlt = df$compoundConcentration,
dfType = "empirical")

stauro_TPP_data_tidy

TPP dataset of staurosporine treated cells.

Description

Data from a thermal proteome profiling (TPP) experiment investigating the ATP-competitive pan-kinase inhibitor staurosporine on K562 cells. The data has been downloaded the data from the supplement of the respective publication and converted into tidy format.
Usage

data(stauro_TPP_data_tidy)

Format

An object of class "data.frame"

References

Index

* datasets
 stauro_TPP_data_tidy, 6

fitSingleSigmoid, 2

getParams, 3

NPARC, 3
NPARC-package (NPARC), 3
NPARCFit, 4
NPARCTest, 5

unNPARC, 5

stauro_TPP_data_tidy, 6