Package ‘PanomiR’

May 30, 2024

Title Detection of miRNAs that regulate interacting groups of pathways

Version 1.8.0

Description PanomiR is a package to detect miRNAs that target groups of pathways from gene expression data. This package provides functionality for generating pathway activity profiles, determining differentially activated pathways between user-specified conditions, determining clusters of pathways via the PCxN package, and generating miRNAs targeting clusters of pathways. These function can be used separately or sequentially to analyze RNA-Seq data.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2

Suggests testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown

Config/testthat/edition 3

biocViews GeneExpression, GeneSetEnrichment, GeneTarget, miRNA, Pathways

Imports clusterProfiler, dplyr, forcats, GSEABase, igraph, limma, metap, org.Hs.eg.db, parallel, preprocessCore, RColorBrewer, rlang, tibble, withr, utils

Depends R (>= 4.2.0)

URL https://github.com/pouryany/PanomiR

BugReports https://github.com/pouryany/PanomiR/issues

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/PanomiR

git_branch RELEASE_3_19

git_last_commit fd5ac15

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29
Author Pourya Naderi [aut, cre],
 Yue Yang (Alan) Teo [aut],
 Ilya Sytchev [aut],
 Winston Hide [aut]

Maintainer Pourya Naderi <pouryany@gmail.com>

Contents

aggInvCoverFn .. 3
aggInvFn .. 3
aggLogCoverFn ... 4
aggLogFn .. 4
alignToUniverse ... 5
clusterPlot ... 5
differentialPathwayAnalysis 6
enrichAllPairs .. 7
getDesignMatrix .. 8
getDiffExpTable .. 9
getResidual ... 9
gscExample ... 10
jackKnifeBase .. 10
linColumnFinder .. 11
mappingPathwaysClusters 12
methodProbBase .. 13
miniTestsPanomiR ... 14
miRNAPathwayEnrichment 15
msigdb_c2 .. 16
pathwayGeneTab .. 16
pathwaySummary .. 17
path_gene_table .. 18
pCutCoverFn ... 19
pCutFn ... 19
pcxnToNet .. 20
prioritizeMicroRNA ... 21
reportEnrichment ... 22
samplingDataBase ... 23
sumlogCoverFn ... 24
sumlogFn .. 24
sumzCoverFn .. 25
sumzFn ... 25
tableFromGSC ... 26
targetScan_03 ... 26

Index 28
aggInvCoverFn

Internal function for modification of prioritization.

Description

Internal function for modification of prioritization.

Usage

`aggInvCoverFn(selector, coverName)`

Arguments

- `selector`: a prioritization table
- `coverName`: a new column name

Value

an updated scoring of miRNAs in a cluster of pathways

aggInvFn

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via inverse normal method

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via inverse normal method

Usage

`aggInvFn(enriches, pathways, isSelector = TRUE, thresh = NULL)`

Arguments

- `enriches`: a table of miRNA pathway enrichments. Universe
- `pathways`: queried pathways. e.g. cluster pathways
- `isSelector`: internal argument
- `thresh`: internal argument

Value

a scoring of miRNAs in a cluster of pathways
aggLogCoverFn

Internal function for modification of prioritization.

Description

Internal function for modification of prioritization.

Usage

`aggLogCoverFn(selector, coverName)`

Arguments

- **selector**: a prioritization table
- **coverName**: a new column name

Value

an updated scoring of miRNAs in a cluster of pathways

aggLogFn

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via log aggregation method.

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via log aggregation method.

Usage

`aggLogFn(enriches, pathways, isSelector, thresh = 0)`

Arguments

- **enriches**: a table of miRNA pathway enrichments. Universe
- **pathways**: queried pathways. e.g. cluster pathways
- **isSelector**: internal argument
- **thresh**: internal argument

Value

a scoring of miRNAs in a cluster of pathways
alignToUniverse

function to align a list of sets and a reference universe

Description
function to align a list of sets and a reference universe

Usage
alignToUniverse(pathwaySets, universe)

Arguments
- **pathwaySets**: a list of sets
- **universe**: all set elements must be a subset of universe

Value
a list of sets, aligned to universe

clusterPlot

Plots clusters of pathways with associated directionality.

Description
Plots clusters of pathways with associated directionality.

Usage
clusterPlot(
 subNet,
 subplot = FALSE,
 topClusters = 2,
 prefix = "",
 outDir = ".",
 plotSave = TRUE
)

Arguments
- **subNet**: pathways network (edge list of pathways)
- **subplot**: if TRUE, store individual clusters plots and connected plots in Figures directory of plots
- **topClusters**: plot figures for top x clusters
- **prefix**: add prefix to plots
- **outDir**: output directory
- **plotSave**: saves the plot if set true. Otherwise display
differentialPathwayAnalysis

Value

A set of plots for DE-PCXN and subclusters

Examples

data(miniTestsPanomiR)
clusterPlot(miniTestsPanomiR$miniPathClusts$DE_PCXN, plotSave = FALSE)

differentialPathwayAnalysis

Differential Expression Analysis For Pathways

Description

Performs differential expression analysis for pathways using LIMMA package with gene counts

Usage

differentialPathwayAnalysis(
 geneCounts,
 pathways,
 covariates,
 condition,
 adjustCovars = NULL,
 covariateCorrection = FALSE,
 quantileNorm = FALSE,
 outDir = ".",
 saveOutName = NULL,
 id = "ENSEMBL",
 deGenes = NULL,
 minPathSize = 10,
 method = "x2",
 trim = 0.025,
 geneCountsLog = TRUE,
 contrastConds = NA
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>geneCounts</td>
<td>Gene counts, rows refer to genes and columns to samples.</td>
</tr>
<tr>
<td>pathways</td>
<td>Pathways table, containing pathway names and genes with id specified.</td>
</tr>
<tr>
<td>covariates</td>
<td>Covariates/metadata file; rows matches the columns of geneCounts.</td>
</tr>
<tr>
<td>condition</td>
<td>Condition to be examined (tumor vs normal etc); must exist in covariates column.</td>
</tr>
<tr>
<td>adjustCovars</td>
<td>Adjustment covariates like batch; if NULL, no adjustments performed.</td>
</tr>
</tbody>
</table>
enrichAllPairs

Description

Pairwise enrichment analysis between two given lists of sets

Usage

enrichAllPairs(mirSets, pathwaySets, pathsRef, numCores)

covariateCorrection

If TRUE, performs covariates detection and correction; requires **adjustCovars** (limma).

quantileNorm

If TRUE, performs quantile normalization on pathway summary statistics; from *preprocess* package.

outDir

Output directory.

saveOutName

If not NULL, saves output as RDS using save name, if NULL, does not save output.

id

ID matching genes to pathways; rownames of geneCounts.

deGenes

If not NULL, add t-scores to pathways summary statistics; filter by genes t-scores.

minPathSize

Minimum pathway size.

method

Define method to use for pathway summary statistics; specifications in documentations.

trim

Filter pathways with mean less than trim threshold in pathway summary statistics.

geneCountsLog

If TRUE, log(geneCounts).

contrastConds

Provide a contrast expression to be used in Limma comparison. This is necessary if you have more than two levels in the condition covariate.

Value

List containing differentially expressed pathways as DEP and pathway summary statistics as pathwaySummaryStats.

Examples

```r
data("path_gene_table")
data("miniTestsPanomiR")

differentialPathwayAnalysis(geneCounts = miniTestsPanomiR$mini_LIHC_Exp,
  pathways = path_gene_table,
  covariates = miniTestsPanomiR$mini_LIHC_Cov,
  condition = 'shortLetterCode')
```
getDesignMatrix

Arguments

- **mirSets**: a list of targets of miRNAs
- **pathwaySets**: a list of pathways
- **pathsRef**: universe of genes.
- **numCores**: number of cores to calculate the results.

Value

enrichment analysis results

getDesignMatrix

Obtain Design Matrix

Description

Modified from covariates pipeline of Menachem Former. Imported from https://github.com/th1vairam/CovariateAnalysis

Usage

getDesignMatrix(covariatesDataFrame, intercept = TRUE, reLevels = list())

Arguments

- **covariatesDataFrame**: Dataframe of covariates.
- **intercept**: intercept in the linear model.
- **reLevels**: TBA.

Value

List containing a design matrix.

Examples

data(iris)
getDesignMatrix(iris)
getDiffExpTable

function to get a DE table

Description

function to get a DE table

Usage

getDiffExpTable(expMat, designMat, contrastsName)

Arguments

expMat an expression matrix
designMat a design Matrix
contrastsName the contrast to perform

Value

a table of differential expression

getResidual

function to get residuals with respect to a set of covariates

Description

function to get residuals with respect to a set of covariates

Usage

getResidual(covariates, adjustCovars, pathSumStats)

Arguments

covariates a covariate dataframe.
adjustCovars covariates to adjust for
pathSumStats an expression matrix

Value

a matrix of adjusted expression
gscExample

Example genesets from MSigDB

Description

Example genesets from MSigDB

Usage

data(gscExample)

Format

A GeneSet Collection object containing two genesets.

Source

http://www.gsea-msigdb.org/gsea/index.jsp

Examples

data(gscExample)

jackKnifeBase

Outputs a table with col x (miRNA), probability of observing k (depending on methodology) against a random distribution with jack-knifing of the pathway cluster (removing a pathway at a time)

Description

Outputs a table with col x (miRNA), probability of observing k (depending on methodology) against a random distribution with jack-knifing of the pathway cluster (removing a pathway at a time)

Usage

jackKnifeBase(
selector,
pathways,
enrichNull,
fn,
jackKnifeData,
m,
umCores = 1
)
Arguments

- **selector**: Table with x(miRNA) in pathway cluster and observed k (depending on methodology).
- **pathways**: Pathways in pathway cluster.
- **enrichNull**: Enrichment dataset with x (miRNA), y (pathway) and pval (probability of observing x in pathway cluster).
- **fn**: Methodology function.
- **jackKnifeData**: Random distribution data with jack-knifing (i.e. one less pathway)
- **m**: method name
- **numCores**: number of cores

Value

Outputs a new selector table with col x, pval_jk

linColumnFinder

Function imported from https://github.com/th1vairam/CovariateAnalysis
Modified from http://stackoverflow.com/questions/13088770/
Function to find linearly dependent columns of a matrix

Usage

linColumnFinder(mat)

Arguments

- **mat**: an input design matrix.

Value

a list of independent columns

Examples

data(“iris”)
designMat <- getDesignMatrix(iris)
linColumnFinder(designMat$design)
mappingPathwaysClusters

Outputs a table with pathways and their respective clusters

Description

Outputs a table with pathways and their respective clusters

Usage

```r
mappingPathwaysClusters(
  pcxn,  
  dePathways,  
  clusteringFunction = NULL,  
  edgeFDR = 0.05,  
  correlationCutOff = 0.316,  
  pathwayFDR = 0.05,  
  topPathways = 200,  
  plotOut = TRUE,  
  subplot = TRUE,  
  topClusters = 2,  
  prefix = "",  
  outDir = ".",  
  saveNameCSV = NULL,  
  weighted = FALSE
)
```

Arguments

- **pcxn** pathways network (edge list of pathways)
- **dePathways** differential expressed pathways, obtained from *DifferentialPathwayAnalysis*
- **clusteringFunction** clustering algorithm
- **edgeFDR** FDR threshold for pathway-pathway adjusted p-values; filter edges with adjusted p-values less than given threshold
- **correlationCutOff** cut-off threshold for pathway-pathway correlation; filter pathways with correlation less than given threshold
- **pathwayFDR** FDR threshold for DE pathways adjusted p-values; filter pathways with adjusted p-values less than given threshold
- **topPathways** use only top x paths; if NULL, use all paths
- **plotOut** if TRUE, store graph plot in Figures directory of plots
- **subplot** if TRUE, store individual clusters plots and connected plots in Figures directory of plots
methodProbBase

- `topClusters` plot figures for top x clusters
- `prefix` add prefix to plots
- `outDir` output directory
- `saveNameCSV` if not NULL, saves output as csv using save name
- `weighted` True if you wish to include correlation weights in clustering

Value

a list where the first item is a table with each row containing a pathway and its respective cluster. The second item is an igraph object.

Examples

data("miniTestsPanomiR")

mappingPathwaysClusters(pcxn = miniTestsPanomiR$miniPCXN,
dePathways = miniTestsPanomiR$miniDEP,
topPathways = 200,
outDir=".",
plot = FALSE,
subplot = FALSE,
prefix=''
clusteringFunction = "cluster_louvain",
correlationCutOff = 0.1)

methodProbBase Outputs a table with col x, miRNA, probability of observing k against a random distribution of the cover of methodology

Description

Outputs a table with col x, miRNA, probability of observing k against a random distribution of the cover of methodology

Usage

methodProbBase(samplingData, selector, m, nPaths = 100, coverFn = NULL)

Arguments

- `samplingData` Random distribution data.
- `selector` Table with x(miRNA) in pathway cluster and observed k (depending on methodology).
- `m` Method name.
- `nPaths` Number of pathways used to generate the samplingData at each iteration. Default is set at 100.
- `coverFn` Cover of methodology function.
Value

Outputs a new selector table with col x, pval and cover.

miniTestsPanomiR

Readouts and datasets for minimal reproducible examples of the PanomiR.

Description

The item miniEnrich is a reduced representation of the TargetScan. For full table use miRNAPathwayEnrichment function in the package along with msigdb_c2 and targetScan_03 datasets.

Usage

data(miniTestsPanomiR)

Format

A list of 5:

- **mini_LIHC_Exp** a reduced expression dataset from TCGA LIHC data
- **mini_LIHC_Cov** a reduced covariates dataset from TCGA LIHC data
- **miniEnrich** a reduced table of miRNA-pathway enrichment, TargetScan.
- **miniDEP** Differentially activated pathways from reduced TCGA LIHC
- **miniPCXN** reduced representation of PCXN network
- **miniPathClusts** miniDEP mapped to miniPCXN

Details

These datasets include reduced representation of TCGA LIHC data for reproducing the pipeline. doi: 10.1016/j.cell.2017.05.046

A reduced representation of PCxN is provided. For full dataset and method please refer to pcxn.org or https://doi.org/10.1371/journal.pcbi.1006042

Examples

data(miniTestsPanomiR)
miRNAPathwayEnrichment

Enrichment Probability Of miRNAs

Description
Outputs enrichment probability of miRNAs based on pathway clusters.

Usage
miRNAPathwayEnrichment(
 mirSets,
 pathwaySets,
 geneSelection = NULL,
 mirSelection = NULL,
 fromID = "ENSEMBL",
 toID = "ENTREZID",
 minPathSize = 9,
 numCores = 1,
 outDir = ".",
 saveOutName = NULL
)

Arguments

- **mirSets**: Table of miRNAs and a list of their interactions with genes in ENTREZ ID.
- **pathwaySets**: Table of pathways and a list of their interactions with genes in ENTREZ ID.
- **geneSelection**: Table of genes with dtype; if not NULL, select only genes from a given table.
- **mirSelection**: Table of miRNA names; if not NULL, select only miRNAs from given table.
- **fromID**: ID of genes in geneSelection.
- **toID**: ID of genes used in pcxn and pathways set.
- **minPathSize**: Filter out pathways with sets less than given value.
- **numCores**: Number of CPU cores to use, must be at least one.
- **outDir**: Output directory.
- **saveOutName**: If not NULL, saves output as RDS using save name.

Value
Table of enrichment, each row contains mirna-pathway and its enrichment p-values.

Examples

data(msigdb_c2)
data(targetScan_03)
miRNAPathwayEnrichment(targetScan_03[1:20],msigdb_c2[1:20])
msigdb_c2

Canonical pathways from Molecular Signatures Database, MsigDb V6.2

Description

Canonical pathways from Molecular Signatures Database, MsigDb V6.2

Usage

```r
data(msigdb_c2)
```

Format

A list of 1143 pathways

Source

Examples

```r
data(msigdb_c2)
```

pathwayGeneTab

Pathway-Gene Associations

Description

Generates a table of pathways and genes associations.

Usage

```r
pathwayGeneTab(
    pathAdress = NA,
    pathwayList = NA,
    fromType = "ENTREZID",
    toType = "ENSEMBL",
    outDir = NA
)
```
pathwaySummary

Arguments

- `pathAdress`: Address to an RDS file containing list of pathways where each element is a list of genes similar to GMT format.
- `pathwayList`: If you wish to use a list of pathways instead of a file use this argument instead. The list must contain no NA values.
- `fromType`: gene annotation type used in your input data.
- `toType`: gene annotation type to be produced in the output.
- `outDir`: Address to save an RDS for a table of pathway-gene association.

Value

`pathExpTab` Table of pathway-gene association.

Examples

```r
pathway1 <- c("125", "3099", "126")
pathway2 <- c("5232", "5230", "5162")
pathList <- list("Path1" = pathway1, "Path2" = pathway2)
res <- pathwayGeneTab(pathwayList = pathList)

# Using a pathway file
exprsMat <- read.table("pathways.txt", header = TRUE)
data(msigdb_c2)
pathwayGeneTab(pathwayList = msigdb_c2[1:2])
```

pathwaySummary

Pathway Summary Statistics

Description

Generates a table of pathway activity profiles per sample.

Usage

```r
pathwaySummary(
    exprsMat,
    pathwayRef,
    id = "ENSEMBL",
    zNormalize = FALSE,
    method = FALSE,
    deGenes = NULL,
    trim = 0,
    tScores = NULL
)
```
path_gene_table

Arguments

- `exprsMat`: Gene expression matrix with row names as genes and samples as columns.
- `pathwayRef`: Table of pathway-gene associations. Created from `pathwayGeneTab` function.
- `id`: Gene annotation type in the row name of gene expression data.
- `zNormalize`: Normalization of pathway summary score.
- `method`: Choice of how to summarize gene ranks into pathway statistics.
- `deGenes`: List of differentially expressed genes along with t-scores. Only necessary if working on Top 50% summary method.
- `trim`: Percentage of top and bottom ranked genes to be excluded from pathway summary statistics.
- `tScores`: Argument for-top-50-percent-genes method.

Value

`pathExp` Table of pathway activity profiles per sample.

Examples

```r
pathTab <- tibble::tribble(
  ~Pathway, ~ENTREZID, ~ENSEMBL,
  "Path1", "125", "ENSG00000196616",
  "Path1", "3099", "ENSG00000159399",
  "Path2", "5230", "ENSG00000102144",
  "Path2", "5162", "ENSG00000168291"
 )
exprsMat <- matrix(2 * (seq_len(12)), 4, 3)
rownames(exprsMat) <- pathTab$ENSEMBL
colnames(exprsMat) <- LETTERS[seq_len(3)]
pathwaySummary(exprsMat, pathTab, method = "x2")
```

Description

A table of gene-pathway association. based on the pathways of MSigDB.

Usage

`data(path_gene_table)`
Format
A matrix with 3 columns and 76926 rows:

Pathway An MSigDB annotated pathway
ENTREZID The ENTREZID of a gene belonging to the pathway
ENSEMBL The ENSEMBL of a gene belonging to the pathway

Examples
```
data(path_gene_table)
```

pCutCoverFn

Internal function for modification of prioritization.

Description
Internal function for modification of prioritization.

Usage
```
pCutCoverFn(selector, coverName)
```

Arguments
- selector a prioritization table
- coverName a new column name

Value
an updated scoring of miRNAs in a cluster of pathways

pCutFn

Score miRNAs In a Cluster Of Pathways

Description
The function to count the number of enriched pathways for each miRNA.

Usage
```
pCutFn(enriches, pathways, isSelector, thresh = 0.05)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enriches</td>
<td>Table of miRNA pathway enrichments.</td>
</tr>
<tr>
<td>pathways</td>
<td>Queried pathways, e.g. cluster pathways.</td>
</tr>
<tr>
<td>isSelector</td>
<td>Internal argument.</td>
</tr>
<tr>
<td>thresh</td>
<td>Threshold from p-value cut-off.</td>
</tr>
</tbody>
</table>

Value

P-value based scoring of miRNAs in a cluster of pathways.

pcxnToNet

Creates a network out of pcxn table

Description

Creates a network out of pcxn table

Usage

`pcxnToNet(pcxn, edgeFDR, correlationCutOff, weighted)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcxn</td>
<td>pathways network edge list of pathways</td>
</tr>
<tr>
<td>edgeFDR</td>
<td>FDR threshold for pathway-pathway adjusted p-values; filter edges with adjusted p-values less than given threshold</td>
</tr>
<tr>
<td>correlationCutOff</td>
<td>cut-off threshold for pathway-pathway correlation; filter pathways with correlation less than given threshold</td>
</tr>
<tr>
<td>weighted</td>
<td>True if you wish to include correlation weights in clustering</td>
</tr>
</tbody>
</table>

Value

enrichment analysis results
prioritizeMicroRNA

Prioritize miRNA

Description

Outputs a table of miRNA ordered with respective p-values derived from method for prioritization

Usage

prioritizeMicroRNA(
 enriches0,
 pathClust,
 method = "AggInv",
 methodThresh = NULL,
 enrichmentFDR = 0.25,
 topClust = 2,
 sampRate = 1000,
 outDir = ".",
 dataDir = ".",
 saveSampling = TRUE,
 runJackKnife = TRUE,
 saveJackKnife = FALSE,
 numCores = 1,
 saveCSV = TRUE,
 prefix = "",
 autoSeed = TRUE
)

Arguments

enriches0
pathClust
method
methodThresh
enrichmentFDR
topClust
sampRate
outDir
dataDir
saveSampling
runJackKnife

miRNA-pathway enrichment dataset obtained from miRNAPathwayEnrichment.
Pathway clusters, obtained from MappingPathwaysClusters.
Vector of methods pCut, AggInv, AggLog, sumz, sumlog.
Vector of methods threshold for each method in method, if NULL use default thresh values in method.
FDR cut-off calculating miRNA-pathway hits in the input cluster based on significant enrichment readouts.
Top x clusters to perform miRNA prioritization on.
Sampling rate for CLT.
Output directory.
Data directory.
If TRUE, saves sampling data as RDS for each cluster in topClust in dataDir.
If TRUE, jacknifing will be performed.
saveJackKnife: If TRUE, saves jack-knifed sampling data as RDS for each cluster in topClust in dataDir.

numCores: Number of CPU cores to use, must be at least one.

saveCSV: If TRUE, saves CSV file for each cluster in topClust in outDir.

prefix: Prefix for all saved data.

autoSeed: random permutations are generated based on predetermined seeds. TRUE will give identical results in different runs.

Value
Table of miRNA and p-values, each row contains a miRNA and its associated p-values from the methods.

Examples

data("miniTestsPanomiR")

prioritizeMicroRNA(enriches0 = miniTestsPanomiR$miniEnrich,
pathClust = miniTestsPanomiR$miniPathClusts$Clustering,
topClust = 1,
sampRate = 50,
method = c("aggInv"),
saveSampling = FALSE,
runJackKnife = FALSE,
numCores = 1,
saveCSV = FALSE)

reportEnrichment: Publication-ready miRNA-Pathway Enrichment table

Description
This function summarizes the outputs

Usage
reportEnrichment(enrichmentTable)

Arguments
enrichmentTable: Outputs from [miRNAPathwayEnrichment()] function

Value
A summarized miRNA-Pathway enrichment table
Examples

```r
data(msigdb_c2)
data(targetScan.03)
eTab <- miRNAPathwayEnrichment(targetScan.03[1:20],msigdb.c2[1:20])
repTab <- reportEnrichment(eTab)
```

samplingDataBase
Outputs a table of sampling data(rows are miRNA and cols are samples)

Description

Outputs a table of sampling data(rows are miRNA and cols are samples)

Usage

```r
samplingDataBase(
enrichNull,
selector,
sampRate,
fn,
nPaths,
samplingDataFile,
jackKnife = FALSE,
saveSampling,
numCores = 1,
autoSeed = TRUE)
```

Arguments

- `enrichNull`: Enrichment dataset with x (miRNA), y (pathway) and pval (probability of observing x in pathway cluster).
- `selector`: Table with x(miRNA) in pathway cluster.
- `sampRate`: Sampling rate.
- `fn`: Methodology function.
- `nPaths`: Number of pathways in pathway cluster.
- `samplingDataFile`: If file exists, load. Else, perform random sampling
- `jackKnife`: If TRUE, conduct sampling with one less pathway, used for jack knifing
- `saveSampling`: If TRUE, data is saved.
- `numCores`: number of cores used
- `autoSeed`: random permutations are generated based on predetermined seeds. TRUE will give identical results in different runs.
sumlogFn

Value

Outputs of sampling data.

sumlogCoverFn

Internal function for modification of prioritization.

Description

Internal function for modification of prioritization.

Usage

`sumlogCoverFn(selector, coverName)`

Arguments

- `selector` a prioritization table
- `coverName` a new column name

Value

an updated scoring of miRNAs in a cluster of pathways

sumlogFn

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via sumlog aggregation method.

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via sumlog aggregation method.

Usage

`sumlogFn(enriches, pathways, isSelector, thresh = NULL)`

Arguments

- `enriches` a table of miRNA pathway enrichments. Universe
- `pathways` queried pathways. e.g. cluster pathways
- `isSelector` internal argument
- `thresh` internal argument

Value

a scoring of miRNAs in a cluster of pathways
sumzCoverFn

Internal function for modification of prioritization.

Description
Internal function for modification of prioritization.

Usage

```r
sumzCoverFn(selector, coverName)
```

Arguments
- **selector**: a prioritization table
- **coverName**: a new column name

Value

an updated scoring of miRNAs in a cluster of pathways

sumzFn

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via sumz aggregation method.

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via sumz aggregation method.

Usage

```r
sumzFn(enriches, pathways, isSelector, thresh = NULL)
```

Arguments
- **enriches**: a table of miRNA pathway enrichments. Universe
- **pathways**: queried pathways. e.g. cluster pathways
- **isSelector**: internal argument
- **thresh**: internal argument

Value

a scoring of miRNAs in a cluster of pathways
tableFromGSC \hspace{2cm} \textit{Pathway-Gene Associations from GeneSet collections}

\textbf{Description}

This function enables to utilize MSigDB packages and GSEABase objects to incorporate customized genesets into PanomiR.

\textbf{Usage}

\begin{verbatim}
tableFromGSC(gsCollection, fromType = "ENTREZID", toType = "ENSEMBL")
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{gsCollection} \hspace{1cm} An GSEABase gene set collection object
 \item \texttt{fromType} \hspace{1cm} gene annotation type used in your input data
 \item \texttt{toType} \hspace{1cm} gene annotation type to be produced in the output
\end{itemize}

\textbf{Value}

A table of pathway-gene associations

\textbf{Examples}

\begin{verbatim}
data(gscExample)
tableFromGSC(gscExample)
\end{verbatim}

\begin{verbatim}
targetScan_03 \hspace{2cm} \textit{A processed list of miRNA target gene sets from the TargetScan dataset. Each list item is a list of genes targeted by the respective miRNA family}
\end{verbatim}

\textbf{Description}

The interactions are filtered to only human interactions.

\textbf{Usage}

\begin{verbatim}
data(targetScan_03)
\end{verbatim}

\textbf{Format}

A list of 439 items

\textbf{Details}

The interactions are filtered to have a Cumulative weighted context++ score of < -0.3
targetScan_03

Source

http://www.targetscan.org/vert_72/

Examples

data(targetScan_03)
Index

* datasets
 - gscExample, 10
 - miniTestsPanomiR, 14
 - msigdb_c2, 16
 - path_gene_table, 18
 - targetScan_03, 26

* internal
 - aggInvCoverFn, 3
 - aggInvFn, 3
 - aggLogCoverFn, 4
 - aggLogFn, 4
 - pCutCoverFn, 19
 - pCutFn, 19
 - sumlogCoverFn, 24
 - sumlogFn, 24
 - sumzCoverFn, 25
 - sumzFn, 25

 - aggInvCoverFn, 3
 - aggInvFn, 3
 - aggLogCoverFn, 4
 - aggLogFn, 4
 - alignToUniverse, 5

 - clusterPlot, 5

 - differentialPathwayAnalysis, 6

 - enrichAllPairs, 7

 - getDesignMatrix, 8
 - getDiffExpTable, 9
 - getResidual, 9
 - gscExample, 10
 - jackKnifeBase, 10

 - linColumnFinder, 11

 - mappingPathwaysClusters, 12
 - methodProbBase, 13
 - miRNAPathwayEnrichment, 15
 - msigdb_c2, 16

 - path_gene_table, 18
 - pathwayGeneTab, 16, 18
 - pathwaySummary, 17
 - pCutCoverFn, 19
 - pCutFn, 19
 - pcxnToNet, 20
 - prioritizeMicroRNA, 21

 - reportEnrichment, 22

 - samplingDataBase, 23
 - sumlogCoverFn, 24
 - sumlogFn, 24
 - sumzCoverFn, 25
 - sumzFn, 25

 - tableFromGSC, 26
 - targetScan_03, 26