Package ‘PanomiR’

April 4, 2024

Title Detection of miRNAs that regulate interacting groups of pathways

Version 1.6.0

Description PanomiR is a package to detect miRNAs that target groups of pathways from gene expression data. This package provides functionality for generating pathway activity profiles, determining differentially activated pathways between user-specified conditions, determining clusters of pathways via the PCxN package, and generating miRNAs targeting clusters of pathways. These function can be used separately or sequentially to analyze RNA-Seq data.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2

Suggests testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown

Config/testthat/edition 3

biocViews GeneExpression, GeneSetEnrichment, GeneTarget, miRNA, Pathways

Imports clusterProfiler, dplyr, forcats, GSEABase, igraph, limma, metap, org.Hs.eg.db, parallel, preprocessCore, RColorBrewer, rlang, tibble, withr, utils

Depends R (>= 4.2.0)

URL https://github.com/pouryany/PanomiR

BugReports https://github.com/pouryany/PanomiR/issues

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/PanomiR

git_branch RELEASE_3_18

git_last_commit dc66e3

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-03
Author Pourya Naderi [aut, cre],
 Yue Yang (Alan) Teo [aut],
 Ilya Sytchev [aut],
 Winston Hide [aut]

Maintainer Pourya Naderi <pouryany@gmail.com>

R topics documented:

aggInvCoverFn .. 3
aggInvFn ... 3
aggLogCoverFn .. 4
aggLogFn .. 4
alignToUniverse ... 5
clusterPlot ... 5
differentialPathwayAnalysis 6
enrichAllPairs ... 7
getDesignMatrix .. 8
getDiffExpTable ... 9
getResidual ... 9
gscExample ... 10
jackKnifeBase ... 10
linColumnFinder ... 11
mappingPathwaysClusters .. 12
methodProbBase ... 13
miniTestsPanomiR .. 14
miRNAPathwayEnrichment ... 15
msigdb_c2 .. 16
pathwayGeneTab .. 16
pathwaySummary .. 17
path_gene_table ... 18
pCutCoverFn ... 19
pCutFn .. 19
pcxnToNet .. 20
prioritizeMicroRNA .. 21
reportEnrichment ... 22
samplingDataBase .. 23
sumlogCoverFn .. 24
sumlogFn ... 24
sumzCoverFn ... 25
sumzFn .. 25
tableFromGSC .. 26
targetScan_03 ... 26

Index 28
aggInvCoverFn

Internal function for modification of prioritization.

Description

Internal function for modification of prioritization.

Usage

`aggInvCoverFn(selector, coverName)`

Arguments

- **selector**: a prioritization table
- **coverName**: a new column name

Value

An updated scoring of miRNAs in a cluster of pathways

aggInvFn

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via inverse normal method

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via inverse normal method.

Usage

`aggInvFn(enriches, pathways, isSelector = TRUE, thresh = NULL)`

Arguments

- **enriches**: a table of miRNA pathway enrichments. Universe
- **pathways**: queried pathways. e.g. cluster pathways
- **isSelector**: internal argument
- **thresh**: internal argument

Value

A scoring of miRNAs in a cluster of pathways
Description

Internal function for modification of prioritization.

Usage

aggLogCoverFn(selector, coverName)

Arguments

selector a prioritization table
coverName a new column name

Value

an updated scoring of miRNAs in a cluster of pathways

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via log aggregation method.

Usage

aggLogFn(enriches, pathways, isSelector, thresh = 0)

Arguments

enriches a table of miRNA pathway enrichments. Universe
pathways queried pathways. e.g. cluster pathways
isSelector internal argument
thresh internal argument

Value

a scoring of miRNAs in a cluster of pathways
alignToUniverse

function to align a list of sets and a reference universe

Description

function to align a list of sets and a reference universe

Usage

alignToUniverse(pathwaySets, universe)

Arguments

pathwaySets
a list of sets
universe
all set elements must be a subset of universe

Value

a list of sets, aligned to universe

clusterPlot

Plots clusters of pathways with associated directionality.

Description

Plots clusters of pathways with associated directionality.

Usage

clusterPlot(
 subNet,
 subplot = FALSE,
 topClusters = 2,
 prefix = "",
 outDir = ".",
 plotSave = TRUE
)

Arguments

subNet
pathways network (edge list of pathways)
subplot
if TRUE, store individual clusters plots and connected plots in Figures directory of plots
topClusters
plot figures for top x clusters
prefix
add prefix to plots
outDir
output directory
plotSave
saves the plot if set true. Otherwise display
differentialPathwayAnalysis

Value

a set of plots for DE-PCXN and subclusters

Examples

data(miniTestsPanomiR)
clusterPlot(miniTestsPanomiR$miniPathClusts$DE_PCXN, plotSave = FALSE)

differentialPathwayAnalysis

Differential Expression Analysis For Pathways

Description

Performs differential expression analysis for pathways using LIMMA package with gene counts

Usage

differentialPathwayAnalysis(
 geneCounts,
 pathways,
 covariates,
 condition,
 adjustCovars = NULL,
 covariateCorrection = FALSE,
 quantileNorm = FALSE,
 outDir = ".",
 saveOutName = NULL,
 id = "ENSEMBL",
 deGenes = NULL,
 minPathSize = 10,
 method = "x2",
 trim = 0.025,
 geneCountsLog = TRUE,
 contrastConds = NA
)

Arguments

geneCounts Gene counts, rows refer to genes and columns to samples.
pathways Pathways table, containing pathway names and genes with id specified.
covariates Covariates/metadata file; rows matches the columns of geneCounts.
condition Condition to be examined (tumor vs normal etc); must exist in covariates column.
adjustCovars Adjustment covariates like batch; if NULL, no adjustments performed.
enrichAllPairs

Description

Pairwise enrichment analysis between two given lists of sets

Usage

enrichAllPairs(mirSets, pathwaySets, pathsRef, numCores)

Parameters

- `mirSets` (vector): List of mir sets.
- `pathwaySets` (vector): List of pathway sets.
- `pathsRef` (vector): Reference sets for pathways.
- `numCores` (integer): Number of cores to use for parallel processing.

Examples

```r
data("path_gene_table")
data("miniTestsPanomiR")
differentialPathwayAnalysis(geneCounts = miniTestsPanomiR$mini_LIHC_Exp,
                          pathways = path_gene_table,
                          covariates = miniTestsPanomiR$mini_LIHC_Cov,
                          condition = 'shortLetterCode')
```
getDesignMatrix

Arguments

- `mirSets`
 a list of targets of miRNAs
- `pathwaySets`
 a list of pathways
- `pathsRef`
 universe of genes.
- `numCores`
 number of cores to calculate the results.

Value

enrichment analysis results

getDesignMatrix Obtain Design Matrix

Description

Modified from covariates pipeline of Menachem Former. Imported from https://github.com/thlvairam/CovariateAnalysis

Usage

```r
getDesignMatrix(covariatesDataFrame, intercept = TRUE, reLevels = list())
```

Arguments

- `covariatesDataFrame`
 Dataframe of covariates.
- `intercept`
 intercept in the linear model.
- `reLevels`
 TBA.

Value

List containing a design matrix.

Examples

```r
data(iris)
getDesignMatrix(iris)
```
getDiffExpTable

Function to get a DE table

Description

function to get a DE table

Usage

```r
getDiffExpTable(expMat, designMat, contrastsName)
```

Arguments

- `expMat`
 - an expression matrix
- `designMat`
 - a design Matrix
- `contrastsName`
 - the contrast to perform

Value

- a table of differential expression

getResidual

Function to get residuals with respect to a set of covariates

Description

function to get residuals with respect to a set of covariates

Usage

```r
getResidual(covariates, adjustCovars, pathSumStats)
```

Arguments

- `covariates`
 - a covariate dataframe.
- `adjustCovars`
 - covariates to adjust for
- `pathSumStats`
 - an expression matrix

Value

- a matrix of adjusted expression
gscExample Example genesets from MSigDB

Description
Example genesets from MSigDB

Usage
data(gscExample)

Format
A GeneSet Collection object containing two genesets.

Source
http://www.gsea-msigdb.org/gsea/index.jsp

Examples
data(gscExample)

jackKnifeBase Outputs a table with col x (miRNA), probability of observing k (depending on methodology) against a random distribution with jack-knifing of the pathway cluster (removing a pathway at a time)

Description
Outputs a table with col x (miRNA), probability of observing k (depending on methodology) against a random distribution with jack-knifing of the pathway cluster (removing a pathway at a time)

Usage
jackKnifeBase(
 selector,
 pathways,
 enrichNull,
 fn,
 jackKnifeData,
 m,
 numCores = 1
)
linColumnFinder

Arguments

selector: Table with x(miRNA) in pathway cluster and observed k (depending on methodology).
pathways: Pathways in pathway cluster.
enrichNull: Enrichment dataset with x (miRNA), y (pathway) and pval (probability of observing x in pathway cluster).
fn: Methodology function.
jackKnifeData: Random distribution data with jack-knifing (i.e. one less pathway)
m: method name
numCores: number of cores

Value

Outputs a new selector table with col x, pval_jk

Description

Function imported from https://github.com/th1vairam/CovariateAnalysis
Modified from http://stackoverflow.com/questions/13088770/
Function to find linearly dependent columns of a matrix

Usage

linColumnFinder(mat)

Arguments

mat: an input design matrix.

Value

a list of independent columns

Examples

data("iris")
designMat <- getDesignMatrix(iris)
linColumnFinder(designMat$design)
mappingPathwaysClusters

Outputs a table with pathways and their respective clusters

Description

Outputs a table with pathways and their respective clusters

Usage

mappingPathwaysClusters(
 pcxn,
 dePathways,
 clusteringFunction = NULL,
 edgeFDR = 0.05,
 correlationCutOff = 0.316,
 pathwayFDR = 0.05,
 topPathways = 200,
 plotOut = TRUE,
 subplot = TRUE,
 topClusters = 2,
 prefix = "",
 outDir = ".",
 saveNameCSV = NULL,
 weighted = FALSE
)

Arguments

pcxn pathways network (edge list of pathways)
dePathways differential expressed pathways, obtained from *DifferentialPathwayAnalysis*
clusteringFunction clustering algorithm
edgeFDR FDR threshold for pathway-pathway adjusted p-values; filter edges with adjusted p-values less than given threshold
correlationCutOff cut-off threshold for pathway-pathway correlation; filter pathways with correlation less than given threshold
pathwayFDR FDR threshold for DE pathways adjusted p-values; filter pathways with adjusted p-values less than given threshold
topPathways use only top x paths; if NULL, use all paths
plotOut if TRUE, store graph plot in Figures directory of plots
subplot if TRUE, store individual clusters plots and connected plots in Figures directory of plots
methodProbBase

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>topClusters</td>
<td>plot figures for top x clusters</td>
</tr>
<tr>
<td>prefix</td>
<td>add prefix to plots</td>
</tr>
<tr>
<td>outDir</td>
<td>output directory</td>
</tr>
<tr>
<td>saveNameCSV</td>
<td>if not NULL, saves output as csv using save name</td>
</tr>
<tr>
<td>weighted</td>
<td>True if you wish to include correlation weights in clustering</td>
</tr>
</tbody>
</table>

Value

a list where the first item is a table with each row containing a pathway and its respective cluster. The second item is an igraph object.

Examples

```r
data("miniTestsPanomiR")

mappingPathwaysClusters(pcxn = miniTestsPanomiR$miniPCXN,
                        dePathways = miniTestsPanomiR$miniDEP,
                        topPathways = 200,
                        outDir=".",
                        plot = FALSE,
                        subplot = FALSE,
                        prefix=''
                        clusteringFunction = "cluster_louvain",
                        correlationCutOff = 0.1)
```

Description

Outputs a table with col x, miRNA, probability of observing k against a random distribution of the cover of methodology

Usage

```r
methodProbBase(samplingData, selector, m, nPaths = 100, coverFn = NULL)
```

Arguments

- **samplingData** Random distribution data.
- **selector** Table with x(miRNA) in pathway cluster and observed k (depending on methodology).
- **m** Method name.
- **nPaths** Number of pathways used to generate the samplingData at each iteration. Default is set at 100.
- **coverFn** Cover of methodology function.
Value

Outputs a new selector table with col x, pval and cover.

miniTestsPanomiR
Readouts and datasets for minimal reproducible examples of the PanomiR.

Description

The item miniEnrich is a reduced representation of the TargetScan For full table use miRNAPathwayEnrichment function in the package along with msigdb_c2 and targetScan_03 datasets.

Usage

```r
data(miniTestsPanomiR)
```

Format

A list of 5:

- **mini_LIHC_Exp** a reduced expression dataset from TCGA LIHC data
- **mini_LIHC_Cov** a reduced covariates dataset from TCGA LIHC data
- **miniEnrich** a reduced table of miRNA-pathway enrichment, TargetScan.
- **miniDEP** Differentially activated pathways from reduced TCGA LIHC
- **miniPCXN** reduced representation of PCXN network
- **miniPathClusts** miniDEP mapped to miniPCXN

Details

These datasets include reduced representation of TCGA LIHC data for reproducing the pipeline. doi: 10.1016/j.cell.2017.05.046

A reduced representation of PCxN is provided. For full dataset and method please refer to pcxn.org or https://doi.org/10.1371/journal.pcbi.1006042

Examples

```r
data(miniTestsPanomiR)
```
miRNAPathwayEnrichment

Enrichment Probability Of miRNAs

Description
Outputs enrichment probability of miRNAs based on pathway clusters.

Usage
miRNAPathwayEnrichment(
mirSets,
pathwaySets,
geneSelection = NULL,
mirSelection = NULL,
fromID = "ENSEMBL",
toID = "ENTREZID",
minPathSize = 9,
numCores = 1,
outDir = ".",
saveOutName = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mirSets</td>
<td>Table of miRNAs and a list of their interactions with genes in ENTREZ ID.</td>
</tr>
<tr>
<td>pathwaySets</td>
<td>Table of pathways and a list of their interactions with genes in ENTREZ ID.</td>
</tr>
<tr>
<td>geneSelection</td>
<td>Table of genes with dtype; if not NULL, select only genes from a given table.</td>
</tr>
<tr>
<td>mirSelection</td>
<td>Table of miRNA names; if not NULL, select only miRNAs from given table.</td>
</tr>
<tr>
<td>fromID</td>
<td>ID of genes in geneSelection.</td>
</tr>
<tr>
<td>toID</td>
<td>ID of genes used in pcxn and pathways set.</td>
</tr>
<tr>
<td>minPathSize</td>
<td>Filter out pathways with sets less than given value.</td>
</tr>
<tr>
<td>numCores</td>
<td>Number of CPU cores to use, must be at least one.</td>
</tr>
<tr>
<td>outDir</td>
<td>Output directory.</td>
</tr>
<tr>
<td>saveOutName</td>
<td>If not NULL, saves output as RDS using save name.</td>
</tr>
</tbody>
</table>

Value
Table of enrichment, each row contains mirna-pathway and its enrichment p-values.

Examples

data(msigdb_c2)
data(targetScan_03)
miRNAPathwayEnrichment(targetScan_03[1:20],msigdb_c2[1:20])
msigdb_c2 Canonical pathways from Molecular Signatures Database, MsigDb V6.2

Description
Canonical pathways from Molecular Signatures Database, MsigDb V6.2

Usage
data(msigdb_c2)

Format
A list of 1143 pathways

Source
http://www.gsea-msigdb.org/gsea/index.jsp

Examples
data(msigdb_c2)

pathwayGeneTab Pathway-Gene Associations

Description
Generates a table of pathways and genes associations.

Usage
pathwayGeneTab(
 pathAdress = NA,
 pathwayList = NA,
 fromType = "ENTREZID",
 toType = "ENSEMBL",
 outDir = NA
)
Arguments

- **pathAdress**: Address to an RDS file containing list of pathways where each element is a list of genes similar to GMT format.
- **pathwayList**: If you wish to use a list of pathways instead of a file use this argument instead. The list must contain no NA values.
- **fromType**: gene annotation type used in your input data.
- **toType**: gene annotation type to be produced in the output.
- **outDir**: Address to save an RDS for a table of pathway-gene association

Value

- `pathExpTab` Table of pathway-gene association.

Examples

```r
pathway1 <- c("125", "3099", "126")
pathway2 <- c("5232", "5230", "5162")
pathList <- list("Path1" = pathway1, "Path2" = pathway2)
res <- pathwayGeneTab(pathwayList = pathList)

data(msigdb_c2)
pathwayGeneTab(pathwayList = msigdb_c2[1:2])
```

pathwaySummary
Pathway Summary Statistics

Description

Generates a table of pathway activity profiles per sample

Usage

```r
pathwaySummary(
  exprsMat,
  pathwayRef,
  id = "ENSEMBL",
  zNormalize = FALSE,
  method = FALSE,
  deGenes = NULL,
  trim = 0,
  tScores = NULL
)
```
path_gene_table

Arguments

- `exprsMat`: Gene expression matrix with row names as genes and samples as columns.
- `pathwayRef`: Table of pathway-gene associations. Created from `pathwayGeneTab` function.
- `id`: Gene annotation type in the row name of gene expression data.
- `zNormalize`: Normalization of pathway summary score.
- `method`: Choice of how to summarize gene ranks into pathway statistics.
- `deGenes`: List of differentially expressed genes along with t-scores. Only necessary if working on Top 50% summary method.
- `trim`: Percentage of top and bottom ranked genes to be excluded from pathway summary statistics.
- `tScores`: Argument for-top-50-percent-genes method.

Value

- `pathExp`: Table of pathway activity profiles per sample.

Examples

```r
data(path_gene_table)

pathTab <- tibble::tribble(
  ~Pathway, ~ENTREZID, ~ENSEMBL,
  "Path1", "125", "ENSG00000196616",
  "Path1", "3099", "ENSG00000159399",
  "Path2", "5230", "ENSG00000102144",
  "Path2", "5162", "ENSG00000168291"
)
exprsMat <- matrix(2 * (seq_len(12)), 4, 3)
rownames(exprsMat) <- pathTab$ENSEMBL
colnames(exprsMat) <- LETTERS[seq_len(3)]
pathwaySummary(exprsMat, pathTab, method = "x2")
```

Description

A table of gene-pathway association. based on the pathways of MSigDB.

Usage

data(path_gene_table)
Format
A matrix with 3 columns and 76926 rows:
- **Pathway**: An MSigDB annotated pathway
- **ENTREZID**: The ENTREZID of a gene belonging to the pathway
- **ENSEMBL**: The ENSEMBL of a gene belonging to the pathway

Examples
```r
data(path_gene_table)
```

pCutCoverFn

Internal function for modification of prioritization.

Description
Internal function for modification of prioritization.

Usage
```
pCutCoverFn(selector, coverName)
```

Arguments
- `selector`: a prioritization table
- `coverName`: a new column name

Value
An updated scoring of miRNAs in a cluster of pathways

pCutFn

Score miRNAs In a Cluster Of Pathways

Description
The function to count the number of enriched pathways for each miRNA.

Usage
```
pCutFn(enriches, pathways, isSelector, thresh = 0.05)
```


Arguments

- **enriches**: Table of miRNA pathway enrichments.
- **pathways**: Queried pathways, e.g. cluster pathways.
- **isSelector**: Internal argument.
- **thresh**: Threshold from p-value cut-off.

Value

P-value based scoring of miRNAs in a cluster of pathways.

```r
pcxnToNet

Creates a network out of pcxn table
```

Description

Creates a network out of pcxn table

Usage

```r
pcxnToNet(pcxn, edgeFDR, correlationCutOff, weighted)
```

Arguments

- **pcxn**: pathways network edge list of pathways
- **edgeFDR**: FDR threshold for pathway-pathway adjusted p-values; filter edges with adjusted p-values less than given threshold
- **correlationCutOff**: cut-off threshold for pathway-pathway correlation; filter pathways with correlation less than given threshold
- **weighted**: True if you wish to include correlation weights in clustering

Value

enrichment analysis results
prioritizeMicroRNA

Description

Outputs a table of miRNA ordered with respective p-values derived from method for prioritization

Usage

```r
prioritizeMicroRNA(
  enriches0,
  pathClust,
  method = "AggInv",
  methodThresh = NULL,
  enrichmentFDR = 0.25,
  topClust = 2,
  sampRate = 1000,
  outDir = ".",
  dataDir = ".",
  saveSampling = TRUE,
  runJackKnife = TRUE,
  saveJackKnife = FALSE,
  numCores = 1,
  saveCSV = TRUE,
  prefix = "",
  autoSeed = TRUE
)
```

Arguments

- `enriches0`: miRNA-pathway enrichment dataset obtained from miRNAPathwayEnrichment.
- `pathClust`: Pathway clusters, obtained from MappingPathwaysClusters.
- `methodThresh`: Vector of methods threshold for each method in method, if NULL use default thresh values in method.
- `enrichmentFDR`: FDR cut-off calculating miRNA-pathway hits in the input cluster based on significant enrichment readouts.
- `topClust`: Top x clusters to perform miRNA prioritization on.
- `sampRate`: Sampling rate for CLT.
- `outDir`: Output directory.
- `dataDir`: Data directory.
- `saveSampling`: If TRUE, saves sampling data as RDS for each cluster in topClust in dataDir.
- `runJackKnife`: If TRUE, jacknifing will be performed.
SaveJackKnife: If TRUE, saves jack-knifed sampling data as RDS for each cluster in topClust in dataDir.

numCores: Number of CPU cores to use, must be at least one.

saveCSV: If TRUE, saves CSV file for each cluster in topClust in outDir.

prefix: Prefix for all saved data.

autoSeed: random permutations are generated based on predetermined seeds. TRUE will give identical results in different runs.

Value

Table of miRNA and p-values, each row contains a miRNA and its associated p-values from the methods.

Examples

data("miniTestsPanomiR")
prioritizeMicroRNA(enriches0 = miniTestsPanomiR$miniEnrich, pathClust = miniTestsPanomiR$miniPathClusts$Clustering, topClust = 1, sampRate = 50, method = c("aggInv"), saveSampling = FALSE, runJackKnife = FALSE, numCores = 1, saveCSV = FALSE)

reportEnrichment: Publication-ready miRNA-Pathway Enrichment table

Description

This function summarizes the outputs.

Usage

reportEnrichment(enrichmentTable)

Arguments

enrichmentTable

Outputs from [miRNAPathwayEnrichment()] function

Value

A summarized miRNA-Pathway enrichment table
samplingDataBase

Examples

```r
data(msigdb_c2)
data(targetScan_03)
eTab <- miRNAPathwayEnrichment(targetScan_03[1:20],msigdb_c2[1:20])
repTab <- reportEnrichment(eTab)
```

Description

Outputs a table of sampling data(rows are miRNA and cols are samples)

Usage

```r
samplingDataBase(
enrichNull, selector, sampRate, fn, nPaths, samplingDataFile, jackKnife = FALSE, saveSampling, numCores = 1, autoSeed = TRUE
)
```

Arguments

- **enrichNull** Enrichment dataset with x (miRNA), y (pathway) and pval (probability of observing x in pathway cluster).
- **selector** Table with x(miRNA) in pathway cluster.
- **sampRate** Sampling rate.
- **fn** Methodology function.
- **nPaths** Number of pathways in pathway cluster.
- **samplingDataFile** If file exists, load. Else, perform random sampling
- **jackKnife** If TRUE, conduct sampling with one less pathway, used for jack knifing
- **saveSampling** If TRUE, data is saved.
- **numCores** number of cores used
- **autoSeed** random permutations are generated based on predetermined seeds. TRUE will give identical results in different runs.
sumlogFn

Value

Outputs of sampling data.

sumlogCoverFn

Internal function for modification of prioritization.

Description

Internal function for modification of prioritization.

Usage

```
sumlogCoverFn(selector, coverName)
```

Arguments

- `selector` a prioritization table
- `coverName` a new column name

Value

an updated scoring of miRNAs in a cluster of pathways

sumlogFn

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via sumlog aggregation method.

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via sumlog aggregation method.

Usage

```
sumlogFn(enriches, pathways, isSelector, thresh = NULL)
```

Arguments

- `enriches` a table of miRNA pathway enrichments. Universe
- `pathways` queried pathways. e.g. cluster pathways
- `isSelector` internal argument
- `thresh` internal argument

Value

a scoring of miRNAs in a cluster of pathways
sumzCoverFn

Description

Internal function for modification of prioritization.

Usage

```r
sumzCoverFn(selector, coverName)
```

Arguments

- `selector` a prioritization table
- `coverName` a new column name

Value

an updated scoring of miRNAs in a cluster of pathways

sumzFn

Description

The function calculate targeting score of miRNA w.r.t to a cluster of pathways via sumz aggregation method.

Usage

```r
sumzFn(enriches, pathways, isSelector, thresh = NULL)
```

Arguments

- `enriches` a table of miRNA pathway enrichments. Universe
- `pathways` queried pathways. e.g. cluster pathways
- `isSelector` internal argument
- `thresh` internal argument

Value

a scoring of miRNAs in a cluster of pathways
tableFromGSC

Pathway-Gene Associations from GeneSet collections

Description

This function enables to utilize MSigDB packages and GSEABase objects to incorporate customized genesets into PanomiR.

Usage

tableFromGSC(gsCollection, fromType = "ENTREZID", toType = "ENSEMBL")

Arguments

- `gsCollection`: An GSEABase gene set collection object
- `fromType`: gene annotation type used in your input data
- `toType`: gene annotation type to be produced in the output

Value

A table of pathway-gene associations

Examples

data(gscExample)
tableFromGSC(gscExample)

targetScan_03

A processed list of miRNA target gene sets from the TargetScan dataset. Each list item is a list of genes targeted by the respective miRNA family

Description

The interactions are filtered to only human interactions.

Usage

data(targetScan_03)

Format

A list of 439 items

Details

The interactions are filtered to have a Cumulative weighted context++ score of < -0.3
targetScan_03

Source

http://www.targetscan.org/vert_72/

Examples

data(targetScan_03)
Index

* datasets
 gscExample, 10
 miniTestsPanomiR, 14
 msigdb_c2, 16
 path_gene_table, 18
 targetScan_03, 26

* internal
 aggInvCoverFn, 3
 aggInvFn, 3
 aggLogCoverFn, 4
 aggLogFn, 4
 pCutCoverFn, 19
 pCutFn, 19
 sumlogCoverFn, 24
 sumlogFn, 24
 sumzCoverFn, 25
 sumzFn, 25

 aggInvCoverFn, 3
 aggInvFn, 3
 aggLogCoverFn, 4
 aggLogFn, 4
 alignToUniverse, 5

 clusterPlot, 5

 differentialPathwayAnalysis, 6

 enrichAllPairs, 7

 getDesignMatrix, 8
 getDiffExpTable, 9
 getResidual, 9
 gscExample, 10

 jackKnifeBase, 10

 linColumnFinder, 11

 mappingPathwaysClusters, 12

 methodProbBase, 13

 miniTestsPanomiR, 14
 miRNAPathwayEnrichment, 15
 msigdb_c2, 16

 path_gene_table, 18
 pathwayGeneTab, 16, 18
 pathwaySummary, 17
 pCutCoverFn, 19
 pCutFn, 19
 pcxnToNet, 20
 prioritizeMicroRNA, 21

 reportEnrichment, 22

 samplingDataBase, 23
 sumlogCoverFn, 24
 sumlogFn, 24
 sumzCoverFn, 25
 sumzFn, 25

 tableFromGSC, 26

 targetScan_03, 26