Package ‘RCSL’

May 30, 2024

Type Package

Title Rank Constrained Similarity Learning for single cell RNA sequencing data

Version 1.12.0

Date 2021-04-01

Maintainer Qinglin Mei <meiqinglinkf@163.com>

Description A novel clustering algorithm and toolkit RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq data from a complex tissue. RCSL considers both local similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global similarity, and adaptively learns neighbour representation of a cell as its local similarity. The overall similarity of a cell to other cells is a linear combination of its global similarity and local similarity.

URL https://github.com/QinglinMei/RCSL

Depends R (>= 4.1)

License Artistic-2.0

VignetteBuilder knitr

biocViews SingleCell, Software, Clustering, DimensionReduction, RNASEq, Visualization, Sequencing

Suggests testthat, knitr, BiocStyle, rmarkdown, mclust, tidyverse, tinytex

Imports RcppAnnoy, igraph, NbClust, Rtsne, ggplot2(>= 3.4.0), methods, pracma, umap, grDevices, graphics, stats, Rcpp (>= 0.11.0), MatrixGenerics, SingleCellExperiment

LazyData TRUE

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no
Cell type annotations of `yan` datasets by Yan et al.

Description

Cell type annotations of `yan` datasets by Yan et al.

Usage

ann

Format

An object of class `data.frame` with 90 rows and 1 columns.
BDSM

Source

http://dx.doi.org/10.1038/nsmb.2660

Each row corresponds to one cell of ‘yan’ dataset

Description

Calculate the block-diagonal matrix \(B \) \(min_B \geq 0, B \ast I = I, F' \ast F = I \) \(\|B - A\|_1 + r \ast \|B\|^2 + 2 \ast \lambda \ast \text{trace}(F' \ast L \ast F) \)

Usage

BDSM(S, C)

Arguments

S the calculated initial similarity matrix S
C the estimated number of clusters C

Value

B block-diagonal matrix
y clustering results

Examples

gfData <- GenesFilter(yan)
res_SimS <- SimS(gfData)
C <- EstClusters(res_SimS$drData,res_SimS$S)
BDSM(res_SimS$S,C)
EProjSimplexdiag

Solve the problem: \(\min \frac{1}{2}x'\mathbf{L}x - x'd \) s.t. \(x \geq 0, \quad 1'x = 1 \)

Description
Solve the problem: \(\min \frac{1}{2}x'\mathbf{L}x - x'd \) s.t. \(x \geq 0, \quad 1'x = 1 \)

Usage

\[
\text{EProjSimplexdiag}(d, l)
\]

Arguments

- **d**: matrix or vector
- **l**: matrix or vector

Value

- **x**

EstClusters

Estimate the optimal number of clusters C for clustering

Description

Estimate the optimal number of clusters C for clustering

Usage

\[
\text{EstClusters}(\text{drData}, S)
\]

Arguments

- **drData**: gene expression matrix after PCA processing
- **S**: the calculated similarity matrix S from "SimS"

Value

- **C**: the estimated number of clusters

Examples

\[
\text{gfData} <- \text{GenesFilter(yan)}
\]

\[
\text{res}_\text{SimS} <- \text{SimS(gfData)}
\]

\[
\text{EstClusters}(\text{res}_\text{SimS}$\text{drData}, \text{res}_\text{SimS}$S)
\]
EucDist

Solve the problem: \(\|A-B\|^2 = \|A\|^2 + \|B\|^2 - 2A^*B \)

Description

Solve the problem: \(\|A-B\|^2 = \|A\|^2 + \|B\|^2 - 2A^*B \)

Usage

EucDist(A, B)

Arguments

<table>
<thead>
<tr>
<th>A</th>
<th>matrix or vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>matrix or vector</td>
</tr>
</tbody>
</table>

Value

d matrix or vector

GenesFilter

Perform the step of gene filtering to normalized gene expression data

Description

Perform the step of gene filtering to normalized gene expression data

Usage

GenesFilter(data, gfRatio = 0.025)

Arguments

<table>
<thead>
<tr>
<th>data</th>
<th>the normalized gene expression matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>gfRatio</td>
<td>the ratio of genes filtering</td>
</tr>
</tbody>
</table>

Value

the gene expression matrix after genes filtering gfData

Examples

data(yan)
GenesFilter(yan)
NeigRepresent

Description

Calculate the neighbor representation of cells to the low-dimensional gene expression matrix

| NeigRepresent
| Calculate the neighbor representation of cells to the low-dimensional gene expression matrix |

| Description |
| Infer the development lineage based on the clustering results from RCSL and the pseudotime |

| Usage |
| getLineage(drData, clustRes, pseudoTime, simMeasure = "kendall") |

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>drData</td>
</tr>
<tr>
<td>preprocessed gene expression data (each column represent a cell)</td>
</tr>
<tr>
<td>clustRes</td>
</tr>
<tr>
<td>the clustering results identified by RCSL</td>
</tr>
<tr>
<td>pseudoTime</td>
</tr>
<tr>
<td>inferred by PlotPseudoTime() using the similarity matrix S and starting cell</td>
</tr>
<tr>
<td>simMeasure</td>
</tr>
<tr>
<td>the calculation method of measuring the cluster centers’ similarity</td>
</tr>
</tbody>
</table>

| Value |
| lineage the cell lineages connected all the cluster centers based on the clustering results from RCSL |

| Examples |
| gFData <- GenesFilter(yan) |
| TrueLabel <- ann$cell_type1 |
| res_SimS <- SimS(gFData) |
| C <- EstClusters(res_SimS$drData,res_SimS$S) |
| res_BDSM <- BDSM(res_SimS$S,C) |
| Pseudo <- PlotPseudoTime(res_SimS$S,TrueLabel,startPoint=1) |
| getLineage(res_SimS$drData,res_BDSM$y,Pseudo$pseudoTime) |
Usage

NeigRepresent(
 drData,
 NN.method = "KNN",
 Dis.method = "Euclidean",
 LSH.TreeNum = 30,
 LSH.Dim = 500,
 LSH.Dis = "angular",
 neiRatio = 0.65
)

Arguments

drData gene expression matrix after dimensionality reduced by PCA
NN.method the method of finding neighbors
Dis.method the distance metric in finding neighbors
LSH.TreeNum the tree number of LSH
LSH.Dim the dimension in LSH
LSH.Dis the distance metric in LSH
neiRatio ratio of the number of selected

Value

the similarity matrix measured by neighbor representation NR

Examples

gfData <- GenesFilter(yan)
res_SimS <- SimS(gfData)
NeigRepresent(res_SimS$drData)

PlotMST

Plot the visualization of constructed Minimum Spanning Tree based on the clustering results of RCSL

Description

Plot the visualization of constructed Minimum Spanning Tree based on the clustering results of RCSL.
PlotPseudoTime

Usage

```r
PlotMST(
  drData,  # preprocessed gene expression data
  clustRes,  # the clustering results identified by RCSL
  TrueLabel,  # the real cell types to color the dots in plot
  dataName = "",  # the name of the data that will be showed in the plot
  fontSize = 12,  # the font size of the plot
  VisualMethod = "umap"  # the method for 2D visualization including UMAP,t-SNE and PCA
)
```

Arguments

- `drData`: preprocessed gene expression data
- `clustRes`: the clustering results identified by RCSL
- `TrueLabel`: the real cell types to color the dots in plot
- `dataName`: the name of the data that will be showed in the plot
- `fontSize`: the font size of the plot
- `VisualMethod`: the method for 2D visualization including UMAP,t-SNE and PCA

Value

MSTPlot ggplot object of the visualization of constructed MST

Examples

```r
gfData <- GenesFilter(yan)
TrueLabel <- ann$cell_type1
res_SimS <- SimS(gfData)
C <- EstClusters(res_SimS$drData, res_SimS$S)
res_BDSM <- BDSM(res_SimS$S, C)
PlotMST(res_SimS$drData, res_BDSM$y, TrueLabel)
```

PlotPseudoTime

Infer the pseudo-temporal ordering between the cell types using the distance from a cell type to the predefined starting cell type.

Description

Infer the pseudo-temporal ordering between the cell types using the distance from a cell type to the predefined starting cell type.
Usage

```
PlotPseudoTime(
  S,
  TrueLabel,
  startPoint,
  fontSize = 12,
  dataName = "",
  sim = TRUE
)
```

Arguments

- **S**: the similarity matrix calculated by SimS() function
- **TrueLabel**: the real cell types used to indicate the vertical axis
- **startPoint**: the position of the starting cell in the matrix
- **fontSize**: the font size of the plot
- **dataName**: the name of the data that will be showed in the plot
- **sim**: indicate the input data is similarity matrix or not

Value

- PstudoTime

 PseudoTimePlot ggplot object of the pseudo-temporal ordering of cells

Examples

```
gfData <- GenesFilter(yan)
TrueLabel <- ann$cell_type1
res_SimS <- SimS(gfData)
PlotPseudoTime(res_SimS$S,TrueLabel,startPoint=1)
```

PlotTrajectory

Infer the developmental trajectories based on the clustering results from RCSL

Description

Infer the developmental trajectories based on the clustering results from RCSL
Usage

PlotTrajectory(
 gfData,
 clustRes,
 TrueLabel,
 lineage,
 fontSize = 12,
 dataName = "",
 VisualMethod = "umap"
)

Arguments

gfData preprocessed gene expression data (each column represent a cell)
clustRes the clustering results identified by RCSL
TrueLabel the real cell types
lineage the lineage obtained by getLineage()
fontSize the size of font in the plot
dataName the name of the data that will be showed in the plot
VisualMethod the display method of 2-D visualization

Value

TrajectoryPlot ggplot object of the inferred developmental trajectories

Examples

gfData <- GenesFilter(yan)
TrueLabel <- ann$cell_type1
res_SimS <- SimS(gfData)
C <- EstClusters(res_SimS$drData, res_SimS$S)
res_BDSM <- BDSM(res_SimS$S, C)
Pseudo <- PlotPseudoTime(res_SimS$S, TrueLabel, startPoint=1)
Linea <- getLineage(res_SimS$drData, res_BDSM$y, Pseudo$pseudoTime)
PlotTrajectory(gfData, res_BDSM$y, TrueLabel, lineage=Linea)

RCSL

Perform the RCSL program

Description

Perform the RCSL program
Usage

RCSL(
 data,
 GF = TRUE,
 gfRatio = 0.025,
 pcRatio = 0.95,
 NN.method = "KNN",
 Dis.method = "Euclidean",
 neiRatio = 0.65
)

Arguments

data normalized gene expression matrix (each column represents a cell)
GF should I need the gene filter step?
gfRatio the ratio of the gene filter
cpRatio the ratio between the variance of the
NN.method the method of finding neighbors
Dis.method the distance metric in finding neighbors
neiRatio ratio of the number of selected

Value

gfData gene expression matrix after genes filtering
B block-diagonal matrix
C estimated number of clusters
y clustering results

Examples

data(yan)
data <- log2(yan+1)
RCSL(yan[,1:20])

SimS Calculate the initial similarity matrix

Description

Calculate the initial similarity matrix
Usage

```r
SimS(
  data,
  pcRatio = 0.95,
  gamma = 0.8,
  NN.method = "KNN",
  Dis.method = "Euclidean",
  LSH.TreeNum = 30,
  LSH.Dim = 1000,
  LSH.Dis = "angular",
  neiRatio = 0.65
)
```

Arguments

data: gene expression matrix after genes filtering
pcRatio: the ratio between the variance of the
gamma: the ratio of the global similarity
NN.method: the method of finding neighbors
Dis.method: the distance metric in finding neighbors
LSH.TreeNum: the tree number of LSH
LSH.Dim: the dimension in LSH
LSH.Dis: the distance metric in LSH
neiRatio: ratio of the number of selected

Value

- initial similarity matrix S
- gene expression matrix after PCA processing drData

Examples

```r
gfData <- GenesFilter(yan)
SimS(gfData)
```

Description

Trajectory analysis
TrajectoryAnalysis

Usage

TrajectoryAnalysis(
 gfData,
 drData,
 S,
 clustRes,
 fontSize = 12,
 TrueLabel,
 startPoint,
 dataName = "",
 sim = TRUE,
 simMeasure = "kendall",
 VisualMethod = "umap"
)

Arguments

gfData preprocessed gene expression data (each column represent a cell)
drData preprocessed gene expression data (each column represent a cell)
S the similarity matrix calculated by SimS() function
clustRes the clustering results identified by RCSL
fontSize the size of font in the plot
TrueLabel the real cell types used to indicate the vertical axis
startPoint the position of the starting cell in the matrix
dataName the name of the data that will be showed in the plot
sim indicate the input data is similarity matrix or not
simMeasure the calculation method of measuring the cluster centers’ similarity
VisualMethod the display method of 2-D visualization

Value

PseudoTimePlot, MSTPlot, TrajectoryPlot

Examples

gfData <- GenesFilter(yan)
TrueLabel <- ann$cell_type1
res_SimS <- SimS(gfData)
C <- EstClusters(res_SimS$drData,res_SimS$S)
res_BDSM <- BDSM(res_SimS$S,C)
TrajectoryAnalysis(gfData,res_SimS$drData,res_SimS$S,res_BDSM$y,
 TrueLabel=TrueLabel,startPoint=1)
yan A public scRNA-seq dataset by Yan et al.

Description

A public scRNA-seq dataset by Yan et al.

Usage

yan

Format

An object of class data.frame with 20214 rows and 90 columns.

Source

http://dx.doi.org/10.1038/nsmb.2660

Columns represent cells, rows represent genes expression values.
Index

* datasets
 ann, 2
 yan, 14

ann, 2

BDSM, 3

EProjSimplexdiag, 4
EstClusters, 4
EucDist, 5

GenesFilter, 5
getLineage, 6

NeigRepresent, 6

PlotMST, 7
PlotPseudoTime, 8
PlotTrajectory, 9

RCSL, 10

SimS, 11

TrajectoryAnalysis, 12

yan, 14