Package ‘RPA’

May 27, 2024

Type Package
Title RPA: Robust Probabilistic Averaging for probe-level analysis
Encoding UTF-8
Version 1.60.0
Date 2023-04-07
Depends R (>= 3.1.1), affy, BiocGenerics, BiocStyle, methods, rmarkdown
Imports phyloseq
Suggests knitr, parallel
biocViews GeneExpression, Microarray, Preprocessing, QualityControl
Description Probabilistic analysis of probe reliability and differential gene expression on short oligonucleotide arrays.
License BSD_2_clause + file LICENSE
URL https://github.com/antagomir/RPA
BugReports https://github.com/antagomir/RPA
VignetteBuilder knitr
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/RPA
git_branch RELEASE_3_19
git_last_commit 62110a1
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-26
Author Leo Lahti [aut, cre] (<https://orcid.org/0000-0001-5537-637X>)
Maintainer Leo Lahti <leo.lahti@iki.fi>
Contents

RPA-package ... 3
calculate.rpa ... 3
collect.hyperparameters 4
d.update.fast ... 5
estimate.affinities 6
estimate.hyperparameters 7
frpa ... 8
get.batches ... 10
get.probe.matrix .. 10
get.probe.parameters 12
get.probeset ... 13
hyperparameter.update 14
levelmap ... 15
n.phylotypes.per. oligo 16
online.quantile .. 17
probe.parameters.tolist 18
probe.performance 18
probeplot .. 19
probetable ... 20
retrieve.probesets 21
rpa ... 21
rpa.complete ... 23
rpa.fit .. 25
RPA.iteration .. 27
rpa.online .. 29
rpa.plot .. 31
RPA.preprocess .. 32
rpa.summarize .. 33
rpaplot .. 34
sample.probeset .. 36
summarize.batch .. 37
summarize.batches 38
summarize.rpa ... 39
summarize.sum .. 40
summarize_probedata 41
updating.hyperparameters 42

Index 44
RPA-package

RPA: probabilistic analysis of probe reliability and gene expression

Description

Brief summary of the RPA package

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>RPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>See sessionInfo() or DESCRIPTION file</td>
</tr>
<tr>
<td>Date:</td>
<td>2008-2016</td>
</tr>
<tr>
<td>License:</td>
<td>FreeBSD</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

```
#
```

calculate.rpa RPA with HITChip

Description

Fit RPA for HITChip.

Usage

calculate.rpa(level, phylo, oligo.data)"
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>level</td>
</tr>
<tr>
<td>phylo</td>
<td>phylo</td>
</tr>
<tr>
<td>oligo.data</td>
<td>oligo.data</td>
</tr>
</tbody>
</table>

Value

RPA preprocessed data

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation("microbiome")

description

Collect probe-level parameters during online-learning from the batch files.

Usage

```r
collect.hyperparameters(
  batches,
  unique.run.identifier,
  save.batches.dir,
  save.batches,
  verbose = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>batches</td>
<td>batch list</td>
</tr>
<tr>
<td>unique.run.identifier</td>
<td>Batch file identifier string</td>
</tr>
<tr>
<td>save.batches.dir</td>
<td>Batch file directory</td>
</tr>
<tr>
<td>save.batches</td>
<td>Logical. Determines whether batches are available.</td>
</tr>
<tr>
<td>verbose</td>
<td>verbose</td>
</tr>
</tbody>
</table>
d.update.fast

Description

Computes weighted average over the probes, weighted by their inverse probe-specific variances.

Usage

```r
d.update.fast(St, s2)
```

Arguments

- **St**: probes x samples data matrix
- **s2**: variances for the probes

Details

Returns summarized probeset-level weighted average

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

```r
# hpe <- collect.hyperparameters(batches, unique.run.identifier, save.batches.dir, save.batches)
```
Description

Usage

estimate.affinities(dat, a)

Arguments

dat Input data set: probes x samples.
a Estimated expression signal from RPA model.

Details

To estimate means in the original data domain let us assume that each probe-level observation x is of the following form: x = d + v + noise, where x and d are vectors over samples, v is a scalar (vector with identical elements) noise is Gaussian with zero mean and probe-specific variance parameters tau2. Then the parameter mu will indicate how much probe-level observation deviates from the estimated signal shape d. This deviation is further decomposed as mu = mu.real + mu.probe, where mu.real describes the "real" signal level, common for all probes mu.probe describes probe affinity effect. Let us now assume that mu.probe ~ N(0, sigma.probe). This encodes the assumption that in general the affinity effect of each probe tends to be close to zero. Then we just calculate ML estimates of mu.real and mu.probe based on particular assumptions. Note that this part of the algorithm has not been defined in full probabilistic terms yet, just calculating the point estimates. Note that while tau2 in RPA measures stochastic noise, and NOT the affinity effect, we use it here as a heuristic solution to weigh the probes according to how much they contribute to the overall signal shape. Intuitively, probes that have little effect on the signal shape (i.e. are very noisy and likely to be contaminated by many unrelated signals) should also contribute less to the absolute signal estimate. If no other prior information is available, using stochastic parameters tau2 to determine probe weights is likely to work better than simple averaging of the probes without weights. Also in this case the probe affinities sum close to zero but there is some flexibility, and more noisy probes can be downweighted.

Value

A vector with probe-specific affinities.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")
estimate.hyperparameters

See Also
rpa.fit

Examples

```r
# mu <- estimate.affinities(dat, a)
```

Description

Hyperparameter estimation.

Usage

```r
estimate.hyperparameters(
  sets = NULL,
  probe.parameters = list(alpha = 2, beta = 1),
  batches,
  cdf = NULL,
  bg.method = "rma",
  epsilon = 0.01,
  load.batches = FALSE,
  save.hyperparameter.batches = FALSE,
  mc.cores = 1,
  verbose = TRUE,
  normalization.method = "quantiles",
  save.batches.dir = ".",
  unique.run.identifier = NULL,
  set.inds = set.inds
)
```

Arguments

- `sets`: Probesets to handle. All probesets by default.
- `probe.parameters`: User-defined priors. May also include quantile.basis
- `batches`: Data batches for online learning
- `cdf`: CDF probeset definition file
- `bg.method`: Background correction method
- `epsilon`: Convergence parameter
- `load.batches`: Logical. Load preprocessed data whose identifiers are picked from names(batches). Assuming that the same batch list (batches) was used to create the files in on-line.quantiles function.
save.hyperparameter.batches
 Save hyperparameters for each batch into files using the identifiers with batch name with -hyper.RData suffix.
mc.cores
 Number of cores for parallel computation
verbose
 Print progress information
normalization.method
 Normalization method
save.batches.dir
 Specify the output directory for temporary batch saves.
unique.run.identifier
 Define identifier for this run for naming the temporary batch files. By default, a random id is generated.
set.inds
 Probeset indices

Value
 alpha: Hyperparameter alpha (same for all probesets); betas: Hyperparameter beta (probe-specific);
 variances: Probe-specific variances (beta/alpha)

Author(s)
 Leo Lahti <leo.lahti@iki.fi>

References
 See citation("RPA")

Examples
 #

frpa frpa

Description
 Frozen-RPA preprocessing using precalculated probe parameters.

Usage
 frpa(
 abatch = NULL,
 probe.parameters = NULL,
 verbose = FALSE,
 cdf = NULL,
 cel.files = NULL,
 cel.path = NULL,
mc.cores = 1,
summarize.with.affinities = FALSE
)

Arguments

abatch An AffyBatch object.
probe.parameters A list with tau2 (probe variance), quantile.basis (basis for quantile normalization in log2 domain), and optionally affinity (probe affinities). The probe.parameters$tau2 and probe.parameters$affinity are lists, each element corresponding to a probe-set and containing a parameter vector over the probes. The quantile.basis is a vector over the probes, the probes need to be listed in the same order as in tau2 and affinity. probe.parameters can be optionally provided as a data frame.
verbose Print progress information during computation.
cdf Specify an alternative CDF environment. Default: none.
cel.files List of CEL files to preprocess.
cel.path Path to CEL file directory.
mccores Number of cores for parallelized processing.
summarize.with.affinities Use affinity estimates in probe summarization step. Default: FALSE.

Details

fRPA function to preprocess Affymetrix CEL files with RPA using precalculated (frozen) probe parameters.

Value

Preprocessed expression matrix in expressionSet format

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

See Also

rpa, AffyBatch, ExpressionSet

Examples

eset <- frpa(abatch, probe.parameters)
get.batches Split data into batches

Description
get.batches Split data into batches

Usage
get.batches(items, batch.size = NULL, shuffle = FALSE)

Arguments
items A vector of items to be splitted into batches.
batch.size Batch size. The last batch may contain less elements than the other batches which have batch.size elements each.
shuffle Split the elements randomly in the batches.

Value
A list. Each element corresponds to one batch and contains a vector listing the elements in that batch.

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

Examples
#
get.probe.matrix

Usage

get.probe.matrix(
 cels,
 cdf = NULL,
 quantile.basis,
 bg.method = "rma",
 normalization.method = "quantiles",
 batch = NULL,
 verbose = TRUE
)

Arguments

cels List of CEL files to preprocess
cdf Specify an alternative CDF environment
quantile.basis Pre-calculated basis for quantile normalization in log2 domain
bg.method Specify background correction method. See bgcorrect.methods() for options.
normalization.method normalization method
batch batch
verbose Print progress information during computation

Details

Returns background-corrected, quantile normalized log2 probes x samples matrix

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

#
get.probe.parameters

Description

Get probe-level hyperparameter from batch files

Usage

get.probe.parameters(
 affinities,
 unique.run.identifier,
 save.batches.dir = ".",
 mode = "list"
)

Arguments

affinities probe affinities
unique.run.identifier
 Batch file identifier string
save.batches.dir
 Batch file directory
mode "list" or "table"

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

df <- get.probe.parameters(unique.run.identifier, save.batches.dir = ".", mode = "list")
get.probeset

Description
Get probeset matrix.

Usage
get.probeset(name, level, taxonomy, probedata, log10 = TRUE)

Arguments
name name
level taxonomic level
taxonomy taxonomy
probedata oligos vs. samples preprocessed data matrix; absolute scale
log10 Logical. Logarithmize the data TRUE/FALSE

Value
probeset data matrix

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
See citation('microbiome')

Examples
#taxonomy <- GetPhylogeny('HITChip', 'filtered')
data.dir <- system.file("extdata", package = "microbiome")
probedata <- read_hitchip(data.dir, "rpa")$probedata
ps <- get.probeset('Akkermansia', 'L2', taxonomy, probedata)
hyperparameter.update

Description

Update hyperparameters. Update shape (alpha) and scale (beta) parameters of the inverse gamma distribution.

Usage

hyperparameter.update(dat, alpha, beta, th = 0.01)

Arguments

dat A probes x samples matrix (probeset).
alpha Shape parameter of inverse gamma density for the probe variances.
beta Scale parameter of inverse gamma density for the probe variances.
ths Convergence threshold.

Details

Shape update: alpha <- alpha + T/2; Scale update: beta <- alpha * s2 where s2 is the updated variance for each probe (the mode of variances is given by beta/alpha). The variances (s2) are updated by EM type algorithm, see s2.update.

Value

A list with elements alpha, beta (corresponding to the shape and scale parameters of inverse gamma distribution, respectively).

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

See Also

s2.update, rpa.online
Examples

```
# ## Generate and fit toydata, learn hyperparameters
# set.seed(11122)
# P <- 11  # number of probes
# N <- 5000 # number of arrays
# real <- sample.probeset(P = P, n = N, shape = 3, scale = 1, mu.real = 4)
# dat <- real$dat # probes x samples#
# ## Set priors
# alpha <- 1e-2
# beta  <- rep(1e-2, P)
# ## Operate in batches
# step <- 1000
# for (ni in seq(1, N, step)) {
#  batch <- ni:(ni+step-1)
#  hp <- hyperparameter.update(dat[,batch], alpha, beta, th = 1e-2)
#  alpha <- hp$alpha
#  beta  <- hp$beta
# }
# ## Final variance estimate
# s2 <- beta/alpha
# ## Compare real and estimated variances
# plot(sqrt(real$tau2), sqrt(s2), main = cor(sqrt(real$tau2), sqrt(s2))); abline(0,1)
```

levelmap
Map taxonomic levels

Description

Map taxa between hierarchy levels.

Usage

```
levelmap(taxa = NULL, from, to, tax.table)
```

Arguments

- **taxa**
 - taxa to convert; if NULL then considering all taxa in the tax.table
- **from**
 - convert from taxonomic level
- **to**
 - convert to taxonomic level
- **tax.table**
 - tax.table

Value

- mappings
Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

```r
n.phylotypes.per.oligo

n.phylotypes.per.oligo
```

Description

Check number of matching phylotypes for each probe

Usage

```r
n.phylotypes.per.oligo(taxonomy, level)
```

Arguments

- `taxonomy` oligo - phylotype matching data.frame
- `level` phylotype level

Value

number of matching phylotypes for each probe

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation("microbiome")
online.quantile

online.quantile Quantile normalization tools for online preprocessing. Estimate quantiles for quantile normalization based on subset of the data (random, or specified by the user).

Description

online.quantile Quantile normalization tools for online preprocessing. Estimate quantiles for quantile normalization based on subset of the data (random, or specified by the user).

Usage

online.quantile(abatch, n)

Arguments

abatch AffyBatch
n Numeric: number of random samples to use to define quantile basis. Vector: specify samples to be used in quantile basis calculation.

Details

"online.quantile": Ordinary quantile normalization is exhaustively memory-consuming in large data sets. Then the quantiles can be calculated based on subset of the data to allow efficient normalization. This function can also be used to investigate effect of subset size to convergence of the quantile estimates; "qnorm.basis.online": sweeps through the data in batches to calculate the basis for quantile normalization (average over sorted profiles).

Value

"online.quantile": AffyBatch; "qnorm.basis.online": a vector containing the basis for quantile normalization.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

#
probe.parameters.tolist

Description
Convert probe parameter table into a list format

Usage
probe.parameters.tolist(probe.parameters)

Arguments
probe.parameters
A data.frame with alpha, betas, tau2, affinities, quantile.basis

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

Examples
df <- probe.parameters.tolist(probe.parameters.table)

probe.performance

Description
Provide a table of probe-level parameter estimates (affinity and stochastic noise) for RPA output.

Usage
probe.performance(probe.parameters, abatch, sets = NULL)

Arguments
probe.parameters
List with affinities and variances for the probesets
abatch
Affybatch used in the analysis
sets
Specify the probesets to include in the output. Default: All probesets
probeplot

Value
Data frame of probe-level parameter estimates

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

probeplot Plot RPA results and probe-level data for a specified probeset.

Description
probeplot Plot RPA results and probe-level data for a specified probeset.

Usage
probeplot(
 dat,
 highlight.probes = NULL,
 pcol = "darkgrey",
 hcol = "red",
 cex.lab = 1.5,
 cex.axis = 1,
 cex.main = 1,
 cex.names = 1,
 main = "",
 ...
)

Arguments
dat Background-corrected and normalized data: probes x samples.
highlight.probes Optionally highlight some of the probes (with dashed line)
pcol Color for probe signal visualization.
hcol Color for probe highlight
cex.lab Label size adjustment parameters.
cex.axis Axis size adjustment parameters.
cex.main Title size adjustment parameters.
cex.names Names size adjustment parameters.
main Title text.
... Other parameters to pass for plot function.
Details

Plots the preprocessed probe-level observations, estimated probeset-level signal, and probe-specific variances. It is also possible to highlight individual probes and external summary measures.

Value

Used for its side-effects. Returns probes x samples matrix of probe-level data plotted on the image.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

df <- probetable(probe.parameters)
retrieves.probesets Retrieve probesets

Description

List probes for each probeset in taxonomic data.

Usage

retrieves.probesets(tax.table, level = "species", name = NULL)

Arguments

tax.table data.frame with oligo-phytype mapping info
level phytype level for probesets
name specify phyotypes to check (optional)

Value

A list. Probes for each phytype.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

#tax.table <- GetPhylogeny('HITChip')
#sets <- retrieve.probesets(tax.table, 'species', 'Weissella confusa')

rpa rpa

Description

Wrapper for RPA preprocessing.
Usage

rpa(
 abatch = NULL,
 verbose = FALSE,
 bg.method = "rma",
 normalization.method = "quantiles.robust",
 cdf = NULL,
 cel.files = NULL,
 cel.path = NULL,
 probe.parameters = NULL,
 mc.cores = 1,
 summarize.with.affinities = FALSE
)

Arguments

abatch An AffyBatch object.
verbose Print progress information during computation.
bg.method Specify background correction method. Default: "rma". See bgcorrect.methods() for other options.
normalization.method Specify quantile normalization method. Default: "pmonly". See normalize.methods(Dilution) for other options.
cdf Specify an alternative CDF environment. Default: none.
cel.files List of CEL files to preprocess.
cel.path Path to CEL file directory.
probe.parameters A list, each element corresponding to a probe set. Each probeset element has the following optional elements: mu (affinity), tau2 (variance), alpha (shape prior), beta (scale prior). Each of these elements contains a vector over the probeset probes, specifying the probe parameters according to the RPA model. If variance is given, it overrides the priors. Can be also used to set user-specified priors for the model parameters. Not used with tau2.method = "var". The prior parameters alpha and beta are prior parameters for inverse Gamma distribution of probe-specific variances. Noninformative prior is obtained with alpha, beta -> 0. Not used with tau2.method 'var'. Scalar alpha and beta specify an identical inverse Gamma prior for all probes, which regularizes the solution. Can be also specified as lists, each element corresponding to one probeset. May also include quantile.basis
mc.cores Number of cores for parallelized processing.
summarize.with.affinities Use affinity estimates in probe summarization step. Default: FALSE.

Details

RPA preprocessing function. Gives an estimate of the probeset-level mean parameter d of the RPA model, and returns these in an expressionSet object. The choices tau2.method = "robust"
and d.method = "fast" are recommended. With small sample size and informative prior, d.method = "basic" may be preferable. For very large expression data collections, see rpa.online function.

Value
Preprocessed expression matrix in expressionSet format

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

See Also
rpa.online, AffyBatch, ExpressionSet, estimate.affinities, rpa.fit

Examples

```r
# eset <- rpa(abatch)
```

rpa.complete

Complete RPA preprocessing

Description
RPA preprocessing, also returns probe parameters.

Usage

```r
rpa.complete(
  abatch = NULL,
  sets = NULL,
  epsilon = 0.01,
  tau2.method = "robust",
  d.method = "fast",
  verbose = FALSE,
  bg.method = "rma",
  normalization.method = "quantiles.robust",
  cdf = NULL,
  cel.files = NULL,
  cel.path = NULL,
  probe.parameters = list(),
  mc.cores = 1,
  summarize.with.affinities = FALSE
)
```
Arguments

abatch An AffyBatch object.
sets Probesets for which RPA will be computed.
epsilon Convergence tolerance. The iteration is deemed converged when the change in
 all parameters is < epsilon.
tau2.method Optimization method for tau2 (probe-specific variances). This parameter is de-
 noted by tau^2 in the vignette and manuscript
 "robust": (default) update tau2 by posterior mean, regularized by informative
 priors that are identical for all probes (user-specified by setting scalar values for
 alpha, beta). This regularizes the solution, and avoids overfitting where a single
 probe obtains infinite reliability. This is a potential problem in the other tau2
 update methods with non-informative variance priors. The default values alpha
 = 2; beta = 1 are used if alpha and beta are not specified.
 "mode": update tau2 with posterior mean
 "mean": update tau2 with posterior mean
 "var": update tau2 with variance around d. Applies the fact that tau2 cost func-
 tion converges to variance with large sample sizes.
d.method Method to optimize d.
 "fast": (default) weighted mean over the probes, weighted by probe variances
 The solution converges to this with large sample size.
 "basic": optimization scheme to find a mode used in Lahti et al. TCBB/IEEE;
 relatively slow; this is the preferred method with small sample sizes.
verbose Print progress information during computation.
bg.method Specify background correction method. Default: "rma". See bgcorrect.methods()
 for other options.
normalization.method
 Specify quantile normalization method. Default: "pmonly". See normalize.methods(Dilution)
 for other options.
cdf Specify an alternative CDF environment. Default: none.
cel.files List of CEL files to preprocess.
cel.path Path to CEL file directory.
probe.parameters A list, each element corresponding to a probe set. Each probeset element has
 the following optional elements: affinity (affinity), tau2 (variance), alpha (shape
 prior), betas (scale prior). Each of these elements contains a vector over the
 probeset probes, specifying the probe parameters according to the RPA model.
 If variance is given, it overrides the priors. Can be also used to set user-specified
 priors for the model parameters. Not used tau2.method = "var". The prior pa-
 rameters alpha and beta are prior parameters for inverse Gamma distribution of
 probe-specific variances. Noninformative prior is obtained with alpha, beta ->
 0. Not used with tau2.method 'var'. Scalar alpha and beta specify an identical
 inverse Gamma prior for all probes, which regularizes the solution. Can be also
 specified as lists, each element corresponding to one probeset. Can also include
 quantile.basis
mc.cores Number of cores for parallelized processing.
summarize.with.affinities
Use affinity estimates in probe summarization step. Default: FALSE.

Details
RPA preprocessing function. Gives an estimate of the probeset-level mean parameter \(d \) of the RPA model, and returns these in an expressionSet object. The choices tau2.method = "robust" and d.method = "fast" are recommended. With small sample size and informative prior, d.method = "basic" may be preferable. For very large expression data collections, see rpa.online function.

Value
List with preprocessed expression matrix, corresponding probe parameters, AffyBatch and CDF

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

Examples
```r
# eset <- rpa(abatch)
```

Description
Fit the RPA model.

Usage
```r
rpa.fit(
  dat,
  epsilon = 0.01,
  alpha = NULL,
  beta = NULL,
  tau2.method = "robust",
  d.method = "fast",
  summarize.with.affinities = FALSE
)
```
Arguments

dat Original data: probes x samples.
epsilon Convergence tolerance. The iteration is deemed converged when the change in all parameters is < epsilon.
alpha alpha prior for inverse Gamma distribution of probe-specific variances. Non-informative prior is obtained with alpha, beta -> 0. Not used with tau2.method 'var'. Scalar alpha and beta are specify equal inverse Gamma prior for all probes to regularize the solution. The defaults depend on the method.
beta beta prior for inverse Gamma distribution of probe-specific variances. Noninformative prior is obtained with alpha, beta -> 0. Not used with tau2.method 'var'. Scalar alpha and beta are specify equal inverse Gamma prior for all probes to regularize the solution. The defaults depend on the method.
tau2.method Optimization method for tau2 (probe-specific variances);
"robust": (default) update tau2 by posterior mean, regularized by informative priors that are identical for all probes (user-specified by setting scalar values for alpha, beta). This regularizes the solution, and avoids overfitting where a single probe obtains infinite reliability. This is a potential problem in the other tau2 update methods with non-informative variance priors. The default values alpha = 2; beta = 1 are used if alpha and beta are not specified.
"mode": update tau2 with posterior mean
"mean": update tau2 with posterior mean
"var": update tau2 with variance around d. Applies the fact that tau2 cost function converges to variance with large sample sizes.
d.method Method used to optimize d. Options:
"fast": (default) weighted mean over the probes, weighted by probe variances The solution converges to this with large sample size.
"basic": optimization scheme to find a mode used in Lahti et al. TCBB/IEEE; relatively slow; preferred with small sample size.
summarize.with.affinities Use affinity estimates in probe summarization step. Default: FALSE.

Details

Fits the RPA model, including estimation of probe-specific affinity parameters. First learns a point estimate for the RPA model in terms of differential expression values w.r.t. reference sample. After this, probe affinities are estimated by comparing original data and differential expression shape, and setting prior assumptions concerning probe affinities.

Value

mu: Fitted signal in original data: mu.real + d; mu.real: Shifting parameter of the reference sample;
tau2: Probe-specific stochastic noise; affinity: Probe-specific affinities; data: Probeset data matrix;
alpha, beta: prior parameters

Author(s)

Leo Lahti <leo.lahti@iki.fi>
References

See citation("RPA")

See Also

rpa, estimate.affinities

Examples

res <- rpa.fit(dat, epsilon, alpha, beta, tau2.method, d.method, affinity.method)

Description

Estimating model parameters d and tau2.

Usage

RPA.iteration(
 S,
 epsilon = 0.001,
 alpha = NULL,
 beta = NULL,
 tau2.method = "fast",
 d.method = "fast",
 maxloop = 1e+06
)

Arguments

S	Matrix of probe-level observations for a single probeset: samples x probes.
epsilon	Convergence tolerance. The iteration is deemed converged when the change in all parameters is < epsilon.
alpha	alpha prior for inverse Gamma distribution of probe-specific variances. Noninformative prior is obtained with alpha, beta -> 0. Not used with tau2.method ‘var’. Scalar alpha and beta are specify equal inverse Gamma prior for all probes to regularize the solution. The defaults depend on the method.
beta	beta prior for inverse Gamma distribution of probe-specific variances. Noninformative prior is obtained with alpha, beta -> 0. Not used with tau2.method ‘var’. Scalar alpha and beta are specify equal inverse Gamma prior for all probes to regularize the solution. The defaults depend on the method.
tau2.method Optimization method for tau2 (probe-specific variances).
"robust": (default) update tau2 by posterior mean, regularized by informative priors that are identical for all probes (user-specified by setting scalar values for alpha, beta). This regularizes the solution, and avoids overfitting where a single probe obtains infinite reliability. This is a potential problem in the other tau2 update methods with non-informative variance priors. The default values alpha = 2; beta = 1 are used if alpha and beta are not specified.
"mode": update tau2 with posterior mean
"mean": update tau2 with posterior mean
"var": update tau2 with variance around d. Applies the fact that tau2 cost function converges to variance with large sample sizes.

d.method Method to optimize d. "fast": (default) weighted mean over the probes, weighted by probe variances The solution converges to this with large sample size.
"basic": optimization scheme to find a mode used in Lahti et al. TCBB/IEEE; relatively slow; this is the preferred method with small sample sizes.

maxloop Maximum number of iterations in the estimation process.

Details
Finds point estimates of the model parameters d (estimated true signal underlying probe-level observations), and tau2 (probe-specific variances). Assuming data set S with P observations of signal d with Gaussian noise that is specific for each observation (specified by a vector tau2 of length P), this method gives a point estimate of d and tau2. Probe-level variance priors alpha, beta can be used with tau2.methods 'robust', 'mode', and 'mean'. The d.method = "fast" is the recommended method for point computing point estimates with large samples size.

Value
A list with the following elements: d: A vector. Estimated 'true' signal underlying the noisy probe-level observations.; tau2: A vector. Estimated variances for each measurement (or probe).

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

Examples
#

rpa.online

Description

RPA-online for preprocessing very large expression data sets.

Usage

```r
rpa.online(
  cel.path = NULL,
  cel.files = NULL,
  sets = NULL,
  cdf = NULL,
  bg.method = "rma",
  probe.parameters = list(alpha = 1, beta = 1),
  epsilon = 0.01,
  mc.cores = 1,
  verbose = TRUE,
  shuffle = TRUE,
  batch.size = 100,
  batches = NULL,
  save.batches.dir = ".",
  keep.batch.files = FALSE,
  unique.run.identifier = paste("RPA-run-id-", rnorm(1), sep = ""),
  rseed = 23,
  speedup = TRUE,
  summarize.with.affinities = FALSE
)
```

Arguments

- `cel.path`: Path to CEL file directory
- `cel.files`: List of CEL files to preprocess
- `sets`: Probesets for which RPA will be computed
- `cdf`: Specify an alternative CDF environment
- `bg.method`: Specify background correction method. See `bgcorrect.methods()` for options.
- `probe.parameters`: Can be used to set user-specified priors for the model parameters alpha, beta. Not used `tau2.method = "var"`. The prior parameters alpha and beta are prior parameters for inverse Gamma distribution of probe-specific variances. Non-informative prior is obtained with alpha, beta -> 0. Not used with `tau2.method 'var'`. Scalar alpha and beta specify an identical inverse Gamma prior for all probes, which regularizes the solution. Can be also specified as lists, each element corresponding to one probeset. May also include `quantile.basis`, which should be provided at log2 domain.
epsilon Convergence tolerance. The iteration is deemed converged when the change in all parameters is < epsilon.

mc.cores Number of cores for parallel computation

verbose Print progress information during computation

shuffle Form random batches

batch.size Batch size for online mode (rpa.online); the complete list of CEL files will be preprocessed in batches with this size using Bayesian online-updates for probe-specific parameters.

batches User-defined CEL file batches

save.batches.dir Output directory for temporary batch saves.

keep.batch.files Logical. Keep (TRUE) or remove (FALSE) the batch files after preprocessing.

unique.run.identifier Define identifier for this run for naming the temporary batch files. By default, a random id is generated.

rseed Random seed.

speedup Speed up computations with approximations.

summarize.with.affinities Use affinity estimates in probe summarization step. Default: FALSE.

Details

rpa.online is used to preprocess very large expression data collections based on a Bayesian hyperparameter update procedure. Returns an expressionSet object preprocessed with RPA. Gives an estimate of the probeset-level mean parameter d of the RPA model, and returns these in an expressionSet object. The CEL files are handled in batches to obtain Bayesian updates for probe-specific hyperpriors; after sweeping through the database in batches the results are combined. The online mode is useful for preprocessing very large expression data sets where ordinary preprocessing algorithms fail, without compromises in modelling stage.

Value

List with two elements: an instance of the 'expressionSet' class and probe parameters. For probe.parameters contents, see the probe.parameters input argument.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

See Also

rpa, AffyBatch, ExpressionSet
Examples

eset <- rpa.online(cel.file.path)

Description

Plot RPA results and probe-level data for a specified probeset.

Usage

rpa.plot(
 x,
 set,
 highlight.probes = NULL,
 pcol = "darkgrey",
 mucol = "black",
 ecol = "red",
 external.signal = NULL,
 main = NULL,
 plots = "all",
 ...
)

Arguments

x Output from rpa.complete function
set probeset
highlight.probes mark probes for highlight
pcol probe color
mucol probeset signal color
ecol external signal color
external.signal external signal to be plotted on top
main title
plots plot type
... other arguments to be passed

Details

Plots the preprocessed probe-level observations, estimated probeset-level signal, and probe-specific variances. It is also possible to highlight individual probes and external summary measures.
Value

Used for its side-effects. Returns probes x samples matrix of probe-level data plotted on the image.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

#

```r
RPA.preprocess RPA preprocessing
```

Description

Preprocess AffyBatch object for RPA.

Usage

```r
RPA.preprocess(
  abatch,
  bg.method = "rma",
  normalization.method = "quantiles.robust",
  cdf = NULL,
  cel.files = NULL,
  cel.path = NULL,
  quantile.basis = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abatch</td>
<td>An AffyBatch object.</td>
</tr>
<tr>
<td>bg.method</td>
<td>Specify background correction method. See bgcorrect.methods(abatch) for options.</td>
</tr>
<tr>
<td>normalization.method</td>
<td>Specify normalization method. See normalize.methods(abatch) for options. For memory-efficient online version, use "quantiles.online".</td>
</tr>
<tr>
<td>cdf</td>
<td>The CDF environment used in the analysis.</td>
</tr>
<tr>
<td>cel.files</td>
<td>List of CEL files to preprocess.</td>
</tr>
<tr>
<td>cel.path</td>
<td>Path to CEL file directory.</td>
</tr>
<tr>
<td>quantile.basis</td>
<td>Optional. Basis for quantile normalization. NOTE: required in original, not log2 scale!</td>
</tr>
</tbody>
</table>
rpa.summarize

Details
Background correction, quantile normalization and log2-transformation for probe-level raw data in abatch. Then probe-level differential expression is computed between the specified ‘reference’ array (cind) and the other arrays. Probe-specific variance estimates are robust against the choice of reference array.

Value
fcmat: Probes x arrays preprocessed differential expression matrix. cind: Specifies which array in abatch was selected as a reference in calculating probe-level differential expression. cdf: The CDF environment used in the analysis. set.inds: Indices for probes in each probeset, corresponding to the rows of fcmat.

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

Examples
#

rpa.summarize rpa.summarize

Description
RPA summarization.

Usage
rpa.summarize(dat, affinities, variances, summarize.with.affinities = FALSE)

Arguments
dat Original data: probes x samples.
affinities Probe affinities
variances Probe variances
summarize.with.affinities
Use affinity estimates in probe summarization step. Default: FALSE.

Details
Summarizes the probes in a probe set according to the RPA model based on the given affinity and variance parameters.
Value

A vector. Probeset-level summary signal.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

See Also

rpa

Examples

res <- rpa.summarize(dat, affinities, variances, summarize.with.affinities = FALSE)

rpaplot

rpaplot Plot RPA results and probe-level data for a specified probeset.

Description

rpaplot Plot RPA results and probe-level data for a specified probeset.

Usage

rpaplot(
 dat,
 mu = NULL,
 tau2 = NULL,
 affinity = NULL,
 highlight.probes = NULL,
 pcol = "darkgrey",
 mucol = "black",
 ecol = "red",
 cex.lab = 1.5,
 cex.axis = 1,
 cex.main = 1,
 cex.names = 1,
 external.signal = NULL,
 main = "",
 plots = "all",
 ...
)
rpaplot

Arguments

- **dat**: Background-corrected and normalized data: probes x samples.
- **mu**: probe signal
- **tau2**: probe variances
- **affinity**: probe affinities
- **highlight.probes**: Optionally highlight some of the probes (with dashed line)
- **pcol**: Color for probe signal visualization.
- **mucol**: Color for summary estimate.
- **ecol**: Color for external signal.
- **cex.lab**: Label size adjustment parameters.
- **cex.axis**: Axis size adjustment parameters.
- **cex.main**: Title size adjustment parameters.
- **cex.names**: Names size adjustment parameters.
- **external.signal**: Plot external signal on the probeset. For instance, an alternative summary estimate from another preprocessing methods
- **main**: Title text.
- **plots**: "all": plot data and summary, noise and affinity; "data": plot data and summary
- **...**: Other parameters to pass for plot function.

Details

Plots the preprocessed probe-level observations, estimated probeset-level signal, and probe-specific variances. It is also possible to highlight individual probes and external summary measures.

Value

Used for its side-effects. Returns probes x samples matrix of probe-level data plotted on the image.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")

Examples

#
Description

Toy data generator for probeset data.

Usage

sample.probeset(P = 10, n = 20, shape = 1, scale = 1, mu.real = 2)

Arguments

- **P**: Number of probes.
- **n**: Number of samples.
- **shape**: Shape parameter of the inverse Gamma function used to generate the probespecific variances.
- **scale**: Scale parameters of the inverse Gamma function used to generate the probespecific variances.
- **mu.real**: Absolute signal level of the probeset.

Details

Generate random probeset with varying probe-specific affinities and variances. The toy data generator follows distributional assumptions of the RPA model and allows quantitative estimation of model accuracy with different options, noise levels and sample sizes. Probeset-level summary estimate is obtained as mu.real + d.

Value

A list with the following elements:

- **dat**: Probeset data: probes x samples
- **tau2**: Probe variances.
- **affinity**: Probe affinities.
- **d**: Probeset signal shape.
- **mu.real**: Probeset signal level.
- **mu**: Probeset-level total signal.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")
Examples

```r
# real <- sample.probeset(P = 10, n = 20, shape = 1, scale = 1, mu.real = 2)
``` 

Description

Summarize batch.

Usage

```r
summarize.batch(
  q,
  set.inds,
  probe.parameters = list(),
  epsilon,
  verbose = FALSE,
  mc.cores = 1,
  summarize.with.affinities = FALSE
)
``` 

Arguments

- `q`: Background corrected, quantile-normalized, log2 probes x samples matrix
- `set.inds`: Indices for each probeset, corresponding to q matrix
- `probe.parameters`: A list, each element corresponding to a probe set. Each probeset element has the following elements: affinity, variance and optionally alpha and beta priors. Each of these elements contains a vector over the probeset probes, specifying the probe parameters according to the RPA model. If variances are given, that overrides the priors.
- `epsilon`: Convergence tolerance. The iteration is deemed converged when the change in all parameters is < epsilon.
- `verbose`: Print progress information during computation.
- `mc.cores`: Number of cores for parallel processing
- `summarize.with.affinities`: Use affinity estimates in probe summarization step. Default: FALSE.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("RPA")
summarize.batches

Examples

```
summarize.batches
```

Description

Summarize batches.

Usage

```r
summarize.batches(
  sets = NULL,
  probe.parameters = list(),
  batches,
  load.batches = FALSE,
  mc.cores = 1,
  cdf = NULL,
  bg.method = "rma",
  normalization.method = "quantiles",
  verbose = TRUE,
  save.batches.dir = ".",
  unique.run.identifier = NULL,
  save.batches = FALSE,
  set.inds,
  speedup = FALSE,
  summarize.with.affinities = FALSE
)
```

Arguments

- `sets`: Probesets to summarize
- `probe.parameters`: Optional probe parameters, including priors.
- `batches`: Data batches for online learning
- `load.batches`: Logical. Load precalculated data for the batches.
- `mc.cores`: Number of cores for parallel computation
- `cdf`: CDF for alternative probeset definitions
- `bg.method`: Background correction method
- `normalization.method`: Normalization method
- `verbose`: Print progress information
- `save.batches.dir`: Specify the output directory for temporary batch saves.
unique.run.identifier
 Define identifier for this run for naming the temporary batch files. By default, a
 random id is generated.

save.batches Save batches?
set.inds Probeset indices
speedup Speed up calculations with approximations.
summarize.with.affinities
 Use affinity estimates in probe summarization step. Default: FALSE.

Details
Sweeps through the batches. Summarizes the probesets within each batch based on the precalculated model parameter point estimates.

Value
Expression matrix: probesets x samples.

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

Examples
#

summarize.rpa RPA summarization

Description
Probeset summarization with RPA for taxonomic data.

Usage
summarize.rpa(
 taxonomy,
 level,
 probedata,
 verbose = TRUE,
 probe.parameters = NULL
)
summarize.sum

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>taxonomy</td>
<td>oligo - phylotype matching data.frame</td>
</tr>
<tr>
<td>level</td>
<td>taxonomic level for the summarization.</td>
</tr>
<tr>
<td>probedata</td>
<td>preprocessed probes x samples data matrix in absolute domain</td>
</tr>
<tr>
<td>verbose</td>
<td>print intermediate messages</td>
</tr>
<tr>
<td>probe.parameters</td>
<td>Optional. If probe.parameters are given, the summarization is based on these and model parameters are not estimated. A list. One element for each probeset with the following probe vectors: affinities, variances</td>
</tr>
</tbody>
</table>

Value

List with two elements: abundance.table (summarized data matrix in absolute scale) and probe.parameters (RPA probe level parameter estimates)

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation("microbiome")

summarize.sum Sum-based probe summarization

Description

Probeset summarization with the standard sum method.

Usage

```
summarize.sum(
  taxonomy,
  level,
  probedata,
  verbose = TRUE,
  downweight.ambiguous.probes = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>taxonomy</td>
<td>oligo - phylotype matching data.frame</td>
</tr>
<tr>
<td>level</td>
<td>taxonomic level for the summarization.</td>
</tr>
<tr>
<td>probedata</td>
<td>preprocessed probes x samples data matrix in absolute domain</td>
</tr>
<tr>
<td>verbose</td>
<td>print intermediate messages</td>
</tr>
<tr>
<td>downweight.ambiguous.probes</td>
<td>Downweight probes with multiple targets</td>
</tr>
</tbody>
</table>
summarize_probedata

Value

List with two elements: abundance.table (summarized data matrix in absolute scale) and probe.parameters used in the calculations

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation("microbiome")

summarize_probedata Summarize probedata

Description

Summarize phylogenetic microarray probe-level data from given input folder.

Usage

```r
summarize_probedata(
  data.dir = NULL,
  probedata = NULL,
  taxonomy = NULL,
  level,
  method,
  probe.parameters = NULL
)
```

Arguments

- **data.dir**: Data folder.
- **probedata**: probe-level data matrix in absolute domain
- **taxonomy**: probe taxonomy
- **level**: Summarization level
- **method**: Summarization method
- **probe.parameters**: Precalculator probe parameters. Optional.

Value

data matrix (taxa x samples)

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>
References

See citation('microbiome')

Examples

```r
## Not run:
#library(microbiome)
#data.directory <- system.file("extdata", package = "microbiome")
# Read oligo-level data (here: simulated example data)
#probedata <- read_hitchip(data.directory, method = "frpa")$probedata
# Read phylogeny map
# NOTE: use phylogeny.filtered for species/L1/L2 summarization
# Load taxonomy from output directory
#taxonomy <- GetPhylogeny("HITChip", "filtered")
# Summarize oligos into higher level phylotypes
#dat <- summarize_probedata(
#  probedata = probedata,
#  taxonomy = taxonomy,
#  method = "rpa",
#  level = "species")
#
## End(Not run)
```

updating.hyperparameters

Updating hyperparameters.

Description

Hyperparameter update.

Usage

```r
updating.hyperparameters(
  q,
  set.inds,
  verbose,
  mc.cores = 1,
  alpha,
  betas,
  epsilon
)
```

Arguments

- **q**: probes x samples matrix
- **set.inds**: Probe set indices
- **verbose**: Print progress information
mc.cores Number of cores for parallel computation
alpha alpha hyperparameter
betas beta hyperparameters
epsilon Convergence parameter

Value
List with the following elements: alpha, betas, s2s (variances)

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("RPA")

Examples
#
Index

* **internal**
 - levelmap, 15
 - retrieve.probesets, 21

* **methods**
 - d.update.fast, 5
 - frpa, 8
 - get.probe.matrix, 10
 - probeplot, 19
 - rpa, 21
 - rpa.complete, 23
 - rpa.online, 29
 - rpa.plot, 31
 - RPA.preprocess, 32
 - rpaplot, 34
 - summarize.batches, 37

* **package**
 - RPA-package, 3

* **utilities**
 - calculate.rpa, 3
 - collect.hyperparameters, 4
 - estimate.affinities, 6
 - estimate.hyperparameters, 7
 - get.batches, 10
 - get.probe.parameters, 12
 - get.probeset, 13
 - hyperparameter.update, 14
 - n.phylotypes.per.oligo, 16
 - online.quantile, 17
 - probe.parameters.tolist, 18
 - probe.performance, 18
 - probetable, 20
 - rpa.fit, 25
 - RPA.iteration, 27
 - rpa.summarize, 33
 - sample.probeset, 36
 - summarize.batches, 38
 - summarize.rpa, 39
 - summarize.sum, 40
 - summarize_probedata, 41
 - updating.hyperparameters, 42
 - calculate.rpa, 3
 - collect.hyperparameters, 4
 - d.update.fast, 5
 - estimate.affinities, 6
 - estimate.hyperparameters, 7
 - frpa, 8
 - get.batches, 10
 - get.probe.matrix, 10
 - get.probe.parameters, 12
 - get.probeset, 13
 - hyperparameter.update, 14
 - levelmap, 15
 - n.phylotypes.per.oligo, 16
 - online.quantile, 17
 - probe.parameters.tolist, 18
 - probe.performance, 18
 - probetable, 20
 - retrieve.probesets, 21
 - RPA (RPA-package), 3
 - rpa, 21
 - RPA-package, 3
 - rpa.complete, 23
 - rpa.fit, 25
 - RPA.iteration, 27
 - rpa.online, 29
 - rpa.plot, 31
 - RPA.preprocess, 32
 - rpa.summarize, 33
 - rpaplot, 34
sample.probeset, 36
summarize.batch, 37
summarize.batches, 38
summarize.rpa, 39
summarize.sum, 40
summarize_probedata, 41
updating.hyperparameters, 42