Package ‘RegionalST’

February 1, 2024

Type Package

Title Investigating regions of interest and performing cross-regional analysis with spatial transcriptomics data

Version 1.0.1

Description This package analyzes spatial transcriptomics data through cross-regional analysis. It selects regions of interest (ROIs) and identifies cross-regional cell type-specific differential signals. The ROIs can be selected using automatic algorithm or through manual selection. It facilitates manual selection of ROIs using a shiny application.

License GPL-3

Encoding UTF-8

LazyData FALSE

RoxygenNote 7.2.3

biocViews Spatial, Transcriptomics, Reactome, KEGG

Depends R (>= 4.3.0)

Imports stats, grDevices, utils, ggplot2, dplyr, scater, gridExtra, BayesSpace, fgsea, magrittr, SingleCellExperiment, RColorBrewer, Seurat, S4Vectors, tibble, TOAST, assertthat, colorspace, shiny, SummarizedExperiment

Suggests BiocStyle, knitr, rmarkdown, gplots, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Ziyi Li [aut, cre]

Maintainer Ziyi Li <zli16@mdanderson.org>

git_url https://git.bioconductor.org/packages/RegionalST

git_branch RELEASE_3_18

git_last_commit 2544b3c

git_last_commit_date 2023-12-01

Repository Bioconductor 3.18

Date/Publication 2024-01-31
R topics documented:

- DoGSEA ... 2
- DrawDotplot .. 3
- DrawRegionProportion .. 4
- DrawRegionProportion_withProp 4
- exampleRes .. 5
- example_sce .. 6
- FindRegionalCells .. 6
- GetCrossRegionalDE_raw 7
- GetCrossRegionalDE_withProp 8
- GetOneRadiusEntropy ... 9
- GetOneRadiusEntropy_withProp 11
- getProportion .. 12
- ManualSelectCenter ... 12
- mySpatialPreprocess ... 13
- pathways_hallmark ... 14
- pathways_kegg ... 14
- pathways_reactome .. 15
- PlotOneSelectedCenter 16
- RankCenterByEntropy ... 16
- RankCenterByEntropy_withProp 17

Index 19

DoGSEA

Perform GSEA analysis for cross-regional DE genes

Description

Perform GSEA analysis for cross-regional DE genes

Usage

DoGSEA(considerRes, whichDB = "hallmark", gmtdir = NULL, withProp = FALSE)

Arguments

- considerRes A list of cross-regional DE genes.
- whichDB A character string to select the database names, e.g., "hallmark", "kegg", "reactome".
- gmtdir Directory for external database gmtdir file location.
- withProp Whether deconvolution proportion is used in previous steps.

Value

A list including GSEA results for all cell types.
DrawDotplot

Examples

```r
data(exampleRes)
allCTres <- DoGSEA(exampleRes, whichDB = "hallmark", withProp = TRUE)
```

DrawDotplot

Draw dot plot for GSEA results of cross-regional DE genes

Description

Draw dot plot for GSEA results of cross-regional DE genes

Usage

```r
DrawDotplot(
  allCTres, 
  CT = 1, 
  angle = 20, 
  vjust = 0.9, 
  hjust = 1, 
  padj_cutoff = 1, 
  topN = 20, 
  chooseP = "padj", 
  eachN = NULL
)
```

Arguments

- `allCTres`: A list of GSEA results for all cell types.
- `CT`: A number of the interested cell type, e.g., 1, 2, 3.
- `angle`: A number of plotting parameter, angle of the x axis label.
- `vjust`: A number of vertical adjustment in plotting.
- `hjust`: A number of horizontal adjustment in plotting.
- `padj_cutoff`: A cutoff number of adjusted p value.
- `topN`: A number of the plotted top pathways.
- `chooseP`: A character string for the p value that used in plotting, e.g., "padj" or "pval".
- `eachN`: The maximum number of pathways in each cell type.

Value

A plot object
Examples

```r
data(exampleRes)
allCTres <- DoGSEA(exampleRes, whichDB = "hallmark", withProp = TRUE)
DrawDotplot(allCTres, CT = 1, angle = 15, vjust = 1, chooseP = "padj")
```

Description
Draw regional cell type distribution with cell type annotation information

Usage

```r
DrawRegionProportion(sce, label = "celltype", selCenter = seq_len(10))
```

Arguments

- `sce` A single cell experiment object.
- `label` A string character for the cell type variable.
- `selCenter` A vector of the interested ROIs, e.g., 1:4.

Value

A plot object.

Examples

```r
data("example_sce")
DrawRegionProportion(example_sce, label = "celltype", selCenter = 1:3)
```

Description
Draw regional cell type distribution with cellular proportion information

Usage

```r
DrawRegionProportion_withProp
```

Arguments

- `sce` A single cell experiment object.
- `label` A string character for the cell type variable.
- `selCenter` A vector of the interested ROIs, e.g., 1:4.

Value

A plot object.

Examples

```r
data("example_sce")
DrawRegionProportion_withProp(example_sce, label = "celltype", selCenter = 1:3)
```
Usage

DrawRegionProportion_withProp(
 sce,
 label = "CARD_CellType",
 selCenter = seq_len(10)
)

Arguments

sce A single cell experiment object.
label A string character for the cell type variable.
selCenter A vector of the interested ROIs, e.g., 1:4.

Value

A plot object.

Examples

data("example_sce")
DrawRegionProportion_withProp(example_sce,
 label = "Proportions",
 selCenter = 1:3)

exampleRes Example DE output

Description

A simulated example DE output file

Usage

data(exampleRes)

Format

A list object.

Value

A list object.

Examples

data(exampleRes)
example_sce
Example single cell experiment for input

Description

A simulated example input data file

Usage

```r
data(example_sce)
```

Format

A SingleCellExperiment object.

Value

A SingleCellExperiment object.

Examples

```r
data(example_sce)
```

FindRegionalCells
Identify regional cells given centers and radiuses

Description

Identify regional cells given centers and radiuses

Usage

```r
FindRegionalCells(
  sce,
  centerID,
  enhanced = FALSE,
  radius = 10,
  avern = 5,
  doPlot = FALSE,
  returnPlot = FALSE
)
```
Arguments

sce A single cell experiment object.
centerID One or a vector of spot IDs as centers of ROIs.
enhanced A logical variable for plotting enhanced plot or not. Default is FALSE.
radius A number of fixed ROI radius.
avern A number of the average sites used to compute unit distance, default is 5.
doPlot A logical variable to specify whether plot the figure or not.
returnPlot a logical variable to specify whether output the plot or not.

Value

A list including center spot ID and regional spot IDs.

Examples

FindRegionalCells(sce, centerID = "ACGCTGACGCACGT-1")

GetCrossRegionalDE_raw

Identify cross-regional differential analysis

Description

Identify cross-regional differential analysis

Usage

GetCrossRegionalDE_raw(sce,
twocenter = c(3, 4),
enhanced = FALSE,
label = "celltype",
n_markers = 10,
logfc.threshold = 0.25,
angle = 30,
hjust = 0,
size = 3,
min.pct = 0.1,
padj_filter = 0.05,

GetCrossRegionalDE_withProp

Arguments

- **sce**: A single cell experiment object.
- **twoCenter**: A vector of two numbers for the interested ROI numbers.
- **enhanced**: A logical variable for using enhanced data or not.
- **label**: A variable name that contains the cell type information.
- **n_markers**: A number specifying the top DE gene number.
- **logfc.threshold**: A number for the cutoff threshold of log fold change.
- **angle**: A number for angle when plotting.
- **hjust**: A number for horizontal justification when plotting.
- **size**: A number for text font size.
- **min.pct**: A number of minimum percentage specified in the Seurat DE function.
- **padj_filter**: A number for filtering adjusted p values.
- **doHeatmap**: Logical variable for whether drawing the heatmap.

Value

A list including the top DE genes (topDE), and all DE genes (allDE).

Examples

```r
data("example_sce")
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
# I used a very big padj filter here because this is just a toy data
GetCrossRegionalDE_raw(example_sce, twoCenter = c(1,2),
             min.pct = 0.01, logfc.threshold = 0.01,
             padj_filter = 0.5)
```

GetCrossRegionalDE_withProp

Identify cross-regional differential analysis with proportion

Description

Identify cross-regional differential analysis with proportion
GetOneRadiusEntropy

Usage

GetCrossRegionalDE_withProp(
 sce,
 twoCenter = c(3, 4),
 label = "celltype",
 n_markers = 10,
 angle = 30,
 hjust = 0,
 size = 3,
 padj_filter = 0.05,
 doHeatmap = TRUE
)

Arguments

 sce A single cell experiment object.
 twoCenter A vector of two numbers for the interested ROI numbers.
 label A variable name that contains the cell type information.
 n_markers A number specifying the top DE gene number.
 angle A number for angle when plotting.
 hjust A number for horizontal justification when plotting.
 size A number for text font size.
 padj_filter A number for filtering adjusted p values.
 doHeatmap Logical variable for whether drawing the heatmap.

Value

A list including the top DE genes (topDE), and all DE genes (allDE).

Examples

data("example_sce")
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
Since the example data is very small, I set padj filter as NULL. Default is 0.05.
GetCrossRegionalDE_withProp(example_sce, twoCenter = c(1,2), padj_filter = NULL)

GetOneRadiusEntropy

Computer the entropy for a fixed radius

Description

Computer the entropy for a fixed radius
GetOneRadiusEntropy

Usage

```r
GetOneRadiusEntropy(
  sce, 
  selectN, 
  enhanced = FALSE, 
  weight = NULL, 
  label = "celltype", 
  radius = 10, 
  doPlot = FALSE, 
  mytitle = NULL
)
```

Arguments

- **sce**: A single cell experiment object.
- **selectN**: A total number for selected centers. Should be smaller than the total site number.
- **enhanced**: A logical variable of whether using enhanced data.
- **weight**: A data frame to specify the weights of all cell types.
- **label**: A variable name that contains the cell type information.
- **radius**: A number for fixed radius.
- **doPlot**: Logical variable about whether draw the plot.
- **mytitle**: A character string for the title of the plot.

Value

A list including the selected centers, computed entropies, radius.

Examples

```r
data("example_sce")
weight <- data.frame(celltype = c("Cancer Epithelial", "CAFs",  
  "T-cells", "Endothelial",  
  "PVL", "Myeloid", "B-cells",  
  "Normal Epithelial", "Plasmablasts"),
  weight = c(0.25, 0.05,  
             0.25, 0.05,  
             0.025, 0.05,  
             0.25, 0.05, 0.025))
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
GetOneRadiusEntropy(example_sce, selectN = round(length(example_sce$spot)/2), 
  weight = weight, radius = 5, doPlot = TRUE, 
  mytitle = "Radius 5 weighted entropy")
```
GetOneRadiusEntropy_withProp

Computer the entropy for a fixed radius with cell type proportion

Description

Computer the entropy for a fixed radius with cell type proportion

Usage

GetOneRadiusEntropy_withProp(sce, selectN, weight = NULL, label = "celltype", radius = 10, doPlot = FALSE, mytitle = NULL)

Arguments

- **sce**: A single cell experiment object.
- **selectN**: A total number for selected centers. Should be smaller than the total site number.
- **weight**: A data frame to specify the weights of all cell types.
- **label**: A variable name that contains the cell type information.
- **radius**: A number for fixed radius.
- **doPlot**: Logical variable about whether draw the plot.
- **mytitle**: A character string for the title of the plot.

Value

A list including the selected centers, computed entropies, radius.

Examples

data("example_sce")
weight <- data.frame(celltype = c("Cancer Epithelial", "CAFs", "T-cells", "Endothelial", "PVL", "Myeloid", "B-cells", "Normal Epithelial", "Plasmablasts"),
weight = c(0.25,0.05,
0.25,0.05,
0.025,0.05,
0.25,0.05,0.025))
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
GetOneRadiusEntropy_withProp(example_sce, selectN = round(length(example_sce$spot)/10), weight = weight,
radius = 5,
doPlot = TRUE,
mytitle = "Radius 5 weighted entropy")

getProportion

Description

Define an accessor method for Proportion_CARD

Usage

getProportion(card)

Arguments

card A CARD object.

Value

A matrix containing the spot-level cell type proportion information

Examples

getProportion(card)

ManualSelectCenter

Manually select top ROIs

Description

Manually select top ROIs

Usage

ManualSelectCenter(sce)

Arguments

sce A single cell experiment object.

Value

An sce object with selected centers and radiuses.
mySpatialPreprocess

Examples

```r
data("example_sce")
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
# I commented this out because the shiny app will get stuck without input.
# example_sce <- ManualSelectCenter(example_sce)
```

mySpatialPreprocess Perform Preprocessing for spatial data (tailored from BayesSpace function)

Description

Perform Preprocessing for spatial data (tailored from BayesSpace function)

Usage

```r
mySpatialPreprocess(
  sce,
  platform = c("Visium", "ST"),
  n.PCs = 15,
  n.HVGs = 2000,
  skip.PCA = FALSE,
  assay.type = "logcounts"
)
```

Arguments

- **sce** A SingleCellExperiment object.
- **platform** Which platform the data are from, Visium or ST.
- **n.PCs** Number of PCs used in the analysis.
- **n.HVGs** Number of highly variable genes used in the analysis.
- **skip.PCA** A boolean variable to choose whether skipping the PCA step or not.
- **assay.type** Which assay to use, default is logcounts.

Value

A processed SingleCellExperiment object.

Examples

```r
data(example_sce)
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
```
pathways_hallmark
Hallmark database

Description

Hallmark database downloaded from MSigDB (Feb, 2023)

Usage

`data(pathways_hallmark)`

Format

A list object.

Value

A list object.

Source

MSigDB

References

Examples

`data(pathways_hallmark)`

pathways_kegg
KEGG database

Description

KEGG database downloaded from MSigDB (Feb, 2023)

Usage

`data(pathways_kegg)`

Format

A list object.
pathways_reactome

Value

A list object.

Source

MSigDB

References

Examples

```
data(pathways_kegg)
```

```
data(pathways_reactome)  # REACTOME database
```

Description

REACTOME database downloaded from MSigDB (Feb, 2023)

Usage

```
data(pathways_reactome)
```

Format

A list object.

Value

A list object.

Source

MSigDB

References

Examples

```
data(pathways_reactome)
```
PlotOneSelectedCenter
Plot one selected ROI

Description
Plot one selected ROI

Usage
PlotOneSelectedCenter(sce, ploti, enhanced = FALSE)

Arguments
sce
A single cell experiment object.
ploti
A number of indicate which ROI to plot.
enhanced
A logical variable for using enhanced data or not.

Value
A figure object for the selected ROI.

Examples
data("example_sce")
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
PlotOneSelectedCenter(example_sce, ploti = 1)

RankCenterByEntropy
Automatically rank ROI centers based on entropy

Description
Automatically rank ROI centers based on entropy

Usage
RankCenterByEntropy(
 sce,
 weight,
 enhanced = FALSE,
 selectN = round(length(sce$spot)/10),
 label = "celltype",
 topN = 10,
 min_radius = 10,
 avern = 5,
)
rank_center_by_entropy_with_prop =

 radius_vec = c(10, 15, 20),
 doPlot = TRUE

Arguments

- **sce**: A single cell experiment object.
- **weight**: A data frame to specify the weights of all cell types.
- **enhanced**: A logical variable of whether using enhanced data.
- **selectN**: A total number for selected centers. Should be smaller than the total site number.
- **label**: A variable name that contains the cell type information.
- **topN**: A number to specify the total amount of top ranked ROIs.
- **min_radius**: The minimum repellent radius.
- **avern**: A number of the average sites used to compute unit distance, default is 5.
- **radius_vec**: A vector of numbers for candidate radiuses.
- **doPlot**: Logical variable about whether draw the plot.

Value

An sce object with selected ROI information.

Examples

```r

data("example_sce")
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
weight <- data.frame(celltype = c("Cancer Epithelial", "CAFs", "T-cells", "Endothelial", 
                                 "PVL", "Myeloid", "B-cells", "Normal Epithelial", "Plasmablasts"),
                    weight = c(0.25,0.05,
                               0.25,0.05,
                               0.025,0.05,
                               0.25,0.05,0.025))
example_sce <- RankCenterByEntropy(example_sce, weight, label = "celltype",
                                  selectN = round(length(example_sce$spot)/10),
                                  topN = 3, min_radius = 10,
                                  radius_vec = c(10,15),
                                  doPlot = TRUE)

```
Usage

RankCenterByEntropy_withProp('sce, weight, selectN = round(length(sce$spot)/10), topN = 10, min_radius = 10, avern = 5, radius_vec = c(10, 15, 20), doPlot = TRUE)

Arguments

sce A single cell experiment object.
weight A data frame to specify the weights of all cell types.
selectN A total number for selected centers. Should be smaller than the total site number.
topN A number to specify the total amount of top ranked ROIs.
min_radius The minimum repellent radius.
avern A number of the average sites used to compute unit distance, default is 5.
radius_vec A vector of numbers for candidate radiuses.
doPlot Logical variable about whether draw the plot.

Value

An sce object with selected ROI information.

Examples

data("example_sce")
weight <- data.frame(celltype = c("Cancer Epithelial", "CAFs", "T-cells", "Endothelial", "PVL", "Myeloid", "B-cells", "Normal Epithelial", "Plasmablasts"), weight = c(0.25,0.05, 0.25,0.05, 0.025,0.05, 0.25,0.05,0.025))
example_sce <- mySpatialPreprocess(example_sce, platform="Visium")
I set our min_raius as 10 and radius vector as 10 and 15 as the example dataset is very small
example_sce <- RankCenterByEntropy_withProp(example_sce, weight, selectN = round(length(example_sce$spot)/10), topN = 3, min_radius = 10, radius_vec = c(10,15), doPlot = TRUE)
Index

* datasets
 example_sce, 6
 exampleRes, 5
 pathways_hallmark, 14
 pathways_kegg, 14
 pathways_reactome, 15

DoGSEA, 2
DrawDotplot, 3
DrawRegionProportion, 4
DrawRegionProportion_withProp, 4

example_sce, 6
exampleRes, 5

FindRegionalCells, 6

GetCrossRegionalDE_raw, 7
GetCrossRegionalDE_withProp, 8
GetOneRadiusEntropy, 9
GetOneRadiusEntropy_withProp, 11
getProportion, 12

ManualSelectCenter, 12
mySpatialPreprocess, 13

pathways_hallmark, 14
pathways_kegg, 14
pathways_reactome, 15
PlotOneSelectedCenter, 16

RankCenterByEntropy, 16
RankCenterByEntropy_withProp, 17