Package ‘RiboCrypt’

April 6, 2024

Type Package
Title Interactive visualization in genomics
Version 1.8.0
License MIT + file LICENSE
Description R Package for interactive visualization and browsing NGS data. It contains a browser for both transcript and genomic coordinate view. In addition a QC and general metaplots are included, among others differential translation plots and gene expression plots. The package is still under development.

biocViews Software, Sequencing, RiboSeq, RNASeq,
Encoding UTF-8
LazyData true

BugReports https://github.com/m-swirski/RiboCrypt/issues
URL https://github.com/m-swirski/RiboCrypt
Depends R (>= 3.6.0), ORFik (>= 1.13.12)
Imports bslib, BiocGenerics, BiocParallel, Biostings, data.table, dplyr, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, htmlwidgets, httr, IRanges, jsonlite, knitr, markdown, NGLVieweR, plotly, rlang, RCurl, shiny, shinyCSSloaders, shinyhelper, shinyjqui, stringr
Suggests testthat, rmarkdown, BiocStyle, BSgenome, BSgenome.Hsapiens.UCSC.hg19

RoxygenNote 7.2.3
VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/RiboCrypt

Repository Bioconductor 3.18
Date/Publication 2024-04-05
Author Michal Swirski [aut, cre, cph],
 Haakon Tjeldnes [aut, ctb],
 Kornel Labun [ctb]
Maintainer Michal Swirski <michal.swirski@uw.edu.pl>

R topics documented:

antisense ... 2
createSeqPanelPattern .. 3
DEG_plot .. 3
distanceToFollowing .. 5
fetch_JS_seq .. 5
fetch_summary ... 6
geneTrackLayer ... 6
getCoverageProfile .. 7
getIndexes .. 7
ggplotlyHover .. 8
matchMultiplePatterns .. 8
matchToGRanges .. 9
multiOmicsPlot_animate ... 9
multiOmicsPlot_list .. 12
multiOmicsPlot_ORFikExp 15
organism_input_select .. 18
RiboCrypt_app .. 18
trimOverlaps ... 19

Index 21

antisense Get antisense

Description
Get antisense

Usage
antisense(grl)

Value
a GRangesList
createSeqPanelPattern

Create sequence panel for RiboCrypt

Description
Create sequence panel for RiboCrypt

Usage
createSeqPanelPattern(
 sequence,
 start_codons = "ATG",
 stop_codons = c("TAA", "TAG", "TGA"),
 frame = 1,
 custom_motif = NULL
)

Arguments

 start_codons character vector, default "ATG"
 stop_codons character vector, default c("TAA", "TAG", "TGA")
 custom_motif character vector, default NULL.

Value

 a ggplot object

DEG_plot

Differential expression plots (1D or 2D)

Description
Gives you interactive 1D or 2D DE plots

Usage
DEG_plot(
 dt,
 draw_non_regulated = FALSE,
 xlim = ifelse(two_dimensions, "bidir.max", "auto"),
 ylim = "bidir.max",
 xlab = ifelse(two_dimensions, "RNA fold change (log2)",
 "Mean counts (log2)"),
 ylab = ifelse(two_dimensions, "RFP fold change (log2)",
 "Fold change (log2)"),
 two_dimensions = ifelse("LFC" %in% colnames(dt), FALSE, TRUE),
 color.values = c("No change" = "black", Significant = "red", Buffering = "purple",
 ...)
DEG_plot

'mRNA abundance' = "darkgreen", Expression = "blue", Forwarded = "yellow", Inverse = "aquamarine", Translation = "orange4")

Arguments

dt a data.table with results from a differential expression run. Normally from:
ORFik::DTEG.analysis(df1, df2)

draw_non_regulated
logical, default FALSE. Should non-regulated rows be included in the plot? Will
make the plot faster to render if skipped (FALSE)

xlim numeric vector or character preset, default: ifelse(two_dimensions, "bidir.max",
"auto") (Equal in both +/ - direction, using max value + 0.5 of meanCounts(in
1d) / rna(in 2d) column of dt). If you want ggplot to decide limit, set to "auto".
For numeric vector, specify min and max x limit: like c(-5, 5)

ylim numeric vector or character preset, default: "bidir.max" (Equal in both +/ -
direction, using max value + 0.5 of LFC(in 1d) / rfp(in 2d) column of dt). If you
want ggplot to decide limit, set to "auto". For numeric vector, specify min and
max x limit: like c(-5, 5)

xlab character, default: ifelse(two_dimensions, "RNA fold change (log2)", "Mean
counts (log2)"

ylab character, default: ifelse(two_dimensions, "RFP fold change (log2)", "Fold
change (log2)"

two_dimensions logical, default: ifelse("LFC" %in% colnames(dt), FALSE, TRUE) Is this two
dimensional, like: Ribo-seq vs RNA-seq. Alternative, FALSE: Then Log fold
change vs mean counts

color.values named character vector, default: c("No change" = "black", "Significant" =
"red", "Buffering" = "purple", "mRNA abundance" = "darkgreen", "Expression"
= "blue", "Forwarded" = "yellow", "Inverse" = "aquamarine", "Translation"
= "orange4")

Value

plotly object

Examples

Load experiment
df <- ORFik.template.experiment()

1 Dimensional analysis
dt <- DEG.analysis(df[df$libtype == "RNA",])
dt$Regulation[1] <- "Significant" # Fake sig level
DEG_plot(dt, draw_non_regulated = TRUE)

2 Dimensional analysis
dt_2d <- DTEG.analysis(df[df$libtype == "RFP",], df[df$libtype == "RNA",],
output.dir = NULL)
dt_2d$Regulation[4] <- "Translation" # Fake sig level
dt_2d$Regulation[5] <- "Buffering" # Fake sig level
DEG_plot(dt_2d, draw_non_regulated = TRUE)
distanceToFollowing
Distance to following range

Description
Distance to following range

Usage
distanceToFollowing(grl, grl2 = grl, ignore.strand = FALSE)

Arguments
- grl: a GRangesList
- grl2: a GRangesList, default 'grl'
- ignore.strand: logical, default FALSE

Value
numeric vector of distance

fetch_JS_seq
Fetch Javascript sequence

Description
Fetch Javascript sequence

Usage
fetch_JS_seq(
target_seq,
nplots,
distance = 50,
display_dist,
aa_letter_code = "one_letter"
)

Arguments
- target_seq: the target sequence
- nplots: number of plots
- distance: numeric, default 50.
- display_dist: display distance
- aa_letter_code: "one_letter"
geneTrackLayer

Value

a list of 2 lists, the nt list (per frame, total 3) and AA list (per frame, total 3)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fetch_summary</td>
<td>Fetch summary of uniprot id</td>
</tr>
<tr>
<td>geneTrackLayer</td>
<td>How many rows does the gene track need</td>
</tr>
</tbody>
</table>

Description

Fetch summary of uniprot id

Usage

```r
fetch_summary(qualifier, provider = "alphafold")
```

Arguments

- `qualifier`: uniprot ids
- `provider`: "pdbe", alternatives: "alphafold", "all"

Value

a character of json

Description

How many rows does the gene track need

Usage

```r
geneTrackLayer(grl)
```

Arguments

- `grl`: a GRangesList

Value

numeric, the track row index
getCoverageProfile

Get coverage profile

Description

Get coverage profile

Usage

`getCoverageProfile(grl, reads, kmers = 1, kmers_type = "mean")`

Arguments

- `grl`: a GRangesList
- `reads`: GRanges
- `kmers`: 1
- `kmers_type`: "mean"

Value

data.table of coverage

getIndexes

Get index

Description

Get index

Usage

`getIndexes(ref_granges)`

Arguments

- `ref_granges`: a GRanges object

Value

integer vector, indices
ggplotlyHover
Call ggplotly with hoveron defined

Description
Call ggplotly with hoveron defined

Usage

```r
ggplotlyHover(x, ...)
```

Arguments

- `x` : a a ggplot argument
- `...` : additional arguments for `ggplotly`

Value

a `ggplotly` object

matchMultiplePatterns
Match multiple patterns

Description
Match multiple patterns

Usage

```r
matchMultiplePatterns(patterns, Seq)
```

Arguments

- `patterns` : character
- `Seq` : a `DNASTingSet`

Value

integer vector, indices (named with pattern hit)
matchToGRanges

Match to GRanges

Description
Match to GRanges

Usage

\[
\text{matchToGRanges}(\text{matches}, \text{ref_granges})
\]

Arguments

- `matches`: integer vector, indices
- `ref_granges`: GRanges

Value
GRanges object

multiOmicsPlot_animate

Multi-omics animation using list input

Description
The animation will move with a play button, there is 1 transition per library given.

Usage

\[
\text{multiOmicsPlot_animate}(\text{display_range}, \text{annotation} = \text{display_range}, \text{reference_sequence}, \text{reads}, \text{viewMode} = \text{c("tx", "genomic")}[1], \text{custom_regions} = \text{NULL}, \text{leader_extension} = 0, \text{trailer_extension} = 0, \text{withFrames} = \text{NULL}, \text{frames_type} = \text{"lines"}, \text{colors} = \text{NULL}, \text{kmers} = \text{NULL}, \text{kmers_type} = \text{c("mean", \"sum\")}[1], \text{ylabels} = \text{NULL},
\]

```
lib_to_annotation_proportions = c(0.8, 0.2),
lib_proportions = NULL,
annotation_proportions = NULL,
width = NULL,
hheight = NULL,
plot_name = "default",
plot_title = NULL,
display_sequence = c("both", "nt", "aa", "none")[1],
seq_render_dist = 100,
aa_letter_code = c("one_letter", "three_letters")[1],
annotation_names = NULL,
start_codons = "ATG",
stop_codons = c("TAA", "TAG", "TGA"),
custom_motif = NULL,
BPPARAM = BiocParallel::SerialParam()
)

Arguments

display_range the whole region to visualize, a GRangesList or GRanges object
annotation the whole annotation which your target region is a subset, a GRangesList or GRanges object
reference_sequence the genome reference, a FaFile or FaFile convertible object
reads the NGS libraries, as a list of GRanges with or without score column for replicates.
viewMode character, default "tx" (transcript coordinates, first position is 1, exons are merged into a single sequence)
Alternative: "genomic" (genomic coordinates, first position is first position in display_range argument. Introns are displayed).
custom_regions a GRangesList or NULL, default: NULL. The alternative annotation, like self defined uORFs etc. The vertical annotation bars will have a different color.
leader_extension integer, default 0. (How much to extend view upstream)
trailer_extension integer, default 0. (How much to extend view downstream)
withFrames a logical vector, default NULL. Alternative: a length 1 or same length as list length of "reads" argument.
frames_type character, default "lines". Alternative:
- columns
- stacks
- area
colors character, default NULL (automatic colouring). If "withFrames" argument is TRUE, colors are set to to c("red", "green", "blue") for the 3 frames. Alternative:
Character vector of length 1 or length of "reads" list argument.
kmers numeric (integer), bin positions into kmers.
**kmers_type** character, function used for kmers sliding window. default: "mean", alternative: "sum"

**ylables** character, default NULL. Name of libraries in "reads" list argument.

**lib_to_annotation_proportions** numeric vector of length 2. relative sizes of profiles and annotation.

**lib_proportions** numeric vector of length equal to displayed libs. Relative sizes of profiles displayed

**annotation_proportions** numeric vector of length 3 (seq displayed), or 2 (seq not displayed). Relative sizes of annotation tracks.

**width** numeric, default NULL. Width of plot.

**height** numeric, default NULL. Height of plot.

**plot_name** character, default "default" (will create name from display_range name). Alternative: custom name for region.

**plot_title** character, default NULL. A title for plot.

**display_sequence** character/logical, default c("both", "nt", "aa", "none")[1]. If TRUE or "both", display nucleotide and aa sequence in plot.

**seq_render_dist** integer, default 100. The sequences will appear after zooming below this threshold.

**aa_letter_code** character, when set to "three_letters", three letter amino acid code is used. One letter by default.

**annotation_names** character, default NULL. Alternative naming for annotation.

**start_codons** character vector, default "ATG"

**stop_codons** character vector, default c("TAA", "TAG", "TGA")

**custom_motif** character vector, default NULL.

**BPPARAM** how many cores/threads to use? default: BiocParallel::SerialParam(). To see number of threads used for multicores, do BiocParallel::bpparam()$workers. You can also add a time remaining bar, for a more detailed pipeline.

**Value**

the plot object

**Examples**

```
library(RiboCrypt)
df <- ORFlk.template.experiment()[9:10,]
cds <- loadRegion(df, "cds")
mrna <- loadRegion(df, "mrna")
multiOmicsPlot_animate(mrna[1], annotation = cds[1], reference_sequence = findFa(df),
frames_type = "columns", leader_extension = 30, trailer_extension = 30,
reads = outputLibs(df, type = "pshifted", output.mode = "envirlist",
naming = "full", BPPARAM = BiocParallel::SerialParam()))
```
multiOmicsPlot_list  Multi-omics plot using list input

Description

Customizable html plots for visualizing genomic data.

Usage

multiOmicsPlot_list(
    display_range,
    annotation = display_range,
    reference_sequence,
    reads,
    viewMode = c("tx", "genomic")[1],
    custom_regions = NULL,
    leader_extension = 0,
    trailer_extension = 0,
    withFrames = NULL,
    frames_type = "lines",
    colors = NULL,
    kmers = NULL,
    kmers_type = c("mean", "sum")[1],
    ylabels = NULL,
    lib_to_annotation_proportions = c(0.8, 0.2),
    lib_proportions = NULL,
    annotation_proportions = NULL,
    width = NULL,
    height = NULL,
    plot_name = "default",
    plot_title = NULL,
    display_sequence = c("both", "nt", "aa", "none")[1],
    seq_render_dist = 100,
    aa_letter_code = c("one_letter", "three_letters")[1],
    annotation_names = NULL,
    start_codons = "ATG",
    stop_codons = c("TAA", "TAG", "TGA"),
    custom_motif = NULL,
    AA_code = Biostrings::GENETIC_CODE,
    BPPARAM = BiocParallel::SerialParam(),
    summary_track = FALSE,
    summary_track_type = frames_type,
    export.format = "svg"
)

Arguments

display_range  the whole region to visualize, a GRangesList or GRanges object
multiOmicsPlot_list

annotation the whole annotation which your target region is a subset, a GRangesList or GRanges object
reference_sequence the genome reference, a FaFile or FaFile convertible object
reads the NGS libraries, as a list of GRanges with or without score column for replicates.
viewMode character, default "tx" (transcript coordinates, first position is 1, exons are merged into a single sequence)
Alternative: "genomic" (genomic coordinates, first position is first position in display_range argument. Introns are displayed).
custom_regions a GRangesList or NULL, default: NULL. The alternative annotation, like self defined uORFs etc. The vertical annotation bars will have a different color.
leader_extension integer, default 0. (How much to extend view upstream)
trailer_extension integer, default 0. (How much to extend view downstream)
withFrames a logical vector, default NULL. Alternative: a length 1 or same length as list length of "reads" argument.
frames_type character, default "lines". Alternative:
  - columns
  - stacks
  - area
colors character, default NULL (automatic colouring). If "withFrames" argument is TRUE, colors are set to to c("red", "green", "blue") for the 3 frames. Alternative: Character vector of length 1 or length of "reads" list argument.
kmers numeric (integer), bin positions into kmers.
kmers_type character, function used for kmers sliding window. default: "mean", alternative: "sum"
ylabels character, default NULL. Name of libraries in "reads" list argument.
lib_to_annotation_proportions numeric vector of length 2. relative sizes of profiles and annotation.
lib_proportions numeric vector of length equal to displayed libs. Relative sizes of profiles displayed
annotation_proportions numeric vector of length 3 (seq displayed), or 2 (seq not displayed). Relative sizes of annotation tracks.
width numeric, default NULL. Width of plot.
height numeric, default NULL. Height of plot.
plot_name = character, default "default" (will create name from display_range name). Alternative: custom name for region.
plot_title character, default NULL. A title for plot.
multiOmicsPlot_list

display_sequence
character/logical, default c("both", "nt", "aa", "none")[1]. If TRUE or "both", display nucleotide and aa sequence in plot.

seq_render_dist
integer, default 100. The sequences will appear after zooming below this threshold.

aa_letter_code
character, when set to "three_letters", three letter amino acid code is used. One letter by default.

annotation_names
character, default NULL. Alternative naming for annotation.

start_codons
character vector, default "ATG"

stop_codons
character vector, default c("TAA", "TAG", "TGA")

custom_motif
character vector, default NULL.

AA_code
Genetic code for amino acid display. Default is SGC0 (standard: Vertebrate). See Biostrings::GENETIC_CODE_TABLE for options. To change to bacterial, do: Biostrings::getGeneticCode("11")

BPPARAM
how many cores/threads to use? default: BiocParallel::SerialParam(). To see number of threads used for multicores, do BiocParallel::bpparam()$workers. You can also add a time remaining bar, for a more detailed pipeline.

summary_track
logical, default FALSE. Display a top track, that is the sum of all tracks.

summary_track_type
character, default is same as 'frames_type' argument

export.format
character, default: "svg". alternative: "png". when you click the top right image button export, what should it export as?

Value
the plot object

Examples

library(RiboCrypt)
df <- ORFik.template.experiment()[9:10,]
cds <- loadRegion(df, "cds")
mrna <- loadRegion(df, "mrna")
multiOmicsPlot_list(mrna[1], annotation = cds[1], reference_sequence = findFa(df), frames_type = "columns", leader_extension = 30, trailer_extension = 30, reads = outputLibs(df, type = "pshifted", output.mode = "envirlist", naming = "full", BPPARAM = BiocParallel::SerialParam())
**multiOmicsPlot_ORFikExp**

**Multi-omics plot using ORFik experiment input**

**Description**

Customizable html plots for visualizing genomic data.

**Usage**

```r
multiOmicsPlot_ORFikExp(
 display_range,
 df,
 annotation = "cds",
 reference_sequence = findFa(df),
 reads = outputLibs(df, type = "pshifted", output.mode = "envirlist", naming = "full",
 BPPARAM = BiocParallel::SerialParam()),
 viewMode = c("tx", "genomic")[1],
 custom_regions = NULL,
 leader_extension = 0,
 trailer_extension = 0,
 withFrames = libraryTypes(df, uniqueTypes = FALSE) %in% c("RFP", "RPF", "LSU"),
 frames_type = "lines",
 colors = NULL,
 kmers = NULL,
 kmers_type = c("mean", "sum")[1],
 ylabels = bamVarName(df),
 lib_to_annotation_proportions = c(0.8, 0.2),
 lib_proportions = NULL,
 annotation_proportions = NULL,
 width = NULL,
 height = NULL,
 plot_name = "default",
 plot_title = NULL,
 display_sequence = c("both", "nt", "aa", "none")[1],
 seq_render_dist = 100,
 aa_letter_code = c("one_letter", "three_letters")[1],
 annotation_names = NULL,
 start_codons = "ATG",
 stop_codons = c("TAA", "TAG", "TGA"),
 custom_motif = NULL,
 BPPARAM = BiocParallel::SerialParam(),
 input_id = ",
 summary_track = FALSE,
 summary_track_type = frames_type,
 export.format = "svg"
)
```
Arguments

display_range  the whole region to visualize, a GRangesList or GRanges object

df  an ORFik experiment or a list containing ORFik experiments. Usually a list when you have split Ribo-seq and RNA-seq etc.

annotation  the whole annotation which your target region is a subset, a GRangesList or GRanges object

reference_sequence  the genome reference, default ORFik::findFa(df)

reads  the NGS libraries, as a list of GRanges with or without 'score' column for replicates. Can also be a covRle object of precomputed coverage. Default: outputLibs(df, type = "pshifted", output.mode = "envirlist", naming = "full", BPPARAM = BiocParallel::SerialParam())

viewMode  character, default "tx" (transcript coordinates, first position is 1, exons are merged into a single sequence) Alternative: "genomic" (genomic coordinates, first position is first position in display_range argument. Introns are displayed).

custom_regions  a GRangesList or NULL, default: NULL. The alternative annotation, like self defined uORFs etc. The vertical annotation bars will have a different color.

leader_extension  integer, default 0. (How much to extend view upstream)

trailer_extension  integer, default 0. (How much to extend view downstream)

withFrames  a logical vector, default libraryTypes(df, uniqueTypes = FALSE) %in% c("RFP", "RPF", "LSU") Alternative: a length 1 or same length as list length of "reads" argument.

frames_type  character, default "lines". Alternative:
  - columns
  - stacks
  - area

colors  character, default NULL (automatic colouring). If "withFrames" argument is TRUE, colors are set to to c("red", "green", "blue") for the 3 frames. Alternative: Character vector of length 1 or length of "reads" list argument.

kmers  numeric (integer), bin positions into kmers.

kmers_type  character, function used for kmers sliding window. default: "mean", alternative: "sum"

ylabels  character, default bamVarName(df). Name of libraries in "reads" list argument.

lib_to_annotation_proportions  numeric vector of length 2. relative sizes of profiles and annotation.

lib_proportions  numeric vector of length equal to displayed libs. Relative sizes of profiles displayed

annotation_proportions  numeric vector of length 3 (seq displayed), or 2 (seq not displayed). Relative sizes of annotation tracks.
width numeric, default NULL. Width of plot.
height numeric, default NULL. Height of plot.
plot_name character, default "default" (will create name from display_range name).
plot_title character, default NULL. A title for plot.
display_sequence character/logical, default c("both", "nt", "aa", "none")[1]. If TRUE or "both", display nucleotide and aa sequence in plot.
seq_render_dist integer, default 100. The sequences will appear after zooming below this threshold.
aa_letter_code character, when set to "three_letters", three letter amino acid code is used. One letter by default.
annotation_names character, default NULL. Alternative naming for annotation.
start_codons character vector, default "ATG"
stop_codons character vector, default c("TAA", "TAG", "TGA")
custom_motif character vector, default NULL.
BPPARAM how many cores/threads to use? default: BiocParallel::SerialParam(). To see number of threads used for multicores, do BiocParallel::bpparam()$workers. You can also add a time remaining bar, for a more detailed pipeline.
input_id character path, default: ", id for shiny to display structures, should be ", for local users.
summary_track logical, default FALSE. Display a top track, that is the sum of all tracks.
summary_track_type character, default is same as 'frames_type' argument
export.format character, default: "svg". alternative: "png". when you click the top right image button export, what should it export as?

Value

the plot object

Examples

library(RiboCrypt)
df <- ORFik.template.experiment()[9,] #Use third library in experiment only
cds <- loadRegion(df, "cds")
multiOmicsPlot_ORFikExp(extendLeaders(extendTrailers(cds[1], 30), 30), df = df,
frames_type = "columns")
RiboCrypt_app

Description
Select box for organism

Usage
organism_input_select(genomes, ns)

Arguments
- genomes: name of genomes, returned from list.experiments()
- ns: the ID, for shiny session

Value
selectizeInput object

RiboCrypt_app
Create RiboCrypt app

Description
Create RiboCrypt app

Usage
RiboCrypt_app(
  validate.experiments = TRUE,
  options = list(launch.browser = ifelse(interactive(), TRUE, FALSE)),
  all_exp = list.experiments(validate = validate.experiments),
  browser_options = c(),
  init_tab_focus = "browser"
)

Arguments
- validate.experiments: logical, default TRUE, set to FALSE to allow starting the app with malformed experiments, be careful will crash if you try to load that experiment!
- options: list of arguments, default list("launch.browser" = ifelse(interactive(), TRUE, FALSE))
trimOverlaps

all_exp a data.table, default: list.experiments(validate = validate.experiments). Which experiments do you want to allow your app to see, default is all in your system config path.

browser_options

named character vector of browser specific arguments:
- default_experiment : Which experiment to select, default: first one
- default_gene : Which genes to select, default: first one
- default_libs : Which libraries to select: first one, else a single string, where libs are separated by "|", like "RFP_WT_r1|RFP_WT_r2".
- default_kmer : K-mer windowing size, default: 1
- default_frame_type : Ribo-seq line type, default: "lines"
- plot_on_start : Plot when starting, default: "FALSE"

init_tab_focus character, default "browser". Which tab to open on init.

Value

RiboCrypt shiny app

Examples

## Default run
# RiboCrypt_app()
## Plot on start
# RiboCrypt_app(browser_options = c(plot_on_start = "TRUE"))
## Init with an experiment and gene (you must of course have the experiment)

#RiboCrypt_app(validate.experiments = FALSE,
#browser_options = c(plot_on_start = "TRUE",
  # default_experiment = "human_all_merged_l50",
  # default_gene = "ATF4-ENSG00000128272")

trimOverlaps Trim overlaps

Description

Trim overlaps

Usage

trimOverlaps(overlaps, display_range)

Arguments

overlaps GRanges
display_range GRanges
Value

GRanges
Index

* internal
  * antisense, 2
  * createSeqPanelPattern, 3
  * geneTrackLayer, 6
  * getCoverageProfile, 7
  * getIndexes, 7
  * ggplotlyHover, 8
  * matchMultiplePatterns, 8
  * matchToGRanges, 9
  * trimOverlaps, 19

antisense, 2
createSeqPanelPattern, 3

DEG_plot, 3
distanceToFollowing, 5

experiment, 16

FaFile, 10, 13
fetch_JS_seq, 5
fetch_summary, 6
geneTrackLayer, 6
getCoverageProfile, 7
getIndexes, 7
ggplotlyHover, 8
GRanges, 10, 12, 13, 16
GRangesList, 10, 12, 13, 16

matchMultiplePatterns, 8
matchToGRanges, 9
multiOomicsPlot_animate, 9
multiOomicsPlot_list, 12
multiOomicsPlot_ORFikExp, 15

organism_input_select, 18
RiboCrypt_app, 18
trimOverlaps, 19