Package ‘RiboCrypt’

March 28, 2024

Type Package

Title Interactive visualization in genomics

Version 1.8.0

License MIT + file LICENSE

Description R Package for interactive visualization and browsing NGS data.
 It contains a browser for both transcript and genomic coordinate view.
 In addition a QC and general metaplots are included, among others differential translation plots
 and gene expression plots. The package is still under development.

biocViews Software, Sequencing, RiboSeq, RNASeq,

Encoding UTF-8

LazyData true

BugReports https://github.com/m-swirski/RiboCrypt/issues

URL https://github.com/m-swirski/RiboCrypt

Depends R (>= 3.6.0), ORFik (>= 1.13.12)

Imports bslib, BiocGenerics, BiocParallel, Biostings, data.table,
 dplyr, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2,
 htmlwidgets, httr, IRanges, jsonlite, knitr, markdown,
 NGLVieweR, plotly, rlang, RCurve, shiny, shinyhelpers,
 shinyhelper, shinyiq, stringr

Suggests testthat, rmarkdown, BiocStyle, BSgenome,
 BSgenome.Hsapiens.UCSC.hg19

RoxygenNote 7.2.3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/RiboCrypt

git_branch RELEASE_3_18

git_last_commit f2d4217

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-27
R topics documented:

antisense ... 2
createSeqPanelPattern ... 3
DEG_plot .. 3
distanceToFollowing ... 5
fetch_JS_seq ... 5
fetch_summary ... 6
geneTrackLayer ... 6
getCoverageProfile .. 7
getIndexes ... 7
ggplotlyHover ... 8
matchMultiplePatterns ... 8
matchToGRanges .. 9
multiOomicsPlot_animate ... 9
multiOomicsPlot_list .. 12
multiOomicsPlot_ORFikExp 15
organism_input_select .. 18
RiboCrypt_app ... 18
trimOverlaps .. 19

antisense

Description

Get antisense

Usage

antisense(grl)

Value

a GRangesList
createSeqPanelPattern
Create sequence panel for RiboCrypt

Description
Create sequence panel for RiboCrypt

Usage
createSeqPanelPattern(
 sequence,
 start_codons = "ATG",
 stop_codons = c("TAA", "TAG", "TGA"),
 frame = 1,
 custom_motif = NULL
)

Arguments
start_codons character vector, default "ATG"
stop_codons character vector, default c("TAA", "TAG", "TGA")
custom_motif character vector, default NULL.

Value
a ggplot object

DEG_plot
Differential expression plots (1D or 2D)

Description
Gives you interactive 1D or 2D DE plots

Usage
DEG_plot(
 dt,
 draw_non_regulated = FALSE,
 xlim = ifelse(two_dimensions, "bidir.max", "auto"),
 ylim = "bidir.max",
 xlab = ifelse(two_dimensions, "RNA fold change (log2)", "Mean counts (log2)")",
 ylab = ifelse(two_dimensions, "RFP fold change (log2)", "Fold change (log2)")",
 two_dimensions = ifelse("LFC" %in% colnames(dt), FALSE, TRUE),
 color.values = c("No change" = "black", Significant = "red", Buffering = "purple",
```
DEG_plot

mRNA abundance = "darkgreen", Expression = "blue", Forwarded = "yellow", Inverse = "aquamarine", Translation = "orange4")

Arguments

dt a data.table with results from a differential expression run. Normally from: ORFik::DTEG.analysis(df1, df2)
draw_non_regulated logical, default FALSE. Should non-regulated rows be included in the plot? Will make the plot faster to render if skipped (FALSE)
xlim numeric vector or character preset, default: ifelse(two_dimensions, "bidir.max", "auto") (Equal in both +/- direction, using max value + 0.5 of meanCounts(in 1d) / rna(in 2d) column of dt). If you want ggplot to decide limit, set to "auto". For numeric vector, specify min and max x limit: like c(-5, 5)
ylim numeric vector or character preset, default: "bidir.max" (Equal in both +/- direction, using max value + 0.5 of LFC(in 1d) / rfp(in 2d) column of dt). If you want ggplot to decide limit, set to "auto". For numeric vector, specify min and max x limit: like c(-5, 5)
xlab character, default: ifelse(two_dimensions, "RNA fold change (log2)", "Mean counts (log2)"

Value

plotly object

Examples

# Load experiment
df <- ORFik.template.experiment()
# 1 Dimensional analysis
dt <- DEG.analysis(df[df$libtype == "RNA",])
dt$Regulation[1] <- "Significant" # Fake sig level
DEG_plot(dt, draw_non_regulated = TRUE)
# 2 Dimensional analysis
dt_2d <- DTEG.analysis(df[df$libtype == "RFP",], df[df$libtype == "RNA",], output.dir = NULL)
dt_2d$Regulation[4] <- "Translation" # Fake sig level
dt_2d$Regulation[5] <- "Buffering" # Fake sig level
DEG_plot(dt_2d, draw_non_regulated = TRUE)
**distanceToFollowing**  
*Distance to following range*

**Description**
Distance to following range

**Usage**
distanceToFollowing(grl, grl2 = grl, ignore.strand = FALSE)

**Arguments**
grl a GRangesList  
grl2 a GRangesList, default 'grl'  
ignore.strand logical, default FALSE  

**Value**
numeric vector of distance

**fetch_JS_seq**  
*Fetch Javascript sequence*

**Description**
Fetch Javascript sequence

**Usage**
fetch_JS_seq(  
target_seq,  
nplots,  
distance = 50,  
display_dist,  
aa_letter_code = "one_letter"  
)

**Arguments**
target_seq the target sequence  
nplots number of plots  
distance numeric, default 50.  
display_dist display distance  
aa_letter_code "one_letter"
Value

a list of 2 lists, the nt list (per frame, total 3) and AA list (per frame, total 3)

fetch_summary

Fetch summary of uniprot id

Description
Fetch summary of uniprot id

Usage

fetch_summary(qualifier, provider = "alphafold")

Arguments

  qualifier  uniprot ids
  provider   "pdbe", alternatives: "alphafold", "all"

Value

a character of json

geneTrackLayer

How many rows does the gene track need

Description
How many rows does the gene track need

Usage

geneTrackLayer(gr1)

Arguments

  gr1  a GRangesList

Value

numeric, the track row index
### getCoverageProfile

**Get coverage profile**

**Description**
Get coverage profile

**Usage**

```r
getCoverageProfile(grl, reads, kmers = 1, kmers_type = "mean")
```

**Arguments**

- `grl`: a GRangesList
- `reads`: GRanges
- `kmers`: 1
- `kmers_type`: "mean"

**Value**

data.table of coverage

### getIndexes

**Get index**

**Description**
Get index

**Usage**

```r
getIndexes(ref_granges)
```

**Arguments**

- `ref_granges`: a GRanges object

**Value**

integer vector, indices
**ggplotlyHover**  
*Call ggplotly with hoveron defined*

**Description**  
Call ggplotly with hoveron defined

**Usage**  

```r  
ggplotlyHover(x, ...)
```

**Arguments**  

- `x`  
a ggplot argument
- `...`  
additional arguments for ggplotly

**Value**  
a ggplotly object

---

**matchMultiplePatterns**  
*Match multiple patterns*

**Description**  
Match multiple patterns

**Usage**  

```r  
matchMultiplePatterns(patterns, Seq)
```

**Arguments**  

- `patterns`  
character
- `Seq`  
a DNAStringSet

**Value**  
integer vector, indices (named with pattern hit)
**matchToGRanges**

**Match to GRanges**

**Description**
Match to GRanges

**Usage**

```r
matchToGRanges(matches, ref_granges)
```

**Arguments**

- `matches`: integer vector, indices
- `ref_granges`: GRanges

**Value**

GRanges object

---

**multiOmicsPlot_animate**

*Multi-omics animation using list input*

**Description**

The animation will move with a play button, there is 1 transition per library given.

**Usage**

```r
multiOmicsPlot_animate(
 display_range,
 annotation = display_range,
 reference_sequence,
 reads,
 viewMode = c("tx", "genomic")[1],
 custom_regions = NULL,
 leader_extension = 0,
 trailer_extension = 0,
 withFrames = NULL,
 frames_type = "lines",
 colors = NULL,
 kmers = NULL,
 kmers_type = c("mean", "sum")[1],
 ylabels = NULL,
)```
lib_to_annotation_proportions = c(0.8, 0.2),
lib_proportions = NULL,
annotation_proportions = NULL,
width = NULL,
height = NULL,
plot_name = "default",
plot_title = NULL,
display_sequence = c("both", "nt", "aa", "none")[1],
seq_render_dist = 100,
aa_letter_code = c("one_letter", "three_letters")[1],
annotation_names = NULL,
start_codons = "ATG",
stop_codons = c("TAA", "TAG", "TGA"),
custom_motif = NULL,
BPPARAM = BiocParallel::SerialParam()
)

Arguments

display_range the whole region to visualize, a GRangesList or GRanges object
annotation the whole annotation which your target region is a subset, a GRangesList or GRanges object
reference_sequence the genome reference, a FaFile or FaFile convertible object
reads the NGS libraries, as a list of GRanges with or without score column for replicates.
viewMode character, default "tx" (transcript coordinates, first position is 1, exons are merged into a single sequence)
Alternative: "genomic" (genomic coordinates, first position is first position in display_range argument. Introns are displayed).
custom_regions a GRangesList or NULL, default: NULL. The alternative annotation, like self defined uORFs etc. The vertical annotation bars will have a different color.
leader_extension integer, default 0. (How much to extend view upstream)
trailer_extension integer, default 0. (How much to extend view downstream)
withFrames a logical vector, default NULL. Alternative: a length 1 or same length as list length of "reads" argument.
frames_type character, default "lines". Alternative:
- columns
- stacks
- area
colors character, default NULL (automatic colouring). If "withFrames" argument is TRUE, colors are set to to c("red", "green", "blue") for the 3 frames. Alternative: Character vector of length 1 or length of "reads" list argument.
kmers numeric (integer), bin positions into kmers.
kmers_type character, function used for kmers sliding window. default: "mean", alternative: "sum"

ylables character, default NULL. Name of libraries in "reads" list argument.

lib_to_annotation_proportions numeric vector of length 2. relative sizes of profiles and annotation.

lib_proportions numeric vector of length equal to displayed libs. Relative sizes of profiles displayed

annotation_proportions numeric vector of length 3 (seq displayed), or 2 (seq not displayed). Relative sizes of annotation tracks.

width numeric, default NULL. Width of plot.

height numeric, default NULL. Height of plot.

plot_name character, default "default" (will create name from display_range name). Alternative: custom name for region.

plot_title character, default NULL. A title for plot.

display_sequence character/logical, default c("both", "nt", "aa", "none")[1]. If TRUE or "both", display nucleotide and aa sequence in plot.

seq_render_dist integer, default 100. The sequences will appear after zooming below this threshold.

aa_letter_code character, when set to "three_letters", three letter amino acid code is used. One letter by default.

annotation_names character, default NULL. Alternative naming for annotation.

start_codons character vector, default "ATG"

stop_codons character vector, default c("TAA", "TAG", "TGA")

custom_motif character vector, default NULL.

BPPARAM how many cores/threads to use? default: BiocParallel::SerialParam(). To see number of threads used for multicores, do BiocParallel::bpparam()$workers. You can also add a time remaining bar, for a more detailed pipeline.

Value

the plot object

Examples

library(RiboCrypt)
df <- ORFik.template.experiment()[9:10,]
cds <- loadRegion(df, "cds")
mrna <- loadRegion(df, "mrna")
multiOomicsPlot_animate(mrna[1], annotation = cds[1], reference_sequence = findFa(df),
frames_type = "columns", leader_extension = 30, trailer_extension = 30,
reads = outputLibs(df, type = "pshifted", output.mode = "envirlist",
naming = "full", BPPARAM = BiocParallel::SerialParam())

multiOmicsPlot_list Multi-omics plot using list input

Description
Customizable html plots for visualizing genomic data.

Usage

```r
multiOmicsPlot_list(
  display_range,
  annotation = display_range,
  reference_sequence,
  reads,
  viewMode = c("tx", "genomic")[1],
  custom_regions = NULL,
  leader_extension = 0,
  trailer_extension = 0,
  withFrames = NULL,
  frames_type = "lines",
  colors = NULL,
  kmers = NULL,
  kmers_type = c("mean", "sum")[1],
  ylabels = NULL,
  lib_to_annotation_proportions = c(0.8, 0.2),
  lib_proportions = NULL,
  annotation_proportions = NULL,
  width = NULL,
  height = NULL,
  plot_name = "default",
  plot_title = NULL,
  display_sequence = c("both", "nt", "aa", "none")[1],
  seq_render_dist = 100,
  aa_letter_code = c("one_letter", "three_letters")[1],
  annotation_names = NULL,
  start_codons = "ATG",
  stop_codons = c("TAA", "TAG", "TGA"),
  custom_motif = NULL,
  AA_code = Biostrings::GENETIC_CODE,
  BPPARAM = BiocParallel::SerialParam(),
  summary_track = FALSE,
  summary_track_type = frames_type,
  export.format = "svg"
)
```

Arguments

display_range the whole region to visualize, a GRangesList or GRanges object
multiOmicsPlot_list

- **annotation**: the whole annotation which your target region is a subset, a `GRangesList` or `GRanges` object
- **reference_sequence**: the genome reference, a `FaFile` or `FaFile` convertible object
- **reads**: the NGS libraries, as a list of `GRanges` with or without score column for replicates.
- **viewMode**: character, default "tx" (transcript coordinates, first position is 1, exons are merged into a single sequence)
 - Alternative: "genomic" (genomic coordinates, first position is first position in `display_range` argument. Introns are displayed).
- **custom_regions**: a `GRangesList` or NULL, default: NULL. The alternative annotation, like self defined uORFs etc. The vertical annotation bars will have a different color.
- **leader_extension**: integer, default 0. (How much to extend view upstream)
- **trailer_extension**: integer, default 0. (How much to extend view downstream)
- **withFrames**: a logical vector, default NULL. Alternative: a length 1 or same length as list length of "reads" argument.
- **frames_type**: character, default "lines". Alternative:
 - columns
 - stacks
 - area
- **colors**: character, default NULL (automatic colouring). If "withFrames" argument is TRUE, colors are set to to c("red", "green", "blue") for the 3 frames. Alternative: Character vector of length 1 or length of "reads" list argument.
- **kmers**: numeric (integer), bin positions into kmers.
- **kmers_type**: character, function used for kmers sliding window. default: "mean", alternative: "sum"
- **ylabels**: character, default NULL. Name of libraries in "reads" list argument.
- **lib_to_annotation_proportions**: numeric vector of length 2. relative sizes of profiles and annotation.
- **lib_proportions**: numeric vector of length equal to displayed libs. Relative sizes of profiles displayed
- **annotation_proportions**: numeric vector of length 3 (seq displayed), or 2 (seq not displayed). Relative sizes of annotation tracks.
- **width**: numeric, default NULL. Width of plot.
- **height**: numeric, default NULL. Height of plot.
- **plot_name**: = character, default "default" (will create name from display_range name). Alternative: custom name for region.
- **plot_title**: character, default NULL. A title for plot.
multiOmicsPlot_list

- **display_sequence**: character/logical, default `c("both", "nt", "aa", "none")[1]`. If TRUE or "both", display nucleotide and aa sequence in plot.

- **seq_render_dist**: integer, default 100. The sequences will appear after zooming below this threshold.

- **aa_letter_code**: character, when set to "three_letters", three letter amino acid code is used. One letter by default.

- **annotation_names**: character, default NULL. Alternative naming for annotation.

- **start_codons**: character vector, default "ATG"

- **stop_codons**: character vector, default `c("TAA", "TAG", "TGA")`

- **custom_motif**: character vector, default NULL.

- **AA_code**: Genetic code for amino acid display. Default is SGC0 (standard: Vertebrate). See `Biostrings::GENETIC_CODE_TABLE` for options. To change to bacterial, do: `Biostrings::getGeneticCode("11")`

- **BPPARAM**: how many cores/threads to use? default: `BiocParallel::SerialParam()`. To see number of threads used for multicores, do `BiocParallel::bpparam()$workers`. You can also add a time remaining bar, for a more detailed pipeline.

- **summary_track**: logical, default FALSE. Display a top track, that is the sum of all tracks.

- **summary_track_type**: character, default is same as 'frames_type' argument

- **export.format**: character, default: "svg". alternative: "png". when you click the top right image button export, what should it export as?

Value

the plot object

Examples

```r
library(RiboCrypt)
df <- ORFik.template.experiment()[9:10,]
cds <- loadRegion(df, "cds")
mrna <- loadRegion(df, "mrna")
multiOmicsPlot_list(mrna[1], annotation = cds[1], reference_sequence = findFa(df),
                   frames_type = "columns", leader_extension = 30, trailer_extension = 30,
                   reads = outputLibs(df, type = "pshifted", output.mode = "envirlist",
                                      naming = "full", BPPARAM = BiocParallel::SerialParam())
```
multiOmicsPlot_ORFikExp

Multi-omics plot using ORFik experiment input

Description

Customizable html plots for visualizing genomic data.

Usage

multiOmicsPlot_ORFikExp(
 display_range,
 df,
 annotation = "cds",
 reference_sequence = findFa(df),
 reads = outputLibs(df, type = "pshifted", output.mode = "envirlist", naming = "full",
 BPPARAM = BiocParallel::SerialParam()),
 viewMode = c("tx", "genomic")[1],
 custom_regions = NULL,
 leader_extension = 0,
 trailer_extension = 0,
 withFrames = libraryTypes(df, uniqueTypes = FALSE) %in% c("RFP", "RPF", "LSU"),
 frames_type = "lines",
 colors = NULL,
 kmers = NULL,
 kmers_type = c("mean", "sum")[1],
 ylabels = bamVarName(df),
 lib_to_annotation_proportions = c(0.8, 0.2),
 lib_proportions = NULL,
 annotation_proportions = NULL,
 width = NULL,
 height = NULL,
 plot_name = "default",
 plot_title = NULL,
 display_sequence = c("both", "nt", "aa", "none")[1],
 seq_render_dist = 100,
 aa_letter_code = c("one_letter", "three_letters")[1],
 annotation_names = NULL,
 start_codons = "ATG",
 stop_codons = c("TAA", "TAG", "TGA"),
 custom_motif = NULL,
 BPPARAM = BiocParallel::SerialParam(),
 input_id = "",
 summary_track = FALSE,
 summary_track_type = frames_type,
 export.format = "svg"
)
Arguments

display_range the whole region to visualize, a GRangesList or GRanges object

df an ORFik experiment or a list containing ORFik experiments. Usually a list when you have split Ribo-seq and RNA-seq etc.

annotation the whole annotation which your target region is a subset, a GRangesList or GRanges object

reference_sequence the genome reference, default ORFik::findFa(df)

reads the NGS libraries, as a list of GRanges with or without 'score' column for replicates. Can also be a covRle object of precomputed coverage. Default: outputLibs(df, type = "pshifted", output.mode = "envirlist", naming = "full", BPPARAM = BiocParallel::SerialParam())

viewMode character, default "tx" (transcript coordinates, first position is 1, exons are merged into a single sequence) Alternative: "genomic" (genomic coordinates, first position is first position in display_range argument. Introns are displayed).

custom_regions a GRangesList or NULL, default: NULL. The alternative annotation, like self defined uORFs etc. The vertical annotation bars will have a different color.

leader_extension integer, default 0. (How much to extend view upstream)

trailer_extension integer, default 0. (How much to extend view downstream)

withFrames a logical vector, default libraryTypes(df, uniqueTypes = FALSE) %in% c("RFP", "RPF", "LSU") Alternative: a length 1 or same length as list length of "reads" argument.

frames_type character, default "lines". Alternative:
 - columns
 - stacks
 - area

colors character, default NULL (automatic colouring). If "withFrames" argument is TRUE, colors are set to to c("red", "green", "blue") for the 3 frames. Alternative: Character vector of length 1 or length of "reads" list argument.

kmers numeric (integer), bin positions into kmers.

kmers_type character, function used for kmers sliding window. default: "mean", alternative: "sum"

ylabels character, default bamVarName(df). Name of libraries in "reads" list argument.

lib_to_annotation_proportions numeric vector of length 2. relative sizes of profiles and annotation.

lib_proportions numeric vector of length equal to displayed libs. Relative sizes of profiles displayed

annotation_proportions numeric vector of length 3 (seq displayed), or 2 (seq not displayed). Relative sizes of annotation tracks.
width numeric, default NULL. Width of plot.
height numeric, default NULL. Height of plot.
plot_name character, default "default" (will create name from display_range name).
plot_title character, default NULL. A title for plot.
display_sequence character/logical, default c("both", "nt", "aa", "none")[1]. If TRUE or "both", display nucleotide and aa sequence in plot.
seq_render_dist integer, default 100. The sequences will appear after zooming below this threshold.
aa_letter_code character, when set to "three_letters", three letter amino acid code is used. One letter by default.
annotation_names character, default NULL. Alternative naming for annotation.
start_codons character vector, default "ATG"
stop_codons character vector, default c("TAA", "TAG", "TGA")
custom_motif character vector, default NULL.
BPPARAM how many cores/threads to use? default: BiocParallel::SerialParam(). To see number of threads used for multicores, do BiocParallel::bpparam()$workers. You can also add a time remaining bar, for a more detailed pipeline.
input_id character path, default: '', id for shiny to display structures, should be '' for local users.
summary_track logical, default FALSE. Display a top track, that is the sum of all tracks.
summary_track_type character, default is same as 'frames_type' argument
export.format character, default: "svg". alternative: "png". when you click the top right image button export, what should it export as?

Value
the plot object

Examples
library(RiboCrypt)
df <- ORFik.template.experiment()[9,] #Use third library in experiment only
cds <- loadRegion(df, "cds")
multiOmicsPlot_ORFikExp(extendLeaders(extendTrailers(cds[1], 30), 30), df = df,
 frames_type = "columns")
organism_input_select *Select box for organism*

Description

Select box for organism

Usage

organism_input_select(genomes, ns)

Arguments

- **genomes**
 name of genomes, returned from list.experiments()

- **ns**
 the ID, for shiny session

Value

selectizeInput object

RiboCrypt_app *Create RiboCrypt app*

Description

Create RiboCrypt app

Usage

RiboCrypt_app(
 validate.experiments = TRUE,
 options = list(launch.browser = ifelse(interactive(), TRUE, FALSE)),
 all_exp = list.experiments(validate = validate.experiments),
 browser_options = c(),
 init_tab_focus = "browser"
)

Arguments

- **validate.experiments**
 logical, default TRUE, set to FALSE to allow starting the app with malformed experiments, be careful will crash if you try to load that experiment!

- **options**
 list of arguments, default list("launch.browser" = ifelse(interactive(), TRUE, FALSE))
all_exp a data.table, default: list.experiments(validate = validate.experiments). Which experiments do you want to allow your app to see, default is all in your system config path.

browser_options named character vector of browser specific arguments:
- default_experiment : Which experiment to select, default: first one
- default_gene : Which genes to select, default: first one
- default_libr : Which libraries to select: first one, else a single string, where libs are separated by "|", like "RFP_WT_r1|RFP_WT_r2".
- default_kmer : K-mer windowing size, default: 1
- default_frame_type : Ribo-seq line type, default: "lines"
- plot_on_start : Plot when starting, default: "FALSE"

init_tab_focus character, default "browser". Which tab to open on init.

Value
RiboCrypt shiny app

Examples
Default run
RiboCrypt_app()
Plot on start
RiboCrypt_app(browser_options = c(plot_on_start = "TRUE"))
Init with an experiment and gene (you must of course have the experiment)

trimOverlaps

Trim overlaps

Description
Trim overlaps

Usage
trimOverlaps(overlaps, display_range)

Arguments
overlaps GRanges
display_range GRanges
Value
 GRanges
Index

* internal
 - antisense, 2
 - createSeqPanelPattern, 3
 - geneTrackLayer, 6
 - getCoverageProfile, 7
 - getIndexes, 7
 - ggplotlyHover, 8
 - matchMultiplePatterns, 8
 - matchToGRanges, 9
 - trimOverlaps, 19

antisense, 2
createSeqPanelPattern, 3

DEG_plot, 3
distanceToFollowing, 5

experiment, 16

FaFile, 10, 13
fetch_JS_seq, 5
fetch_summary, 6
geneTrackLayer, 6
getCoverageProfile, 7
getIndexes, 7
ggplotlyHover, 8
GRanges, 10, 12, 13, 16
GRangesList, 10, 12, 13, 16

matchMultiplePatterns, 8
matchToGRanges, 9
multiOmicsPlot_animate, 9
multiOmicsPlot_list, 12
multiOmicsPlot_ORFikExp, 15

organism_input_select, 18
RiboCrypt_app, 18
trimOverlaps, 19