Package ‘Rnits’

Type Package

Title R Normalization and Inference of Time Series data

Version 1.38.0

Date 2022-11-04

Author Dipen P. Sangurdekar <dipen.sangurdekar@gmail.com>

Maintainer Dipen P. Sangurdekar <dipen.sangurdekar@gmail.com>

Depends R (>= 3.6.0), Biobase, ggplot2, limma, methods

Imports affy, boot, impute, splines, graphics, qvalue, reshape2

Suggests BiocStyle, knitr, GEOquery, stringr

Description R/Bioconductor package for normalization, curve registration and inference in time course gene expression data.

biocViews GeneExpression, Microarray, TimeCourse, DifferentialExpression, Normalization

Lazyload yes

LazyData yes

License GPL-3

VignetteBuilder knitr

NeedsCompilation no

git_url https://git.bioconductor.org/packages/Rnits

git_branch RELEASE_3_19

git_last_commit bf18de0

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-26
Contents

build.Rnits ... 2
calculateGCV .. 4
fit .. 5
getCID ... 6
getFitModel .. 7
getLR .. 8
getNormTwoChannel 8
getPval .. 9
getStat .. 10
plotResults .. 10
rnits ... 11
Rnits-class ... 12
summarizeProbes 12
summary,Rnits-method 13
timeAlign .. 14
topData ... 15
yeastchemostat 16
$.. 16

Index 17

build.Rnits

Input the RGlist raw data, build a Rnits object and perform filtering and normalization

Description

This function takes high-dimensional expression data as a RGList, creates a Rnits object for subsequent filtering and normalization.

Usage

```r
build.Rnits(obj, probedata = NULL, phenodata = NULL, filter = NULL,
            normalize = NULL, normmethod = NULL, plot = FALSE, center = FALSE,
            background = NULL, threshold = 0.8, logscale = FALSE)
```

Arguments

- **obj**
 Raw expression data in RGlist, AffyBatch or simple data frame format

- **probedata**
 A data frame containing the probe names that should match the probe names in raw data (optional)

- **phenodata**
 A data frame with information about sample names. The rownames of the data frame must match column names of the expression values. If input data is data frame of log ratios, this is required.
filter An argument to perform background filtering of probes. If NULL, no filtering is done. If an integer (0-500), probes are flagged based on raw channel intensity. If a vector of two numbers is provided, the first will be used for red channel and the second for green channel. If 'background', probes whose intensities are lower than 2 standard deviations less than the mean of the background intensity for the channel are flagged.

normalize Character string specifying the normalization method for raw data. If Intensity, the reference channels for all arrays are used to construct an array-specific smoothing function which is then applied to normalize the sample channel. If Between, the normalization method normalizeBetweenArrays in the LIMMA package is used (use normmethod to further specify normalization methods. See packaged LIMMA for details.). If Within, the normalization method normalizeWithinArrays in the LIMMA package is used.
	normmethod Normalization method for input data. Default NULL. Can be one of 'quantile', 'vsn', 'Between'.

background Only for AffyBatch data. If TRUE, background filtering will be done on Affy data.

center If TRUE, the log-ratio data will be mean centered to 0 in the column space.

plot If TRUE, boxplots of normalized channel intensities and log-ratios are drawn.

threshold Default 0.8. Fraction of samples with missing data for individual probes to be filtered out.

logscale Default FALSE. Is the data in logscale? If FALSE, log2 transformation is done on the data.

Details
See the Limma User's Guide for more details on read.maimages, normalizeBetweenArrays, normalizeWithinArrays and RGList. For importing microarray raw data, use the 'Targets file' to specify experimental design. The target file has columns SlideNumber, FileName, Cy3 (description of Cy3 channel ref/control/treatment), Cy5 (description of Cy3 channel ref/control/treatment) and Time. Time values should be identical for control and treatment.

Value
An object of S4 class Rnits (which is derived from class exprSet), containing the probe data, design data, expression data, phenotypical data (i.e. Time).

See Also
ExpressionSet

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
calculateGCV
Calculate the optimal B-spline model using generalized cross-validation

Description

Calculate the optimal B-spline model using generalized cross-validation

Usage

```r
calculateGCV(object, topcomp = 5)
```

S4 method for signature 'Rnits'

```r
calculateGCV(object, topcomp = 5)
```

Arguments

- **object**
 Rnits object

- **topcomp**
 The number of top eigenvectors to be used for computation

Details

The optimal B-spline model is chosen as the largest model that minimizes the cross validation error of the top N eigenvectors of each time series data.

Value

A list object with fields ‘degree’, ‘df’ for each time series data set.

Examples

```r
# load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
opt_model <- calculateGCV(rnitsobj)
## Not run:
rnitsobj <- fit(rnitsobj, gene.level = TRUE, model = opt.model)
## End(Not run)
```
Description

Fit a model comparing time series data set `Rnits` objects

Usage

```r
fit(object, cluster = TRUE, B = 100, verbatim = FALSE, nclus = NULL,
    modelhistplot = FALSE, seed = 123, gene.level = TRUE,
    clusterallsamples = FALSE, model = NULL)
```

S4 method for signature 'Rnits'

```r
fit(object, cluster = TRUE, B = 100, verbatim = FALSE,
    nclus = NULL, modelhistplot = FALSE, seed = 123, gene.level = TRUE,
    clusterallsamples = FALSE, model = NULL)
```

Arguments

- **object**: `Rnits` object
- **cluster**: if TRUE, perform clustering to identify groups of genes/probes with similar expression profiles.
- **B**: Default 100. Number of bootstrap iterations for p-value calculation.
- **verbatim**: If FALSE, print out details of fitting models.
- **nclus**: Default NULL. Number of clusters to use for k-means clustering.
- **modelhistplot**: If TRUE, p-value histograms of multiple models are plotted.
- **seed**: Random seed for bootstrap iterations.
- **gene.level**: If TRUE, collapse probes to gene level information.
- **clusterallsamples**: If TRUE, Use all time series for clustering. By default, only the sample labeled 'control' is used or the lexically first sample is used.
- **model**: A data frame with fields 'degree' and 'df' indicating a specific B-spline model to be used. If provided, model selection is not run.

Details

The function compares multiple time-series expression data sets by i) (optional) summarizing probes into gene-level information ii) (optional) identifying a set of co-expressed genes by clustering iii) For each cluster (or for all genes /probes), fit a series of B-splines with varying curvature and degrees of freedom. Under the null hypothesis H_0, a single model is fit for all data sets, while under H_1, each data set is fit separately. P-values from the hypothesis test are then plotted and the least complex spline parameters that result in uniformly distributed null p-values are automatically chosen.
getCID

Value

An object of S4 class Rnits with fitted results data containing cluster information, ratio statistics and p-values.

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
Not run:
Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)
End(Not run)

getCID

Cluster IDs of probes/genes from fitted Rnits

Description

Retrieve cluster IDs of probes/genes from fitted Rnits object after fit has been run.

Usage

getCID(object)

S4 method for signature 'Rnits'
getCID(object)

Arguments

object Rnits

Details

If cluster = False during fitting, a vector of 1s will be returned.

Value

A vector of cluster IDs corresponding to gene/probe names

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
Not run:
Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)
getFitModel

Get cluster IDs from fitted model
cid <- getCID(rnitsobj)

End(Not run)

getFitModel
Extract fit data from Rnits object

Description

Retrieve model fit data from Rnits object after fit has been run.

Usage

getFitModel(object)

S4 method for signature 'Rnits'
getFitModel(object)

Arguments

- object
 Rnits

Details

Contains Ratio statistic, p-value and cluster ID data

Value

A data frame containing the model fit results for all genes

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)

rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')

Not run:

Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)

P-values, ratio statistics and cluster ID's can be retrieved for all genes together
fitdata <- getFitModel(rnitsobj)

End(Not run)
getLR

Get log-ratios

Description

Extract normalized log-ratios from *Rnits* object.

Usage

```
getLR(object, impute = FALSE)
```

S4 method for signature 'Rnits'
getLR(object, impute = FALSE)

Arguments

- **object**: *Rnits* object
- **impute**: If TRUE, perform K-NN imputation to fill missing values

Value

A matrix of normalized log-ratios.

Examples

```r
# load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
## Not run:
# Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)
# Get logratios
lr <- getLR(rnitsobj)
## End(Not run)
```

getNormTwoChannel

Get Normalized channel data for two channel arrays

Description

For two color data, extract normalized channel data from *Rnits* object.
Usage

getNormTwoChannel(object)

S4 method for signature 'Rnits'
getNormTwoChannel(object)

Arguments

object Rnits object

Value

A list containing R and G fields for normalized Red and Green channel data respectively.

description

Get p-values

Usage

getPval(object)

S4 method for signature 'Rnits'
getPval(object)

Arguments

object Rnits object

Value

An vector of p-values

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)

rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')

Not run:
Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)

Get pvalues from fitted model
pval <- getPval(rnitsobj)

End(Not run)
getStat

Retrieves ratio statistics

Description
Extract ratio statistics from fitted Rnits object

Usage
getStat(object)

S4 method for signature 'Rnits'
getStat(object)

Arguments

object
Rnits object

Value
An vector of ratio statistics

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
Not run:
Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)
Get ratio statistics from fitted model
stat <- getStat(rnitsobj)
End(Not run)

plotResults

Plot profiles of top genes/probes

Description
After fit has been applied on Rnits object, plot the profiles of N top ranking genes/probes.
Usage

plotResults(object, id = NULL, fdr = NULL, top = 48, pdf = FALSE,
 sort.by = "p-value", filename = "TopPlots.pdf", scale_y = NULL)

S4 method for signature 'Rnits'
plotResults(object, id = NULL, fdr = NULL, top = 48,
 pdf = FALSE, sort.by = "p-value", filename = "TopPlots.pdf",
 scale_y = NULL)

Arguments

 object Rnits object.
 id Names of specific genes or probes to be plotted. Overrides fdr and top argument.
 fdr FDR cut-off plotting top probes or genes. Overrides top argument.
 top Number of top genes or probes whose profile is to be plotted. Default 48.
 pdf Save plot as pdf? Default FALSE.
 sort.by Criteria for sorting top genes or probes. Default 'p-value'.
 scale_y If 'free', use free scales for plots. Default NULL.
 ... Optional arguments to plot

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
Not run:
Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)

Plot top results
plotResults(rnitsobj, top = 16)

End(Not run)
Rnits-class

Description
Class rnits for time series

Details
Some details

summarizeProbes
Summarize probe level data to gene level data

Description
The code utilizes the probe-gene mapping from features file to summarize probe-level log ratios to gene level ratios.

Usage
```r  
summarizeProbes(object)  
```

S4 method for signature 'Rnits'
summarizeProbes(object)

Arguments

object
Rnits object

Details
Tukey’s biweight is used to compute gene level summary

Value
An object of class Rnits with gene level log ratios, which can be retrieved by `getLR(object)`

Examples
```r  
# load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data  
data(yeastchemostat)  
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')  

# Summarize gene-level data  
rnitsobj <- summarizeProbes(rnitsobj)  
```
Description

Summarize top genes or probes from Rnits fit method

Usage

S4 method for signature 'Rnits'
summary(object, top = 48, fdr = NULL, plot = FALSE,
 sort.by = "p-value")

Arguments

object Rnits object on which fit has been applied
top Display results for top N genes/probes. Default 50
fdr Display results for genes/probes less than FDR (%) cutoff (if provided). Over-
rideres top argument
plot If TRUE, plot histogram of p-values
sort.by Sort top results by either p-value or FDR

Value

A table of top genes/profiles listing the ratio statistics, p-values, q-values and cluster information.

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
Not run:
Fit model using gene-level summarization
rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)

Get summary of top genes
summary(rnitsobj, FDR = 5)

End(Not run)
timeAlign

Curve registration of time series curves

Description
Align multiple time series to the average series

Usage
timeAlign(object, iterMax = 5, seed = 123, null.frac = 0.75,
anchor = NULL, rerun = FALSE, plot = FALSE)

S4 method for signature 'Rnits'
timeAlign(object, iterMax = 5, seed = 123,
null.frac = 0.75, anchor = NULL, rerun = FALSE, plot = FALSE)

Arguments

- **object**: rnits object
- **iterMax**: Maximum iterations to be performed
- **seed**: Random seed
- **null.frac**: Fraction of genes that are considered as null
- **anchor**: Sample to be considered as base for aligning time series. If not provided, the average is used
- **rerun**: If TRUE, re-align previously aligned data
- **plot**: If TRUE, plot results

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
rnitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')

Do curve-registration on data
rnitsobj <- timeAlign(rnitsobj)
topData

Data of top genes/probes

Description

Extract expression data for top genes/probes

Usage

topData(object, id = NULL, fdr = NULL, top = 16, sort.by = "p-value")

S4 method for signature 'Rnits'
topData(object, id = NULL, fdr = NULL, top = 16,
 sort.by = "p-value")

Arguments

object
 Rnits object on which fit has been applied
id
 Names of probes or genes
top
 Display results for top N genes/probes. Default 50
fdr
 Display results for genes/probes less than FDR cutoff (if provided). Overrides
top argument
sort.by
 Sort top results by either p-value or FDR

Value

A table of expression values of top genes/profiles

Examples

load pre-compiled expressionSet object for Ronen and Botstein yeast chemostat data
data(yeastchemostat)
nitsobj = build.Rnits(yeastchemostat, logscale = TRUE, normmethod = 'Between')
Not run:
Fit model using gene-level summarization
nitsobj <- fit(nitsobj, gene.level = TRUE, clusterallsamples = FALSE)

#Get data for top genes
td <- topData(nitsobj, FDR = 5)

End(Not run)
yeastchemostat

Description

(From author’s GEO submission) Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source

Usage

yeastchemostat

Format

An ExpressionSet object with containing 'Sample' and 'Time' columns and replicates removed.

Source

Description

replace slot of Rnits
Index

$, 16
$<-, Rnits-method ($), 16
build.Rnits, 2
calculateGCV, 4
calculateGCV, character, ANY-method (calculateGCV), 4
calculateGCV, Rnits-method (calculateGCV), 4
eexprSet, 3
fit, 5
fit, character, ANY-method (fit), 5
fit, Rnits-method (fit), 5
getCode, 6
getCode, character, ANY-method (getCID), 6
getCode, Rnits-method (getCID), 6
getFitModel, 7
getFitModel, character, ANY-method (getFitModel), 7
getFitModel, Rnits-method (getFitModel), 7
getLR, 8
getLR, character, ANY-method (getLR), 8
getLR, Rnits-method (getLR), 8
getNormTwoChannel, 8
getNormTwoChannel, character, ANY-method (getNormTwoChannel), 8
getNormTwoChannel, Rnits-method (getNormTwoChannel), 8
getPval, 9
getPval, character, ANY-method (getPval), 9
getPval, Rnits-method (getPval), 9
getStat, 10
getStat, character, ANY-method (getStat), 10
getStat, Rnits-method (getStat), 10
plotResults, 10
plotResults, character, ANY-method (plotResults), 10
plotResults, Rnits-method (plotResults), 10
Rnits, 2–13, 15
rnits, 11
Rnits-class, 12
rnits-package (rnits), 11
Rnits.getLR (getLR), 8
summarizeProbes, 12
summarizeProbes, character, ANY-method (summarizeProbes), 12
summarizeProbes, Rnits-method (summarizeProbes), 12
summary, Rnits-method, 13
timeAlign, 14
timeAlign, character, ANY-method (timeAlign), 14
timeAlign, Rnits-method (timeAlign), 14
topData, 15
topData, character, ANY-method (topData), 15
topData, Rnits-method (topData), 15
yeastchemostat, 16