Package ‘SIMLR’

May 30, 2024

Version 1.30.0
Date 2024-03-21
Title Single-cell Interpretation via Multi-kernel LeaRning (SIMLR)
Depends R (>= 4.1.0),
Imports parallel, Matrix, stats, methods, Rcpp, pracma, RcppAnnoy, RSpectra
Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph
Description Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical for the identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization.

Encoding UTF-8
License file LICENSE

URL https://github.com/BatzoglouLabSU/SIMLR

BugReports https://github.com/BatzoglouLabSU/SIMLR

biocViews ImmunoOncology, Clustering, GeneExpression, Sequencing, SingleCell

RoxygenNote 7.3.1

LinkingTo Rcpp

NeedsCompilation yes

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/SIMLR

git_branch RELEASE_3_19

git_last_commit db93ba4

git_last_commit_date 2024-04-30
BuettnerFlorian

test dataset for SIMLR

Description

example dataset to test SIMLR from the work by Buettner, Florian, et al.

Usage

data(BuettnerFlorian)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Description

perform the SIMLR clustering algorithm

Usage

```
SIMLR(
  X,
  c,
  no.dim = NA,
  k = 10,
  if.impute = FALSE,
  normalize = FALSE,
  cores.ratio = 1
)
```

Arguments

- **X**: an (m x n) data matrix of gene expression measurements of individual cells or an object of class SCESet
- **c**: number of clusters to be estimated over X
- **no.dim**: number of dimensions
- **k**: tuning parameter
- **if.impute**: should I transpose the input data?
- **normalize**: should I normalize the input data?
- **cores.ratio**: ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the cells based on SIMLR and their similarities

- list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S = similarities computed by SIMLR, F = results from network diffusion, ydata = data referring the the results by k-means, alphaK = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE, LF = parameters of the clustering

Examples

```r
data(BuettnerFlorian)
SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)
```
SIMLR_Estimate_Number_of_Clusters

SIMLR Estimate Number of Clusters

Description
estimate the number of clusters by means of two heuristics as discussed in the SIMLR paper

Usage
SIMLR_Estimate_Number_of_Clusters(X, NUMC = 2:5, cores.ratio = 1)

Arguments
- **X**: an (m x n) data matrix of gene expression measurements of individual cells
- **NUMC**: vector of number of clusters to be considered
- **cores.ratio**: ratio of the number of cores to be used when computing the multi-kernel

Value
a list of 2 elements: K1 and K2 with an estimation of the best clusters (the lower values the better) as discussed in the original paper of SIMLR

Examples
data(BuettnerFlorian)
SIMLR_Estimate_Number_of_Clusters(BuettnerFlorian$in_X,
NUMC = 2:5,
cores.ratio = 0)

SIMLR_Feature_Ranking

SIMLR Feature Ranking

Description
perform the SIMLR feature ranking algorithm. This takes as input the original input data and the corresponding similarity matrix computed by SIMLR

Usage
SIMLR_Feature_Ranking(A, X)

Arguments
- **A**: an (n x n) similarity matrix by SIMLR
- **X**: an (m x n) data matrix of gene expression measurements of individual cells
Value

a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

Examples

data(BuettnerFlorian)
SIMLR_Feature_Ranking(A = BuettnerFlorian$results$S, X = BuettnerFlorian$in_X)

SIMLR_Large_Scale

Description

perform the SIMLR clustering algorithm for large scale datasets

Usage

SIMLR_Large_Scale(X, c, k = 10, kk = 100, if.impute = FALSE, normalize = FALSE)

Arguments

X an (m x n) data matrix of gene expression measurements of individual cells or
and object of class SCESet
c number of clusters to be estimated over X
k tuning parameter
kk number of principal components to be assessed in the PCA
if.impute should I transpose the input data?
normalize should I normalize the input data?

Value

clusters the cells based on SIMLR Large Scale and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters:
y = results of k-means clusterings, S0 = similarities computed by SIMLR, F = results from the large
scale iterative procedure, ydata = data referring the the results by k-means, alphaK = clustering
coefficients, val = distances from the k-nearest neighbour search, ind = indeces from the k-nearest
neighbour search, execution.time = execution time of the present run

Examples

data(ZeiselAmit)
resized = ZeiselAmit$in_X[, 1:340]
SIMLR_Large_Scale(X = resized, c = ZeiselAmit$n_clust, k = 5, kk = 5)
Description
example dataset to test SIMLR large scale. This is a reduced version of the dataset from the work by Zeisel, Amit, et al.

Usage
data(ZeiselAmit)

Format
gene expression measurements of individual cells

Value
list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source
Index

BuettnerFlorian, 2
SIMLR, 3
SIMLR_Estimate_Number_of_Clusters, 4
SIMLR_Feature_Ranking, 4
SIMLR_Large_Scale, 5
ZeiselAmit, 6