Package ‘STdeconvolve’

May 30, 2024

Type Package

Title Reference-free Cell-Type Deconvolution of Multi-Cellular Spatially Resolved Transcriptomics Data

Version 1.8.0

URL https://jef.works/STdeconvolve/

BugReports https://github.com/JEFworks-Lab/STdeconvolve/issues

Description STdeconvolve as an unsupervised, reference-free approach to infer latent cell-type proportions and transcriptional profiles within multi-cellular spatially-resolved pixels from spatial transcriptomics (ST) datasets. STdeconvolve builds on latent Dirichlet allocation (LDA), a generative statistical model commonly used in natural language processing for discovering latent topics in collections of documents. In the context of natural language processing, given a count matrix of words in documents, LDA infers the distribution of words for each topic and the distribution of topics in each document. In the context of ST data, given a count matrix of gene expression in multi-cellular ST pixels, STdeconvolve applies LDA to infer the putative transcriptional profile for each cell-type and the proportional representation of each cell-type in each multi-cellular ST pixel.

biocViews Transcriptomics, Visualization, RNASeq, Bayesian, Spatial, Software, GeneExpression

License GPL-3

Encoding UTF-8

LazyData FALSE

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Imports topicmodels, BiocParallel, Matrix, methods, mgcv, ggplot2, scatterpie, viridis, slam, stats, clue, liger, reshape2, graphics, grDevices, utils

Depends R (>= 4.1)

Suggests knitr, BiocStyle, rmarkdown, testthat, rcmdcheck, gplots, gridExtra, hash, dplyr, parallel
VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/STdeconvolve

git_branch RELEASE_3_19

git_last_commit 80525cd

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Brendan Miller [aut, cre] (<https://orcid.org/0000-0002-9559-4045>), Jean Fan [aut] (<https://orcid.org/0000-0002-0212-5451>)

Maintainer Brendan Miller <bmill3r@gmail.com>

Contents

annotateCellTypesGSEA ... 2

cleanCounts .. 3

correlationPlot .. 4

fitLDA ... 5

getBetaTheta .. 6

getCorrMtx ... 7

getOverdispersedGenes .. 8

lsatPairs ... 10

mOB .. 11

optimalModel .. 11

perplexityPlot .. 12

preprocess ... 13

restrictCorpus .. 15

topGenes ... 16

vizAllTopics .. 17

vizGeneCounts ... 18

vizTopic ... 19

Index

annotateCellTypesGSEA Match deconvolved cell-types to ground truth cell-types based on transcriptional profiles

Description

Match deconvolved cell-types to ground truth cell-types by testing for enrichment of ground truth marker gene sets in the deconvolved transcriptional profiles. Uses liger::iterative.bulk.gsea.

Usage

annotateCellTypesGSEA(beta, gset, qval = 0.05)
cleanCounts

Arguments

beta
cell-type (rows) x gene (columns) matrix of deconvolved cell-type transcriptional profiles

gset
named list where each entry is a vector of marker genes for a given ground truth cell-type.

qval
adjusted p-value threshold (default: 0.05)

Value

A list that contains

- results: A named list that contains sorted matrices for each deconvolved cell-type. The matrix rows are the ground truth cell-types ordered by significance, edge-score, and enrichment score of their gene sets in the deconvolved transcriptional profile of a given deconvolved cell-type.
- predictions: a named vector where the names are the deconvolved cell-types and the values are the best matched ground truth cell-type that is also positively enriched.

Description

Filter a counts matrix based on gene (row) and cell (column) requirements.

Usage

cleanCounts(
 counts,
 min.lib.size = 1,
 max.lib.size = Inf,
 min.reads = 1,
 min.detected = 1,
 verbose = FALSE,
 plot = FALSE
)

Arguments

counts
A sparse read count matrix. The rows correspond to genes, columns correspond to individual cells

min.lib.size
Minimum number of genes detected in a cell. Cells with fewer genes will be removed (default: 1)

max.lib.size
Maximum number of genes detected in a cell. Cells with more genes will be removed (default: Inf)

min.reads
Minimum number of reads per gene. Genes with fewer reads will be removed (default: 1)
correlationPlot

min.detected Minimum number of cells a gene must be seen in. Genes not seen in a sufficient number of cells will be removed (default: 1)
verbose Verbosity (default: FALSE)
plot Whether to plot (default: FALSE)

Value

a filtered read count matrix

Examples

data(mOB)
counts <- cleanCounts(mOB$counts, min.lib.size = 100)

correlationPlot(mat)

Generate heatmap of correlations

Description

Visualize the correlations between topics stored in a matrix, typically one returned via getCorrMtx(). This function uses ggplot2::geom_tile.

Usage

correlationPlot(
 mat,
 colLabs = NA,
 rowLabs = NA,
 title = NA,
 annotation = FALSE
)

Arguments

mat matrix with correlation values from -1 to 1
colLabs x-axis label for plot. These are the columns of the matrix, or specifically m2 from getCorrMtx. (default: NULL)
rowLabs y-axis label for plot. These are the rows of the matrix, or specifically m1 from getCorrMtx. (default: NULL)
title title of the plot. (default: NULL)
annotation Boolean to show the correlation values in the squares of the heatmap (default: FALSE)

Value

a heatmap of the values in the input mat
Examples

data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = 3)
optLDA <- optimalModel(models = ldas, opt = 3)
results <- getBetaTheta(optLDA, perc.filt = 0.05, betaScale = 1000)
decnProp <- results$theta
corMtx <- getCorrMtx(m1 = as.matrix(decnProp), m2 = as.matrix(decnProp), type = "t")
rownames(corMtx) <- paste0("X", seq(nrow(corMtx)))
colnames(corMtx) <- paste0("X", seq(ncol(corMtx)))
correlationPlot(mat = corMtx, title = "Proportional correlation", annotation = TRUE) +
 ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0))

fitLDA | Find the optimal number of cell-types K for the LDA model

Description

The input for topicmodels::LDA needs to be a slam::as.simple_triplet_matrix (docs x words). Access a given model in the returned list via: lda$models$k. The models are objects from the R package "topicmodels". The LDA models have slots with additional information.

Usage

fitLDA(
counts,
Ks = seq(2, 10, by = 2),
seed = 0,
perc.rare.thresh = 0.05,
ncores = 1,
plot = TRUE,
verbose = TRUE
)

Arguments

counts | Gene expression counts with pixels as rows and genes as columns
Ks | vector of K parameters, or number of cell-types, to fit models with
seed | Random seed
perc.rare.thresh | the number of deconvolved cell-types with mean pixel proportion below this fraction used to assess performance of fitted models for each K. Recorded for each K. (default: 0.05)
Value

A list that contains

- **models**: each fitted LDA model for a given K
- **kneedOptK**: the optimal K based on Kneed algorithm
- **minOptK**: the optimal K based on minimum
- **ctPropOptK**: Suggested upper bound on K. K in which number of returned cell-types with mean proportion < perc.rare.thresh starts to increase steadily.
- **numRare**: number of cell-types with mean pixel proportion < perc.rare.thresh for each K
- **perplexities**: perplexity scores for each model
- **fitCorpus**: the corpus that was used to fit each model
- **testCorpus**: the corpus used to compute model perplexity.

Examples

data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = 3, ncores=7)

getBetaTheta

Pull out cell-type proportions across pixels (theta) and cell-type gene probabilities (beta) matrices from fitted LDA models from fitLDA

Description

Pull out cell-type proportions across pixels (theta) and cell-type gene probabilities (beta) matrices from fitted LDA models from fitLDA

Usage

```r
getBetaTheta(
  lda,
  corpus = NULL,
  perc.filt = 0.05,
  betaScale = 1,
  verbose = TRUE
)
```
Arguments

lda: an LDA model from "topicmodels" R package. From list of models returned by fitLDA

corpus: If corpus is NULL, then it will use the original corpus that the model was fitted to. Otherwise, compute deconvolved topics from this new corpus. Needs to be pixels x genes and nonnegative integer counts. Each row needs at least 1 nonzero entry (default: NULL)

perc.filt: proportion threshold to remove cell-types in pixels (default: 0.05)

betaScale: factor to scale the predicted cell-type gene expression profiles (default: 1)

verbose: Boolean for verbosity (default: TRUE)

Value

A list that contains

- beta: cell-type (rows) by gene (columns) distribution matrix. Each row is a probability distribution of a cell-type expressing each gene in the corpus
- theta: pixel (rows) by cell-types (columns) distribution matrix. Each row is the cell-type composition for a given pixel

Examples

data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = 3, ncores=7)
optLDA <- optimalModel(models = ldas, opt = 3)
results <- getBetaTheta(optLDA, perc.filt = 0.05, betaScale = 1000)
head(results$theta)
head(results$beta)

getCorrMtx

Find Pearson’s correlations between topics (cell-types) with respect to their proportions across documents (pixels), i.e. thetas, or gene probabilities, i.e. betas.

Description

Find Pearson’s correlations between topics (cell-types) with respect to their proportions across documents (pixels), i.e. thetas, or gene probabilities, i.e. betas.

Usage

getCorrMtx(m1, m2, type = c("t", "b"), thresh = NULL, verbose = TRUE)
getOverdispersedGenes

Normalize gene expression variance relative to transcriptome-wide expectations (Modified from SCDE/PAGODA2 code)

Description

Normalizes gene expression magnitudes to with respect to its ratio to the transcriptome-wide expectation as determined by local regression on expression magnitude

Usage

getOverdispersedGenes(
 counts,
 gam.k = 5,
 alpha = 0.05,
 plot = FALSE,
 use.unadjusted.pvals = FALSE,
getOverdispersedGenes

do.par = TRUE,
max.adjusted.variance = 1000,
min.adjusted.variance = 0.001,
verbose = TRUE,
details = FALSE
)

Arguments

counts Read count matrix. The rows correspond to genes, columns correspond to individual cells
gam.k Generalized additive model parameter; the dimension of the basis used to represent the smooth term (default: 5)
alpha Significance threshold (default: 0.05)
plot Whether to plot the results (default: FALSE)
use.unadjusted.pvals If true, will apply BH correction (default: FALSE)
do.par Whether to adjust par for plotting if plotting (default: TRUE)
max.adjusted.variance Ceiling on maximum variance after normalization to prevent infinites (default: 1e3)
min.adjusted.variance Floor on minimum variance after normalization (default: 1e-3)
verbose Verbosity (default: TRUE)
details If true, will return data frame of normalization parameters. Else will return list of overdispersed genes. (default: FALSE)

Value

If details is true, will return data frame of normalization parameters. Else will return list of overdispersed genes.

Examples

data(mOB)
od <- getOverdispersedGenes(counts = mOB$counts, gam.k = 5, alpha = 0.05, details = FALSE)
head(od)

od <- getOverdispersedGenes(counts = mOB$counts, gam.k = 5, alpha = 0.05, details = TRUE)
head(od$mat)
head(od$ods)
head(od$df)
lsatPairs
Function to get Hungarian sort pairs via clue::lsat

Description

Finds best matches between cell-types that correlate between beta or theta matrices that have been compared via `getCorrMtx()`. Each row is paired with a column in the output matrix from `getCorrMtx()`. If there are less rows than columns, then some columns will not be matched and not part of the output.

Usage

```r
lsatPairs(mtx)
```

Arguments

- `mtx`
 output correlation matrix from `getCorrMtx()`. Must not have more rows than columns

Value

A list that contains

- `pairs`: output of `clue::solve_LSAP`. A vectorized object where for each position the first element is a row and the second is the paired column.
- `rowix`: the indices of the rows. Essentially `seq_along(pairing)`
- `colix`: the indices of each column paired to each row

Examples

```r
data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = 3)
optLDA <- optimalModel(models = ldas, opt = 3)
results <- getBetaTheta(optLDA, perc.filt = 0.05, betaScale = 1000)
deconProp <- results$theta
corMtx <- getCorrMtx(m1 = as.matrix(deconProp), m2 = as.matrix(deconProp), type = "t")
pairs <- lsatPairs(corMtx)
pairs
```
mOB

Spatial transcriptomics of the mouse olfactory bulb

Description

Spatial transcriptomics of the mouse olfactory bulb

Usage

```r
data(mOB)
```

Format

List where 'counts' is a sparse matrix with columns as voxels and rows as genes and 'pos' is a data frame of x and y position values per voxel

Source

https://science.sciencemag.org/content/353/6294/78

optimalModel

Get the optimal LDA model

Description

Get the optimal LDA model

Usage

```r
optimalModel(models, opt)
```

Arguments

- `models`: list returned from `fitLDA`
- `opt`: either "kneed" (kOpt1) or "min" (kOpt2), or designate a specific K. "kneed" = K vs perplexity inflection point. "min" = K corresponding to minimum perplexity "proportion" = K vs number of cell-type with mean proportion < 5% inflection point

Value

optimal LDA model fitted to the K based on opt parameter
Examples

```r
data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = seq(2,4), ncores=7)
optLDA <- optimalModel(models = ldas, opt = "min")
```

perplexityPlot

Plot the perplexity and rare cell-types versus fitted Ks

Description

the same plot returned by `fitLDA()` but now callable as a separate function.

Usage

```r
perplexityPlot(models, corpus = NULL, perc.rare.thresh = 0.05)
```

Arguments

- `models`: list returned from `fitLDA`
- `corpus`: If corpus is `NULL`, then it will use the original corpus that the model was fitted to. Otherwise, compute deconvolved topics from this new corpus. Needs to be pixels x genes and nonnegative integer counts. Each row needs at least 1 nonzero entry (default: `NULL`)
- `perc.rare.thresh`: the number of deconvolved cell-types with mean pixel proportion below this fraction used to assess performance of fitted models for each K. Recorded for each K. (default: 0.05)

Value

a plot indicating the perplexity and number of rare cell-types of a list of fitted LDA models

Examples

```r
data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = seq(2,5))
perplexityPlot(models = ldas, corpus = corpus)
```
Description

Takes pixel (row) x gene (columns) matrix and filters out poor genes and pixels. Then selects for genes to be included in final corpus for input into LDA. If the pixel IDs are made up of their positions in "XxY" these can be extracted as the pixel position coordinates (a characteristic of Stahl datasets).

Order of filtering options:
1. Selection to use specific genes only
2. `cleanCounts` to remove poor pixels and genes
3. Remove top expressed genes in matrix
4. Remove specific genes based on grepl pattern matching
5. Remove genes that appear in more/less than a percentage of pixels
6. Use the over dispersed genes computed from the remaining genes after filtering steps 1-5 (if selected)
7. Choice to use the top over dispersed genes based on -log10(p.adj)

Usage

```r
preprocess(
  dat,
  extractPos = FALSE,
  selected.genes = NA,
  nTopGenes = NA,
  genes.to.remove = NA,
  removeAbove = NA,
  removeBelow = NA,
  min.reads = 1,
  min.lib.size = 1,
  min.detected = 1,
  ODgenes = TRUE,
  nTopOD = 1000,
  od.genes.alpha = 0.05,
  gam.k = 5,
  verbose = TRUE,
  plot = TRUE
)
```

Arguments

- `dat`: pixel (row) x gene (columns) mtx with gene counts OR path to it
- `extractPos`: Boolean to extract pixel positional coordinates from pixel name names (default: FALSE)
selected.genes
vector of gene names to use specifically for the corpus (default: NA)

topGenes
integer for number of top expressed genes to remove (default: NA)

genes.to.remove
vector of gene names or patterns for matching to genes to remove (default: NA).
ex: c("^mt-") or c("^MT", "^RPL", "^MRPL")

removeAbove
non-negative numeric <=1 to use as a percentage. Removes genes present in this fraction or more of pixels (default: NA)

removeBelow
non-negative numeric <=1 to use as a percentage. Removes genes present in this fraction or less of pixels (default: NA)

min.reads
cleanCounts() param; minimum number of reads to keep a gene (default: 1)

min.lib.size
cleanCounts() param; minimum number of counts a pixel needs to keep (default: 1)

min.detected
cleanCounts() param; minimum number of pixels a gene needs to have been detected in to keep (default: 1)

ODgenes
Boolean to use getOverdispersedGenes() for the corpus genes (default: TRUE)

nTopOD
number of top over dispersed genes to use. int (default: 1000). If the number of overdispersed genes is less then this number will use all of them, or set to NA to use all overdispersed genes.

od.genes.alpha
alpha parameter for getOverdispersedGenes(). Higher = less stringent and more over dispersed genes returned (default: 0.05)

gam.k
gam.k parameter for getOverdispersedGenes(). Dimension of the "basis" functions in the GAM used to fit, higher = "smoother" (default: 5)

verbose
control verbosity (default: TRUE)

plot
control if plots are returned (default: TRUE)

Value

A list that contains

- corpus: (pixels x genes) matrix of the counts of the selected genes
- slm: slam::as.simple_triplet_matrix(corpus); required format for topicmodels::LDA input
- positions: matrix of x and y coordinates of pixels rownames = pixels, colnames = "x", "y"

Examples

data(mOB)
cd <- mOB$counts
corpus <- preprocess(t(cd), removeAbove = 0.95, removeBelow = 0.05)
restrictCorpus (15)

Description

restrictCorpus identifies over dispersed genes across pixels to use as informative words (genes) in topic modeling. Also allows ability to restrict over dispersed genes to those that occur in more than and/or less than selected fractions of pixels in corpus. Limits to the top 1000 overdispersed genes in order to keep the corpus to a reasonable size.

Usage

restrictCorpus(
 counts,
 removeAbove = 1,
 removeBelow = 0.05,
 alpha = 0.05,
 nTopOD = 1000,
 plot = FALSE,
 verbose = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>counts</td>
<td>genes x pixels gene count matrix</td>
</tr>
<tr>
<td>removeAbove</td>
<td>remove over dispersed genes that are present in more than this fraction of pixels (default: 1.0)</td>
</tr>
<tr>
<td>removeBelow</td>
<td>remove over dispersed genes that are present in less than this fraction of pixels (default: 0.05)</td>
</tr>
<tr>
<td>alpha</td>
<td>alpha parameter for getOverdispersedGenes(). Higher = less stringent and more overdispersed genes returned (default: 0.05)</td>
</tr>
<tr>
<td>nTopOD</td>
<td>number of top over dispersed genes to use. int (default: 1000). If the number of overdispersed genes is less than this number will use all of them, or set to NA to use all overdispersed genes.</td>
</tr>
<tr>
<td>plot</td>
<td>return histogram plots of genes per pixel and pixels per genes for over dispersed genes and after corpus restriction. (default: FALSE)</td>
</tr>
<tr>
<td>verbose</td>
<td>(default: TRUE)</td>
</tr>
</tbody>
</table>

Value

a gene by pixel matrix where the remaining genes have been filtered
Examples

data(mOB)
corpus <- restrictCorpus(counts = mOB$counts)
corpus

topGenes Returns top n genes of each deconvolved cell-type for a given beta matrix

Description

For a given beta matrix (cell-type gene distribution matrix), returns the top n genes based on their probability.

Usage

topGenes(beta, n = 10)

Arguments

beta beta matrix (cell-type gene distribution matrix)

n number of top genes for each deconvolved cell-type to return (default: 10)

Value

a list where each item is a vector of the top genes and their associated probabilities for a given deconvolved cell-type

Examples

data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = 3, ncores=7)
optLDA <- optimalModel(models = ldas, opt = 3)
results <- getBetaTheta(optLDA, perc.filt = 0.05, betaScale = 1000)
deconGexp <- results$beta
genes <- topGenes(deconGexp)
vizAllTopics

Visualize all topic proportions across pixels with scatterpie

Description

Note: visualizes all cell-types in theta at once (could be individual cell-types or cell-type-clusters) so for accuracy of the proportions of each cell-type in a pixel, the row (pixel) should sum to 1.

Usage

```r
vizAllTopics(
  theta,  # document (pixel) x cell-type proportion matrix
  pos,  # position of pixels, as data.frame with x and y columns
  topicOrder = seq(ncol(theta)),  # order of topics in theta to visualize as a numeric vector and same length as topicCols (default: seq(ncol(theta)))
  topicCols = rainbow(ncol(theta)),  # Vector of colors for each of the cell-types to be visualized. Same length and order as topicOrder (default: rainbow(ncol(theta)))
  groups = NA,  # Indicates color of the scatterpie strokes (borders) with the goal of coloring them by their assigned group. This can be a vector or factor indicating the group of each pixel. Needs to be in the same order as the pixel rows in "theta" (default: NA)
  group_cols = NA,  # Color labels for the groups. Can be a vector or factor. (default: NA)
  r = max(0.4, max(pos)/nrow(pos) * 4),  # Radius of the scatterpie circles. Adjust based on positions of pixels (default: max(0.4, max(pos)/nrow(pos)*4))
  lwd = 0.5,  # Width of lines of the pie charts. Increasing helps visualize group_cols if being used.
  showLegend = TRUE,  # Boolean to show the legend indicating cell-types and their color
  plotTitle = NA,  # add title to the resulting plot (default: NA)
  overlay = NA  # raster image of an H&E tissue (for example) to plot the scatterpies on top of (default: NA)
)
```

Arguments

- `theta`: document (pixel) x cell-type proportion matrix
- `pos`: position of pixels, as data.frame with x and y columns
- `topicOrder`: order of topics in theta to visualize as a numeric vector and same length as `topicCols` (default: `seq(ncol(theta))`)
- `topicCols`: Vector of colors for each of the cell-types to be visualized. Same length and order as `topicOrder` (default: `rainbow(ncol(theta))`)
- `groups`: Indicates color of the scatterpie strokes (borders) with the goal of coloring them by their assigned group. This can be a vector or factor indicating the group of each pixel. Needs to be in the same order as the pixel rows in "theta" (default: NA)
- `group_cols`: Color labels for the groups. Can be a vector or factor. (default: NA)
- `r`: Radius of the scatterpie circles. Adjust based on positions of pixels (default: `max(0.4, max(pos)/nrow(pos)*4)`)
- `lwd`: Width of lines of the pie charts. Increasing helps visualize `group_cols` if being used.
- `showLegend`: Boolean to show the legend indicating cell-types and their color
- `plotTitle`: add title to the resulting plot (default: NA)
- `overlay`: raster image of an H&E tissue (for example) to plot the scatterpies on top of (default: NA)
vizGeneCounts

Visualize gene counts for a given gene in the pixels. Can also see group assignment of spots.

Description

Visualize one gene at a time.

Usage

```r
vizGeneCounts(
  df,
  gene,
  groups = NA,
  group_cols = NA,
  winsorize = 0,
  size = 7,
  stroke = 0.5,
  alpha = 1,
  plotTitle = NA,
  showLegend = TRUE
)
```

Arguments

- **df**
 - data.frame where rows are spots and columns must be at least: "x", "y" for spot positions in space and "gene" column that is counts of a gene for each spot.

- **gene**
 - column name of the gene counts in df to be visualized
visualize the pixel proportions of a single topic.

Description

Visualize the pixel proportions of a single topic.

Usage

```r
vizTopic(
  theta,
  pos,
  topic,
  groups = NA,
  group_cols = NA,
  size = 2,
  stroke = 0.3,
  alpha = 1,
  low = "white",
  high = "red",
```
plotTitle = NA,
showLegend = TRUE
)

Arguments

- **theta**: document (pixel) x cell-type proportion matrix
- **pos**: position of pixels, as data.frame with x and y columns
- **topic**: the index of the topic
- **groups**: colors the pixel border lines based on a group or cell layer they belong to. Needs to be a character or named vector of assigned groups for each pixel Ex: c("0", "1", "0", ...)
- **group_cols**: color labels for the groups. Ex: c("0" = "gray", "1" = "red")
- **size**: size of the geom_points to plot (default: 2)
- **stroke**: thickness of the geom_point lines to help in emphasizing groups (default: 0.5)
- **alpha**: alpha value of colored pixels (default: 1)
- **low**: sets the color for the low end of the topic proportion color scale (default: "white")
- **high**: sets the color for the high end of the topic proportion color scale (default: "red")
- **plotTitle**: option to add a title to the plot (character)
- **showLegend**: Boolean to show the plot legend

Value

a plot where each point is a pixel colored by the proportion of the selected cell-type

Examples

data(mOB)
pos <- mOB$pos
cd <- mOB$counts
counts <- cleanCounts(cd, min.lib.size = 100)
corpus <- restrictCorpus(counts, removeAbove=1.0, removeBelow = 0.05)
ldas <- fitLDA(t(as.matrix(corpus)), Ks = 3)
optLDA <- optimalModel(models = ldas, opt = 3)
results <- getBetaTheta(optLDA, perc.filt = 0.05, betaScale = 1000)
deconProp <- results$theta
vizTopic(theta = deconProp, pos = pos, topic = "3", plotTitle = "X3",
 size = 5, stroke = 1, alpha = 0.5, low = "white", high = "red")
Index

* datasets
 mOB, 11
 annotateCellTypesGSEA, 2
 cleanCounts, 3
 correlationPlot, 4
 fitLDA, 5
 getBetaTheta, 6
 getCorrMtx, 7
 getOverdispersedGenes, 8
 lsatPairs, 10
 mOB, 11
 optimalModel, 11
 perplexityPlot, 12
 preprocess, 13
 restrictCorpus, 15
 topGenes, 16
 vizAllTopics, 17
 vizGeneCounts, 18
 vizTopic, 19