Package ‘SVMDO’

May 30, 2024

Title Identification of Tumor-Discriminating mRNA Signatures via Support Vector Machines Supported by Disease Ontology

Version 1.4.0

Date 2024-02-05

Depends R(>= 4.3), shiny (>= 1.7.4)

Imports shinyFiles (>= 0.9.3), shinytitle (>= 0.1.0), golem (>= 0.3.5), nortest (>= 1.0-4), e1071 (>= 1.7-12), BSDA (>= 1.2.1), data.table (>= 1.14.6), sjmisc (>= 2.8.9), klaR (>= 1.7-1), caTools (>= 1.18.2), caret (>= 6.0-93), survival (>= 3.4-0), DOSE (>= 3.24.2), AnnotationDbi (>= 1.60.0), org.Hs.eg.db (>= 3.16.0), dplyr (>= 1.0.10), SummarizedExperiment (>= 1.28.0), grDevices, graphics, stats, utils

Description It is an easy-to-use GUI using disease information for detecting tumor/normal sample discriminating gene sets from differentially expressed genes. Our approach is based on an iterative algorithm filtering genes with disease ontology enrichment analysis and wilk and wilk’s lambda criterion connected to SVM classification model construction. Along with gene set extraction, SVMDO also provides individual prognostic marker detection. The algorithm is designed for FPKM and RPKM normalized RNA-Seq transcriptome datasets.

biocViews GeneSetEnrichment, DifferentialExpression, GUI, Classification, RNASeq, Transcriptomics, Survival

NeedsCompilation no

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests BiocStyle, knitr, rmarkdown, testthat (>= 3.1.6)

VignetteBuilder knitr

Config/testthat/edition 3

BugReports https://github.com/robogeno/SVMDO/issues

git_url https://git.bioconductor.org/packages/SVMDO
Contents

classification_server .. 3
classification_ui ... 3
clinic_data_input_server .. 4
clinic_data_input_ui .. 4
deg_server ... 5
deg_ui ... 5
disc_gene_download_ui .. 6
disc_gene_dw_server .. 6
do_based_gene_filtration_server 7
do_based_gene_filtration_ui .. 7
expression_dataset_input_server 8
gene_directory_selection_server 8
gene_directory_selection_ui ... 9
gene_list_name_server .. 9
gene_list_name_ui ... 10
gene_list_table_visualization_ui 10
globals ... 11
gui_obj_removal_server ... 11
gui_obj_removal_ui .. 12
innerServer_exp_ui ... 12
package_req_list ... 13
plot_list_server .. 13
plot_list_ui .. 14
plot_push_server .. 14
plot_push_ui ... 15
plot_show_server .. 15
plot_show_ui ... 16
runGUI ... 16
survival_analysis_server .. 17
survival_analysis_ui ... 17
surv_plot_dw_server .. 18
surv_plot_dw_ui .. 18
SVMDO ... 19
table_server .. 20
classification_server

Description
SVMDO

Usage
innerServer_7(input, output, session)

Arguments
input server input
output server output
session server session

Value
Server section of wilks lambda filtration and SVM classification of disease filtered differentially expressed gene set

classification_ui SVMDO

Description
SVMDO

Usage
innerUI_classification(id)

Arguments
id connection input
Value
UI section of wilks lambda filtration and SVM classification of disease filtered differentially expressed gene set

Description
SVMDO

Usage
innerServer_clinic(input, output, session)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>server input</td>
</tr>
<tr>
<td>output</td>
<td>server output</td>
</tr>
<tr>
<td>session</td>
<td>server session</td>
</tr>
</tbody>
</table>

Value
Server section of loading clinical data

Description
SVMDO

Usage
innerUI_clinic_data(id)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>connection input</td>
</tr>
</tbody>
</table>

Value
UI section of loading clinical data
deg_server

* Description

 SVMDO

* Usage

 innerServer_3(input, output, session, rawData, rval)

* Arguments

 `input` server input

 `output` server output

 `session` server session

 `rawData` expression dataset provided from innerServer_exp_server

 `rval` Selected radio button information provided from innerServer_rad_server

* Value

 Server section of differential gene expression analysis

deg_ui

* Description

 SVMDO

* Usage

 innerUI_deg_analysis(id)

* Arguments

 `id` connection input

* Value

 UI section of differential gene expression analysis
disc_gene_download_ui SVMDO

Description
SVMDO

Usage

disc_gene_download_ui(id)

Arguments

id connection input

Value
UI section of discriminative gene set download button

disc_gene_dw_server SVMDO

Description
SVMDO

Usage

disc_gene_dw_server(input, output, session, gene_list_val)

Arguments

input server input
output server output
session server session
gene_list_val discriminative gene set list variable

Value
Server section of discriminative gene set download button
do_based_gene_filtration_server

SVMDO

Description

SVMDO

Usage

innerServer_6(input, output, session)

Arguments

- **input**
 - server input
- **output**
 - server output
- **session**
 - server session

Value

Server section of disease ontology based filtration of differentially expressed genes

do_based_gene_filtration_ui

SVMDO

Description

SVMDO

Usage

innerUI_disease_ont_class(id)

Arguments

- **id**
 - connection input

Value

UI section of disease ontology based filtration of differentially expressed genes
expression_dataset_input_server

Description

SVMDO

Usage

innerServer_exp(input, output, session)

Arguments

- **input**: server input
- **output**: server output
- **session**: server session

Value

Server section of providing expression dataset

gene_directory_selection_server

Description

SVMDO

Usage

innerServer(input, output, session)

Arguments

- **input**: server input
- **output**: server output
- **session**: server session

Value

Server section of entering output/working for gene list directory
gene_directory_selection_ui

* SVMDO

Description
SVMDO

Usage
innerUI_path(id)

Arguments
id
connection input

Value
UI section of entering output/working for gene list directory

gene_list_name_server

* SVMDO

Description
SVMDO

Usage
innerServer_10(input, output, session)

Arguments
input
server input
output
server output
session
server session

Value
Server section of entering final gene list name
gene_list_name_ui

Description
SVMD0

Usage
innerUI.gene_names(id)

Arguments
id connection input

Value
UI section of entering top gene value

gene_list_table_visualization_ui

Description
SVMD0

Usage
deg_data_table_ui(id)

Arguments
id connection input

Value
Providing table form of discriminative gene sets in GUI
Description

SVMDO

Value

Including script files and global variables of GUI required to be initiated at the runApp file execution

Usage

innerServer_9(input, output, session)

Arguments

- input: server input
- output: server output
- session: server session

Value

Server section of workspace clearance
Description

SVMDO

Usage

innerUI_clear_env(id)

Arguments

id connection input

Value

UI section of workspace clearance

Description

SVMDO

Usage

innerUI_exp_data(id)

Arguments

id connection input

Value

UI section of providing expression dataset into GUI
Description

SVMDO

Value

List of packages involved in SVMDO

plot_list_server SVMDO

Description

SVMDO

Usage

plot_list_server(input, output, session)

Arguments

input server input
output server output
session server session

Value

Server section of preparing plot list to be visualized in GUI page
plot_list_ui

Description

SVMDO

Usage

innerUI_collect_plot_data(id)

Arguments

id
connection output

Value

UI section of preparing plot list to be visualized in GUI page

plot_push_server

Description

SVMDO

Usage

plot_push_server(input, output, session)

Arguments

input
server input

output
server output

session
server session

Value

Server section of providing information about total number of survival plots for visualization
plot_push_ui

Description

SVMDO

Usage

innerUI_plot_inject(id)

Arguments

- id: connection input

Value

UI section of providing information about total number of survival plots for visualization

plot_show_server

Description

SVMDO

Usage

plot_show_server(input, output, session, max_data)

Arguments

- input: server input
- output: server output
- session: server session
- max_data: Information of total number of survival plots prepared with discriminative gene set

Value

Server section of providing information about total number of survival plots for visualization
plot_show_ui

SVMDO

Description

SVMDO

Usage

innerUI_plot_show(id)

Arguments

- **id**
 - Connection input

Value

UI section of providing information about total number of survival plots for visualization

runGUI

SVMDO

Description

SVMDO

Usage

linebreaks(n)

Arguments

- **n**
 - Linebreak function variable

Value

 Returning GUI window screen

Examples

#SVMDO::runGUI() Calling GUI without activating library
#runGUI() Calling GUI after activating library
Disease Ontology Enrichment of a differentially expressed gene (entrez id):
a_1<-DOSE::enrichDO(2981, ont="DO")
survival_analysis_server

* SVMDO

Description

SVMDO

Usage

innerServer_8(input, output, session, rawData_2, rval)

Arguments

- **input**: server input
- **output**: server output
- **session**: server session
- **rawData_2**: Clinical data provided from clinic_data_input_server
- **rval**: Selected radio button information provided from innerServer_rad_server

Value

Server section of survival analysis of final discriminative gene set

survival_analysis_ui

* SVMDO

Description

SVMDO

Usage

innerUI_surv(id)

Arguments

- **id**: connection input

Value

UI section of survival analysis of final discriminative gene set
surv_plot_dw_server \textit{SVMDO}

\textbf{Description}

\textit{SVMDO}

\textbf{Usage}

\texttt{surv_plot_dw_server(input, output, session)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{input} \hspace{1cm} server input
 \item \texttt{output} \hspace{1cm} server output
 \item \texttt{session} \hspace{1cm} server session
\end{itemize}

\textbf{Value}

Server section of downloading survival plots of discriminative gene set

surv_plot_dw_ui \textit{SVMDO}

\textbf{Description}

\textit{SVMDO}

\textbf{Usage}

\texttt{surv_plots_download_ui(id)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{id} \hspace{1cm} connection input
\end{itemize}

\textbf{Value}

UI section of downloading survival plots of discriminative gene set
Description

Package Description: It is an easy-to-use GUI using disease information for detecting tumor/normal sample discriminating gene sets from differentially expressed genes. Our approach is based on an iterative algorithm filtering genes with disease ontology enrichment analysis and Wilk’s lambda criterion connected to SVM classification model construction. Along with gene set extraction, SVMDO also provides individual prognostic marker detection among the discriminative genes. The algorithm is designed for FPKM and RPKM normalized RNA-Seq transcriptome datasets. To provide experience about the GUI usage, a test section involving dummy example using SummarizedExperiment objects of transcriptome (small form) and clinical datasets is also included.

Value

Providing package-level manual page

Package Sections

1. Analysis: Acquiring discriminative gene sets and further detecting the gene subset with prognostic characteristics
2. Result: Visualization and Download of discriminative gene sets and survival plot list of prognostic genes

Steps of Analysis Screen

1. To search your transcriptome dataset, use the file detection in Choose Your Expression Dataset section. The file will be automatically uploaded into the GUI.
2. To prevent clashing with test datasets, "None" option has to be selected from the radio button section.
3. By clicking on DEG Analysis button you further apply differential expression analysis. Labels of tissue_type column in dataset must contain “Nor” and “Tum” for determining normal/tumour (or tumor) samples. A message window saying Process Completed will appear if there is not any problem.
4. When the differential expression process is completed, a user-defined input size (n) is selected to filter the initial gene list (i.e., n number of upregulated and downregulated genes) by entering a number in Input Size section. It is predetermined as 50 in GUI which can be changed based on the user. If there is problem with the value of input size, you will get a warning about inappropriate input size selection. If the input size remains, algorithm selects all of the differentially expressed genes to be used in the next process.
5. To apply disease ontology-based gene filtration, click on DO Analysis button. A message window saying process completed will appear if there is not any problem.
6. To further apply the following feature selection and classification processes, click on the Classification button. A message window saying process completed will appear if there is not any problem.
7. Acquired discriminative gene set can be further used for survival analysis to detect individual prognostic genes. To apply this process, use the file detection in Choose Clinical Data section for searching clinical data about patient survival followed by clicking on Survival Analysis button.

Steps of Result Screen

1. To visualize discriminative gene sets inside GUI screen, click on Show Gene Results button. When you click this button, a table of gene set will appear. If there is a problem in the analysis, an error message will appear.

2. To visualize survival plots of individual genes, two steps have to be applied. First of all, click on Prepare Plot Lists button to feed plot information to the visualization system. After that, click on Show Plots button to visualize survival plots.

3. Before downloading files, you can adjust the output directory with Choose Directory button. It can be used for separating files by selecting a destination before clicking download buttons. If it is desired, files can be downloaded to the same folder by selecting an output directory just one time before the download steps. If you do not select any output directory, files will be downloaded to your working directory.

4. To download the resulting discriminative gene set, it is obligatory to define a filename in the Enter Final Gene Set Filename section. After that, you can click on Download Gene List button to complete the process.

5. To download survival plots, you have to click on Download Plot List button. Names of plot files are automatically done by assigning gene names.

Application of Test Datasets

SVMDO includes test datasets providing dummy examples for gaining experience on the GUI usage. Test datasets consist of simplified forms of TCGA-COAD (COAD) and TCGA-LUSC (LUSC) with 400 genes along with clinical datasets loaded into summarized experiment objects. When test datasets are used, predetermined expression and clinical datasets are automatically uploaded into the GUI. A test-based analysis is done with predefined input size (n=50). Therefore, users have to continue with DO Analysis after DEG Analysis.

Workspace Clearance

When the user task is completed, click on the Clear Environment button to remove the global variables created during the algorithm sections. To prevent error in the next usages of GUI, it is a necessary process. It can be applied at any moment without the necessity of completing all of the steps of algorithm.
table_ui

Usage
 table_server(input, output, session)

Arguments
 input server input
 output server output
 session server session

Value
 Server section of providing discriminative gene set for preparing table

SVMDO

Description
 SVMDO

Usage
 innerUI_table_show(id)

Arguments
 id connection input

Value
 UI section of providing discriminative gene set for preparing table

SVMDO

Description
 SVMDO

Usage
 innerServer_rad(input, output, session)
Arguments

- input: server input
- output: server output
- session: server session

Value

Server section of providing information about selected radio button

test_data_selection_ui

SVMDO

Description

SVMDO

Usage

innerUI_test_data(id)

Arguments

- id: connection input

Value

UI section of providing information about selected radio button

top_val_based_deg_filtration

SVMDO

Description

SVMDO

Usage

innerServer_5(input, output, session, top_val)
Arguments

- **input**: server input
- **output**: server output
- **session**: server session
- **top_val**: top gene number value provided from top_val_server

Value

Server section of selecting differentially expressed genes based on top gene value

top_val_based_deg_filtration_ui

SVMDO

Description

SVMDO

Usage

`innerUI_top_gene_selection(id)`

Arguments

- **id**: connection input

Value

UI section of selecting differentially expressed genes based on top gene value

top_val_server

SVMDO

Description

SVMDO

Usage

`innerServer_4(input, output, session)`

Arguments

- **input**: server input
- **output**: server output
- **session**: server session
Value
Server section of entering top gene value

| top_val_ui | SVMDO |

Description
SVMDO

Usage
innerUI_top_gene_val(id)

Arguments
id connection input

Value
UI section of entering top gene value
(top_val_based_deg_filtration_ui), 23
innerUI_top_gene_val(top_val_ui), 24
linebreaks (runGUI), 16
package_req_list, 13
plot_list_server, 13
plot_list_ui, 14
plot_push_server, 14
plot_push_ui, 15
plot_show_server, 15
plot_show_ui, 16
runGUI, 16
surv_plot_dw_server, 18
surv_plot_dw_ui, 18
surv_plots_download_ui
 (surv_plot_dw_ui), 18
survival_analysis_server, 17
survival_analysis_ui, 17
SVMDO, 19
table_server, 20
table_ui, 21
test_data_selection_server, 21
test_data_selection_ui, 22
top_val_based_deg_filtration, 22
top_val_based_deg_filtration_ui, 23
top_val_server, 23
top_val_ui, 24