Package ‘SimBu’

January 8, 2024

Title Simulate Bulk RNA-seq Datasets from Single-Cell Datasets
Version 1.4.3
Description SimBu can be used to simulate bulk RNA-seq datasets with known cell type fractions. You can either use your own single-cell study for the simulation or the sfaira database. Different pre-defined simulation scenarios exist, as are options to run custom simulations. Additionally, expression values can be adapted by adding an mRNA bias, which produces more biologically relevant simulations.
License GPL-3 + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports basilisk, BiocParallel, data.table, dplyr, ggplot2, tools,
 Matrix (>= 1.3.3), methods, phyloseq, proxyC, RColorBrewer,
 RCurl, reticulate, sparseMatrixStats, SummarizedExperiment,
 tidyr
Suggests curl, knitr, matrixStats, rmarkdown, Seurat (>= 5.0.0),
 SeuratObject (>= 5.0.0), testthat (>= 3.0.0)
URL https://github.com/omnideconv/SimBu
BugReports https://github.com/omnideconv/SimBu/issues
VignetteBuilder knitr
Config/testthat/edition 3
StagedInstall no
biocViews Software, RNASeq, SingleCell
git_url https://git.bioconductor.org/packages/SimBu
git_branch RELEASE_3_18
git_last_commit 0c37a0d
git_last_commit_date 2023-11-21
Repository Bioconductor 3.18
Date/Publication 2024-01-07
Author Alexander Dietrich [aut, cre]
Maintainer Alexander Dietrich <alex.dietrich@tum.de>
calc_scaling_vector 2

calc_scaling_vector

Description

Each scaling factor has a default matrix it will try to use (counts or TPM). If the required matrix is not available, the other one is used and a warning is given.

Usage

calc_scaling_vector(
 data,
 scaling_factor,
 custom_scaling_vector,
 scaling_factor_single_cell,
 BPPARAM,
)
census

run_parallel
)

Arguments

data dataset object
scaling_factor name of scaling factor; possible are: census, spike_in, read_number, custom or NONE for no scaling factor
custom_scaling_vector named vector with custom scaling values for cell-types. Cell-types that do not occur in this vector but are present in the dataset will be set to 1
scaling_factor_single_cell boolean: decide if a scaling value for each single cell is calculated (default) or the median of all scaling values for each cell type is calculated
BPPARAM BioCParallel::bpparam() by default; if specific number of threads x want to be used, insert: BioCParallel::MulticoreParam(workers = x)
run_parallel boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

a named vector with a scaling value for each cell in the dataset

census Applies the Census count transformation on a count matrix

Description

needs a sparse matrix with cells in columns and genes in rows. You can find the detailed explanation here: http://cole-trapnell-lab.github.io/monocle-release/docs/#census

Usage

census(
matrix,
exp_capture_rate = 0.25,
expr_threshold = 0,
BPPARAM = BioCParallel::bpparam(),
run_parallel = FALSE
)

Arguments

matrix sparse count matrix; cells in columns, genes in rows
exp_capture_rate expected capture rate; default=0.25
expr_threshold expression threshold; default=0
census_monocle

BPPARAM

BiocParallel::bpparam() by default; if specific number of threads x want to be used, insert: BiocParallel::MulticoreParam(workers = x)

run_parallel

boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

a vector for each cell-type, with a scaling factor which can be used to transform the counts of the matrix

Examples

tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))
cen <- SimBu::census(tpm)

census_monocle

Census calculation as implemented in monocle

Description

Usage

census_monocle(expr_matrix, exp_capture_rate, expr_threshold)

Arguments

expr_matrix TPM matrix
exp_capture_rate expected capture rate; default=0.25
expr_threshold expression threshold; default=0

Value

vector with estimated mRNA values per cell in expr_matrix
check_annotation

check for correct column names in annotation file and replace them if necessary

Description
check for correct column names in annotation file and replace them if necessary

Usage
check_annotation(annotation, cell_column = "cell_type", id_column = 1)

Arguments
- annotation: dataframe; annotation dataframe
- cell_column: name of cell-type column; default is "cell_type"
- id_column: name of cell ID column; default is 1, which uses the rownames

Value
annotation dataframe with correct column names

check_if_tpm
Checks, if a matrix is TPM-like (columns sum up to 1e6)

Description
Checks, if a matrix is TPM-like (columns sum up to 1e6)

Usage
check_if_tpm(tpm_matrix, lower_limit = 7e+05)

Arguments
- tpm_matrix: matrix to check
- lower_limit: the lowest sum value, a cell may have

Value
boolean
compare_matrix_with_annotation

Check if annotation and matrix have same cells

Description

Otherwise intersection of both is used

Usage

```r
compare_matrix_with_annotation(m, annotation)
```

Arguments

- `m`: matrix, column names are cells
- `annotation`: data.frame, rownames are genes, cell names are in ID column

Value

intersected matrix

dataset

Build SummarizedExperiment using local annotation and count matrix R objects

Description

Build `SummarizedExperiment` using local annotation and count matrix R objects

Usage

```r
dataset(
  annotation,
  count_matrix = NULL,
  tpm_matrix = NULL,
  name = "SimBu_dataset",
  spike_in_col = NULL,
  additional_cols = NULL,
  filter_genes = TRUE,
  variance_cutoff = 0,
  type_abundance_cutoff = 0,
  scale_tpm = TRUE
)
```
dataset

Arguments

- **annotation**: (mandatory) dataframe; needs columns 'ID' and 'cell_type'; 'ID' needs to be equal with cell_names in count_matrix
- **count_matrix**: (mandatory) sparse count matrix; raw count data is expected with genes in rows, cells in columns
- **tpm_matrix**: sparse count matrix; TPM like count data is expected with genes in rows, cells in columns
- **name**: name of the dataset; will be used for new unique IDs of cells
- **spike_in_col**: which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation
- **additional_cols**: list of column names in annotation, that should be stored as well in dataset object
- **filter_genes**: boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff
- **variance_cutoff**: numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff (default = 0)
- **type_abundance_cutoff**: numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types
- **scale_tpm**: boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6

Value

Return a **SummarizedExperiment** object

Examples

```r
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
  "ID" = paste0("cell_", rep(1:300)),
  "cell_type" = c(rep("T cells CD4", 300))
)

ds <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset")
```
dataset_h5ad

Build SummarizedExperiment using a h5ad file for the counts

Description

Build SummarizedExperiment using a h5ad file for the counts

Usage

dataset_h5ad(
 h5ad_file_counts,
 h5ad_file_tpm = NULL,
 cell_id_col = "ID",
 cell_type_col = "cell_type",
 cells_in_obs = TRUE,
 name = "SimBu_dataset",
 spike_in_col = NULL,
 additional_cols = NULL,
 filter_genes = TRUE,
 variance_cutoff = 0,
 type_abundance_cutoff = 0,
 scale_tpm = TRUE
)

Arguments

h5ad_file_counts
(mandatory) h5ad file with raw count data

h5ad_file_tpm
h5ad file with TPM count data

cell_id_col
(mandatory) name of column in Seurat meta.data with unique cell ids; 0 for rownames

cell_type_col
(mandatory) name of column in Seurat meta.data with cell type name

cells_in_obs
boolean, if TRUE, cell identifiers are taken from obs layer in anndata object; if FALSE, they are taken from var

name
name of the dataset; will be used for new unique IDs of cells

spike_in_col
which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation

additional_cols
list of column names in annotation, that should be stored as well in dataset object

filter_genes
boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff
dataset_merge

variance_cutoff
numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff

type_abundance_cutoff
numeric, remove all cells, whose cell-type appears less than the given value. This removes low abundant cell-types

scale_tpm
boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6

Value
Return a SummarizedExperiment object

Examples

#h5 <- system.file("extdata", "anndata.h5ad", package = "SimBu")
ds_h5ad <- SimBu::dataset_h5ad(
h5ad_file_counts = h5,
name = "h5ad_dataset",
cell_id_col = "id", # this will use the 'id' column of the metadata as cell identifiers
cell_type_col = "group", # this will use the 'group' column of the metadata as cell type info
cells_in_obs = TRUE
) # in case your cell information is stored in the var layer, switch to FALSE

dataset_merge Merge multiple SummarizedExperiment datasets into one

Description
The objects need to have the same number of assays in order to work.

Usage

dataset_merge(
 dataset_list,
 name = "SimBu_dataset",
 spike_in_col = NULL,
 additional_cols = NULL,
 filter_genes = TRUE,
 variance_cutoff = 0,
 type_abundance_cutoff = 0,
 scale_tpm = TRUE
)
Arguments

dataset_list (mandatory) list of SummarizedExperiment objects
name name of the new dataset
spike_in_col which column in annotation contains information on spike in counts, which can be used to re-scale counts; mandatory for spike in scaling factor in simulation
additional_cols list of column names in annotation, that should be stored as well in dataset object
filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff
variance_cutoff numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff
type_abundance_cutoff numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types
scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6

Value

SummarizedExperiment object

Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
(tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
 "ID" = paste0("cell_", rep(1:300)),
 "cell_type" = c(rep("T cells CD4", 300))
)
ds1 <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset1")
ds2 <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset2")
ds_merged <- SimBu::dataset_merge(list(ds1, ds2))
Build SummarizedExperiment using a Seurat object

Description

Build SummarizedExperiment using a Seurat object

Usage

dataset_seurat(
 seurat_obj,
 counts_layer,
 cell_id_col,
 cell_type_col,
 assay = NULL,
 tpm_layer = NULL,
 name = "SimBu_dataset",
 spike_in_col = NULL,
 additional_cols = NULL,
 filter_genes = TRUE,
 variance_cutoff = 0,
 type_abundance_cutoff = 0,
 scale_tpm = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seurat_obj</td>
<td>(mandatory) Seurat object with TPM counts</td>
</tr>
<tr>
<td>counts_layer</td>
<td>(mandatory) name of assay in Seurat object which contains count data in 'counts' slot</td>
</tr>
<tr>
<td>cell_id_col</td>
<td>(mandatory) name of column in Seurat meta.data with unique cell ids</td>
</tr>
<tr>
<td>cell_type_col</td>
<td>(mandatory) name of column in Seurat meta.data with cell type name</td>
</tr>
<tr>
<td>assay</td>
<td>name of the Seurat object assay that should be used. If NULL (default), the currently active assay is used</td>
</tr>
<tr>
<td>tpm_layer</td>
<td>name of assay in Seurat object which contains TPM data in 'counts' slot</td>
</tr>
<tr>
<td>name</td>
<td>name of the dataset; will be used for new unique IDs of cells</td>
</tr>
<tr>
<td>spike_in_col</td>
<td>which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation</td>
</tr>
<tr>
<td>additional_cols</td>
<td>list of column names in annotation, that should be stored as well in dataset object</td>
</tr>
<tr>
<td>filter_genes</td>
<td>boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff</td>
</tr>
<tr>
<td>variance_cutoff</td>
<td>numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff</td>
</tr>
</tbody>
</table>
type_abundance_cutoff
 numeric, remove all cells, whose cell-type appears less then the given value.
 This removes low abundant cell-types

scale_tpm
 boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
 1e6

Value
 Return a SummarizedExperiment object

Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell-", rep(1:300))
colnames(tpm) <- paste0("cell-", rep(1:300))
rownames(counts) <- paste0("gene-", rep(1:1000))
rownames(tpm) <- paste0("gene-", rep(1:1000))

annotation <- data.frame(
 "ID" = paste0("cell-", rep(1:300)),
 "cell_type" = c(
 rep("T cells CD4", 50),
 rep("T cells CD8", 50),
 rep("Macrophages", 100),
 rep("NK cells", 10),
 rep("B cells", 70),
 rep("Monocytes", 20)
),
 row.names = paste0("cell-", rep(1:300))
)

seurat_obj <- Seurat::CreateSeuratObject(counts = counts, assay = "gene_expression", meta.data = annotation)
SeuratObject::LayerData(seurat_obj, assay = "gene_expression", layer = "data") <- tpm

ds_seurat <- SimBu::dataset_seurat(
 seurat_obj = seurat_obj,
 counts_layer = "counts",
 cell_id_col = "ID",
 cell_type_col = "cell_type",
 tpm_layer = "data",
 name = "seurat_dataset"
)
Description

Build `SummarizedExperiment` using a single `sfaira` entry ID

Usage

```r
dataset_sfaira(
  sfaira_id,
  sfaira_setup,
  name = "SimBu_dataset",
  spike_in_col = NULL,
  additional_cols = NULL,
  force = FALSE,
  filter_genes = TRUE,
  variance_cutoff = 0,
  type_abundance_cutoff = 0,
  scale_tpm = TRUE
)
```

Arguments

- `sfaira_id` (mandatory) ID of a `sfaira` dataset
- `sfaira_setup` (mandatory) the `sfaira` setup; given by `setup_sfaira`
- `name` name of the dataset; will be used for new unique IDs of cells
- `spike_in_col` which column in annotation contains information on spike_in counts, which can be used to re-scale counts
- `additional_cols` list of column names in annotation, that should be stored as well in dataset object
- `force` boolean, if TRUE, datasets without annotation will be downloaded, FALSE otherwise (default)
- `filter_genes` boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below `variance_cutoff`
- `variance_cutoff` numeric, is only applied if `filter_genes` is TRUE: removes all genes with variance below the chosen cutoff
- `type_abundance_cutoff` numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types
- `scale_tpm` boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6

Value

`dataset object`
dataset_sfaira_multiple

Build SummarizedExperiment using multiple sfaira entries

Description
You can apply different filters on the whole data-zoo of sfaria; the resulting single-cell datasets will be combined into a single dataset which you can use for simulation. Note: only datasets in sfaira with annotation are considered!

Usage

```r
dataset_sfaira_multiple(
  organisms = NULL,
  tissues = NULL,
  assays = NULL,
  sfaira_setup,
  name = "SimBu_dataset",
  spike_in_col = NULL,
  additional_cols = NULL,
  filter_genes = TRUE,
  variance_cutoff = 0,
  type_abundance_cutoff = 0,
  scale_tpm = TRUE
)
```

Arguments

- **organisms** (mandatory) list of organisms (only human and mouse available)
- **tissues** (mandatory) list of tissues
- **assays** (mandatory) list of assays
- **sfaira_setup** (mandatory) the sfaira setup; given by `setup_sfaira`
- **name** name of the dataset; will be used for new unique IDs of cells
- **spike_in_col** which column in annotation contains information on spike_in counts, which can be used to re-scale counts
- **additional_cols** list of column names in annotation, that should be stored as well in dataset object

Examples

```r
setup_list <- SimBu::setup_sfaira(tempdir())
ds <- SimBu::dataset_sfaira(
  sfaira_id = "homosapiens_lungparenchyma_2019_10x3v2_madissoon_001_10.1186/s13059-019-1906-x",
  sfaira_setup = setup_list,
  name = "test_dataset"
)
```
filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below **variance_cutoff**

variance_cutoff numeric, is only applied if **filter_genes** is TRUE: removes all genes with variance below the chosen cutoff

type_abundance_cutoff numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6

Value

dataset object

Examples

```r
setup_list <- SimBu::setup_sfaira(tempdir())
ds_human_lung <- SimBu::dataset_sfaira_multiple(
  sfaira_setup = setup_list,
  organisms = "Homo sapiens",
  tissues = "lung parenchyma",
  assay = "10x 3’ v2",
  name = “human_lung”
)
```

dmode

use gaussian kernel to calculate the mode of transcript counts

Description

use gaussian kernel to calculate the mode of transcript counts

Usage

`dmode(x)`

Arguments

`x` vector of numeric values

Value

most commonly occurring (log-transformed) TPM value
Description

download a specific dataset from sfaira by an ID

Usage

```r
download_sfaira(
  setup_list, 
  ids, 
  force = FALSE, 
  synapse_user = NULL, 
  synapse_pw = NULL
)
```

Arguments

- `setup_list`: the sfaira setup; given by `setup_sfaira`
- `ids`: the IDs of the datasets
- `force`: logical; TRUE if you want to force the download, even though no cell-type annotation exists for this dataset. Default if FALSE
- `synapse_user`: character; username for synapse portal (https://www.synapse.org)
- `synapse_pw`: character; password for synapse portal (https://www.synapse.org)

Value

matrix, gene names and cell IDs

download_sfaira_multiple

download multiple datasets from sfaira using filters for organism, tissue and/or assay

Description

similar to the filters on the sfaira website (https://theislab.github.io/sfaira-portal/Datasets)
Usage

download_sfaira_multiple(
 setup_list,
 organisms = NULL,
 tissues = NULL,
 assays = NULL,
 force = FALSE
)

Arguments

 setup_list the sfaira setup; given by setup_sfaira
 organisms list of organisms (only human and mouse available)
 tissues list of tissues
 assays list of assays
 force logical; TRUE if you want to force to download all datasets, otherwise only the
 ones with cell-type annotation will be returned. Default if FALSE

Value

 annotated data object, contains count matrix and annotation

Description

 filter one (or two) expression matrix by genes

Usage

 filter_matrix(m1, m2 = NULL, filter_genes = TRUE, variance_cutoff = 0)

Arguments

 m1 Matrix 1
 m2 Matrix 2 (optional)
 filter_genes boolean
 variance_cutoff numeric, genes below this variance value are removed

Value

 filtered matrix
generate_summarized_experiment

Generate SummarizedExperiment using multiple parameters

Description

Generate SummarizedExperiment using multiple parameters

Usage

```r
generate_summarized_experiment(
  annotation,  # (mandatory) dataframe; needs columns 'ID' and 'cell_type'; 'ID' needs to be equal with cell_names in count_matrix
  count_matrix,  # (mandatory) sparse count matrix; raw count data is expected with genes in rows, cells in columns
  tpm_matrix,  # sparse count matrix; TPM like count data is expected with genes in rows, cells in columns
  name,  # name of the dataset; will be used for new unique IDs of cells
  spike_in_col,  # which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation
  additional_cols,  # list of column names in annotation, that should be stored as well in dataset object
  filter_genes,  # boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff
  variance_cutoff,  # numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff
  type_abundance_cutoff,  # numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types
  scale_tpm  # boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6
)
```

Arguments

- `annotation` (mandatory): dataframe; needs columns 'ID' and 'cell_type'; 'ID' needs to be equal with cell_names in count_matrix
- `count_matrix` (mandatory): sparse count matrix; raw count data is expected with genes in rows, cells in columns
- `tpm_matrix`: sparse count matrix; TPM like count data is expected with genes in rows, cells in columns
- `name`: name of the dataset; will be used for new unique IDs of cells
- `spike_in_col`: which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation
- `additional_cols`: list of column names in annotation, that should be stored as well in dataset object
- `filter_genes`: boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff
- `variance_cutoff`: numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff
- `type_abundance_cutoff`: numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types
- `scale_tpm`: boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6
h5ad_to_adata

Value
Return a **SummarizedExperiment** object

h5ad_to_adata
Use basilisk environment to read h5ad file and access anndata object

Description

Use basilisk environment to read h5ad file and access anndata object

Usage

```r
h5ad_to_adata(h5ad_path, cells_in_obs)
```

Arguments

- `h5ad_path`: path to h5ad file
- `cells_in_obs`: boolean, if TRUE, cell identifiers are taken from obs layer in anndata object; if FALSE, they are taken from var

Value

matrix contained on h5ad file as dgCMatrix

merge_scaling_factor
Create scaling vector from custom or pre-defined scaling factor

Description

Create scaling vector from custom or pre-defined scaling factor

Usage

```r
merge_scaling_factor(data, scaling_factor_values, scaling_factor_name)
```

Arguments

- `data`: dataset
- `scaling_factor_values`: named list of scaling values
- `scaling_factor_name`: name of scaling factor method

Value

scaling vector
merge_simulations Combine multiple simulations into one result

Description
we recommend to only merge simulations from the same dataset object, otherwise the count matrices might not correspond on the gene level

Usage
merge_simulations(simulation_list)

Arguments

| simulation_list | a list of simulations |

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq datasets. Can hold either one or two assays, depending on how many matrices were present in the dataset cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector scaling value for each cell in dataset

Examples

```
counts <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell ", rep(1:300))
colnames(tpm) <- paste0("cell ", rep(1:300))
rownames(counts) <- paste0("gene ", rep(1:1000))
rownames(tpm) <- paste0("gene ", rep(1:1000))

annotation <- data.frame(
  "ID" = paste0("cell ", rep(1:300)),
  "cell_type" = c(
    rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
  )
)

dataset <- SimBu::dataset(
  annotation = annotation,
```
plot_simulation

```r
count_matrix = counts,
tpm_matrix = tpm,
name = "test_dataset"
)
s1 <- SimBu::simulate_bulk(dataset,
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)
s2 <- SimBu::simulate_bulk(dataset,
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)
s <- SimBu::merge_simulations(list(s1, s2))
```

plot_simulation
Plot the cell-type fractions in your simulated dataset

Description
Plot the cell-type fractions in your simulated dataset

Usage
```r
plot_simulation(simulation)
```

Arguments
- `simulation`: a simulation object generated by `simulate_bulk`

Value
a `ggplot2` barplot

Examples
```r
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))
```
annotation <- data.frame(
 "ID" = paste0("cell_", rep(1:300)),
 "cell_type" = c(
 rep("T cells CD4", 50),
 rep("T cells CD8", 50),
 rep("Macrophages", 100),
 rep("NK cells", 10),
 rep("B cells", 70),
 rep("Monocytes", 20)
)
)

dataset <- SimBu::dataset(
 annotation = annotation,
 count_matrix = counts,
 tpm_matrix = tpm,
 name = "test_dataset"
)

s <- SimBu::simulate_bulk(dataset,
 scenario = "even",
 scaling_factor = "NONE",
 nsamples = 10,
 ncells = 100
)

SimBu::plot_simulation(s)

save_simulation

Save the expression matrix of a simulated pseudo-bulk dataset to a file

Description

Save the expression matrix of a simulated pseudo-bulk dataset to a file

Usage

`save_simulation(simulation, filename, assay = "bulk_counts")`

Arguments

- `simulation`: the result of `simulate_bulk()`
- `filename`: the filename where to save the expression matrix to
- `assay`: name of the assay in simulation to save, default to `bulk_counts`

Value

write a file
Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
 "ID" = paste0("cell_", rep(1:300)),
 "cell_type" = c(
 rep("T cells CD4", 50),
 rep("T cells CD8", 50),
 rep("Macrophages", 100),
 rep("NK cells", 10),
 rep("B cells", 70),
 rep("Monocytes", 20)
)
)

dataset <- SimBu::dataset(
 annotation = annotation,
 count_matrix = counts,
 tpm_matrix = tpm,
 name = "test_dataset"
)

s <- SimBu::simulate_bulk(dataset,
 scenario = "even",
 scaling_factor = "NONE",
 nsamples = 10,
 ncells = 100
)

save_simulation(s, tempfile())

setup_sfaira

setup the sfaira package

Description

If you want to download datasets from Sfaira, you need to specify a directory where the datasets are saved into. Additionally, when this function is called for the first time, a conda environment will be established and sfaira along all of its dependencies are installed. This can take some time but will be only performed one single time, as the environment can be re-used.

Usage

setup_sfaira(basedir)
sfaira_overview

Arguments

basedir name of the directory, where the raw files will be downloaded into

Value

list with sfaira file directories; must be used as input for other sfaira based functions

Examples

setup_list <- setup_sfaira(basedir = tempdir())

sfaira_overview Gives an overview of the possible datasets you can use from the sfaira database

Description

Gives an overview of the possible datasets you can use from the sfaira database

Usage

sfaira_overview(setup_list)

Arguments

setup_list the sfaira setup; given by setup_sfaira

Value

a dataframe with information on each dataset

Examples

setup_list <- setup_sfaira(basedir = tempdir())
all_datasets <- sfaira_overview(setup_list)
SimBu: Bias-aware simulation of bulk RNA-seq data with variable cell type composition

Description

As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. The simulation of ‘pseudo-bulk’ data, generated by aggregating single-cell RNA-seq (scRNA-seq) expression profiles in pre-defined proportions, offers a scalable and cost-effective way of generating these gold-standard datasets. SimBu was developed to simulate pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modelling of cell-type-specific mRNA bias using experimentally-derived or data-driven scaling factors.

Dataset generation

You will need an annotated scRNA-seq dataset (as matrix file, h5ad file, Seurat object), which is the baseline for the simulations. Use the dataset_* functions to generate a SummarizedExperiment, that holds all important information. It is also possible to access scRNA-seq datasets through the public database Sfaira, by using the functions dataset_sfaira() and dataset_sfaira_multiple().

Simulation

Use the simulate_bulk() function to generate multiple pseudo-bulk samples, which will be returned as a SummarizedExperiment. You can adapt the cell type fractions in each sample by changing the scenario parameter.

Visualization

Inspect the cell type composition of your simulations with the plot_simulation() function.

simulate_bulk

Simulate whole pseudo-bulk RNAseq dataset

Description

This function allows you to create a full pseudo-bulk RNAseq dataset. You need to provide a SummarizedExperiment from which the cells will be sampled for the simulation. Also a scenario has to be selected, where you can choose how the cells will be sampled and a scaling_factor on how the read counts will be transformed prior to the simulation.
Usage

simulate_bulk(
 data,
 scenario = c("even", "random", "mirror_db", "weighted", "pure", "custom"),
 scaling_factor = c("NONE", "census", "spike_in", "custom", "read_number",
 "expressed_genes", "annotation_column", "epic", "abis", "quantiseq"),
 scaling_factor_single_cell = TRUE,
 weighted_cell_type = NULL,
 weighted_amount = NULL,
 pure_cell_type = NULL,
 custom_scenario_data = NULL,
 custom_scaling_vector = NULL,
 balance_even_mirror_scenario = 0.01,
 remove_bias_in_counts = FALSE,
 remove_bias_in_counts_method = "read-number",
 norm_counts = FALSE,
 nsamples = 100,
 ncells = 1000,
 total_read_counts = NULL,
 whitelist = NULL,
 blacklist = NULL,
 seed = NA,
 BPPARAM = BiocParallel::bpparam(),
 run_parallel = FALSE
)

Arguments

 data (mandatory) SummarizedExperiment object
 scenario (mandatory) select one of the pre-defined cell-type fraction scenarios; possible
 are: even, random, mirror_db, pure, weighted; you can also use the custom scen-
 nario, where you need to set the custom_scenario_data parameter.
 scaling_factor (mandatory) name of scaling factor; possible are: census, spike_in, read_number,
 expressed_genes, custom, epic, abis, quantiseq or NONE for no scaling fac-
 tor
 scaling_factor_single_cell
 boolean: decide if a scaling value for each single cell is calculated (default) or
 the median of all scaling values for each cell type is calculated
 weighted_cell_type
 name of cell-type used for weighted scenario
 weighted_amount
 fraction of cell-type used for weighted scenario; must be between 0 and 0.99
 pure_cell_type
 name of cell-type for pure scenario
 custom_scenario_data
 dataframe; needs to be of size nsamples x number_of_cell_types, where each
 sample is a row and each entry is the cell-type fraction. Rows need to sum up to
 1.
custom_scaling_vector

named vector with custom scaling values for cell-types. Cell-types that do not occur in this vector but are present in the dataset will be set to 1; mandatory for custom scaling factor

balance_even_mirror_scenario

balancing value for the uniform and mirror_db scenarios: increasing it will result in more diverse simulated fractions. To get the same fractions in each sample, set to 0. Default is 0.01.

remove_bias_in_counts

boolean; if TRUE the internal mRNA bias that is present in count data will be removed using the number of reads mapped to each cell. Default to FALSE

remove_bias_in_counts_method

'read-number' (default) or 'gene-number'; method with which the mRNA bias in counts will be removed

norm_counts

boolean; if TRUE the samples simulated with counts will be normalized to CPMs, default is FALSE

nsamples

numeric; number of samples in pseudo-bulk RNAseq dataset (default = 100)

ncells

numeric; number of cells in each dataset (default = 1000)

total_read_counts

numeric; sets the total read count value for each sample

whitelist

list; give a list of cell-types you want to keep for the simulation; if NULL, all are used

blacklist

list; give a list of cell-types you want to remove for the simulation; if NULL, all are used; is applied after whitelist

seed

numeric; specify a seed for RNG. This effects cell sampling; with a fixed seed you will always sample the same cells for each sample (seed value is increased by 1 for each sample). Default = NA (two simulation runs will sample different cells).

BPPARAM

BiocParallel::bpparam() by default; if specific number of threads x want to be used, insert: BiocParallel::MulticoreParam(workers = x)

run_parallel

boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq datasets. Can hold either one or two assays, depending on how many matrices were present in the dataset. cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector scaling value for each cell in dataset

Examples

generate sample single-cell data to work with:

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))
colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
 "ID" = paste0("cell_", rep(1:300)),
 "cell_type" = c(
 rep("T cells CD4", 50),
 rep("T cells CD8", 50),
 rep("Macrophages", 100),
 rep("NK cells", 10),
 rep("B cells", 70),
 rep("Monocytes", 20)
)
)

dataset <- SimBu::dataset(
 annotation = annotation,
 count_matrix = counts,
 tpm_matrix = tpm,
 name = "test_dataset"
)

this creates a basic pseudo-bulk dataset with uniform cell-type distribution
and no additional transformation of the data with 10 samples and 2000 cells each
s <- SimBu::simulate_bulk(dataset,
 scenario = "even",
 scaling_factor = "NONE",
 nsamples = 10,
 ncells = 100
)

use a blacklist to exclude certain cell-types for the simulation
s <- SimBu::simulate_bulk(dataset,
 scenario = "even",
 scaling_factor = "NONE",
 nsamples = 10,
 ncells = 2000,
 blacklist = c("Monocytes", "Macrophages")
)

use the pure scenario to only have B cells
s <- SimBu::simulate_bulk(dataset,
 scenario = "pure",
 scaling_factor = "NONE",
 nsamples = 10,
 ncells = 100,
 pure_cell_type = "B cells"
simulate a dataset with custom cell-type fraction for each of the 3 samples
fractions <- data.frame(
 "B cells" = c(0.2, 0.4, 0.2),
 "T cells CD4" = c(0.4, 0.2, 0.1),
 "Macrophages" = c(0.4, 0.4, 0.7), check.names = FALSE
)
s <- SimBu::simulate_bulk(dataset,
 scenario = "custom",
 scaling_factor = "NONE",
 nsamples = 3,
 ncells = 2000,
 custom_scenario_data = fractions
)

simulate_sample

simulate single pseudo-bulk sample

Description

function to sample cells according to given cell-type fractions. This creates a single pseudo-bulk sample by calculating the mean expression value per gene over all sampled cells. Note: if total_read_counts is used, the cell-fractions are applied to the number of counts, not the number of cells!

Usage

```r
simulate_sample(
data, 
scaling_vector, 
simulation_vector, 
total_cells, 
total_read_counts, 
remove_bias_in_counts, 
remove_bias_in_counts_method, 
norm_counts, 
seed
)
```

Arguments

- **data**
 SummarizedExperiment object
- **scaling_vector**
 vector with scaling values for each cell; calculated by the calc_scaling_vector function
- **simulation_vector**
 named vector with wanted cell-types and their fractions
- **total_cells**
 numeric; number of total cells for this simulation
simulate_sample

- `total_read_counts`: numeric; sets the total read count value for each sample
- `remove_bias_in_counts`: boolean; if TRUE (default) the internal mRNA bias that is present in count data will be removed using the number of reads mapped to each cell
- `remove_bias_in_counts_method`: 'read-number' (default) or 'gene-number'; method with which the mRNA bias in counts will be removed
- `norm_counts`: boolean; if TRUE the samples simulated with counts will be normalized to CPMs, default is FALSE
- `seed`: numeric; fix this value if you want the same cells to be sampled

Value

returns two vectors (one based on counts, one based on tpm; depends on which matrices are present in data) with expression values for all genes in the provided dataset
Index

* internal
 calc_scaling_vector, 2
 census_monocle, 4
 check_annotation, 5
 check_if_tpm, 5
 compare_matrix_with_annotation, 6
 dmode, 15
 download_sfaira, 16
 download_sfaira_multiple, 16
 filter_matrix, 17
 generate_summarized_experiment, 18
 h5ad_to_adata, 19
 merge_scaling_factor, 19
 simulate_sample, 29

calc_scaling_vector, 2

census, 3

census_monocle, 4

check_annotation, 5

check_if_tpm, 5

compare_matrix_with_annotation, 6

dataset, 6

dataset_h5ad, 8

dataset_merge, 9

dataset_seurat, 11

dataset_sfaira, 12

dataset_sfaira_multiple, 14

dmode, 15

download_sfaira, 16

download_sfaira_multiple, 16

filter_matrix, 17

generate_summarized_experiment, 18

h5ad_to_adata, 19

merge_scaling_factor, 19

merge_simulations, 20

plot_simulation, 21

save_simulation, 22

setup_sfaira, 13, 14, 16, 17, 23, 24

Seurat, 11

sfaira_overview, 24

SimBu, 25

simulate_bulk, 25

simulate_sample, 29

SummarizedExperiment, 6–14, 19, 20, 25–27, 29